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Overview — Asymmetric and Adaptive
Fault Tolerant Quantum Computatlon

Asymmetric Quantum Error Correction Codes: One type of noise
may dominant over the other. Can we design codes for this
scenario 7 Yes — review existing work and set up scenario for ... ..

Adaptive Error Correction: One may determine the frequency of
bit flip errors and phase flip errors corrected in the error correction
stage by monitoring the syndrome measurement outcomes. If the
code needs a larger bit flip distance or phase flip distance, one
may dynamically adjust the error correction scheme in real time.
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Asymmetric Quantum
Error Correcting Codes

L armect on

.........

Classical errors - Bit flips.

Quantum errors - Bit flips & Phase flips.
Probability of a Bit Flip = pys-

Probability of a Phase Flip = p.

Quantum block code distances dys and d;.
Efficient error correction operation.
Asymmetric codes — dy¢/ d¢= Pps / Pps



Motivational Slide: Do bf - pf error

asymmetries appear in practical

quantum computing architectures
Consider the ion trap architecture.

Ion read/write operations are dominated
by laser phase noise — phase errors.

Ions often are isolated well enough
that the dominant form of decoherence
IS spontaneous decay from the excited
state to the ground state.

Spontaneous decay is described by
the amplitude damping channel.




Amplitude Damping Dynamics

Y=al|g>+p|e>

Ground State

Unit Bloch Sphere




Calculating py¢sand pys for
the amplitude damping channel

Operator sum (Kraus) channel action
SY(P) = 2; M; p M7,
Damping parameter v.

v=0 no damping, +y=1 full damping.
Consider using the Shor nine qubit code.

Let the damping action occur on the 1st
qubit only.

Px (p) = Trace[ (X®I®?) p (X®I®F) €,(p) ]




Error Probabilities

Error Probabiliies: pl, pX, pY, p2
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Error Probabilities

Error Probabilities: pl, pX. pY, pZ, pBF, pPF
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Amplitude Damping Pammeter Gamma {See Nielsen anc Chuang)




Error Probabilities

Error Probability Ratio: pBF / pPF
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Asymmetric Quantum Codes

Examples

Bit flip (only) code - 000, > 111
Bit flip distance = 1, Phase flip distance = 0.
Similar idea yields a Phase flip (only) code.

One may efficiently design asymmetric
quantum codes with various blocklengths,
encoded number of qubits and bit flip and
phase flip code distances using ideas from
quantum cyclic code constructions. Basic
idea drawn from Calderbank et al. GF(4)
paper 9608006 & Preskill, Chapter 7 notes.




Constructing Asymmetric Codes

A brief review of classic cyclic code construction

Message polynomial m(s) of encodes k
information bits { ig,l4,15,...,1_4 } @S

m(s) =i, +i,s+i,s2+ ... +i_, sk (degree k-1)
Code word polynomial encodes n codeword

bits { Cy,C4,---,C,,.4} @S

c(s)=cy+c,s+cC,s%2+ ... +C ,5"" (degree n-1)
Generator polynomial g(s) implements the
encoding: c(s) = g(s) m(s).

The polynomial g(s) has degree n - k.

a(s) is the key to the code properties.



Quantum cyclic code construction

Consider two blocklength n codes, C, and C,.

Use Calderbank Shor Steane code construction

Use polynomial description of cyclic codes.
CalS) = Ga(S) Ma(S), Cp(s) = gg(s) my(s).
Desire Cg < C, — Kk, > kg and mg(s) = m(s).
c(s) a linear cyclic code iff g(s) is a factor of s™-1.
s"—1 =TI fi(s), | € A and the fj(s) are irreducible.

Must have g.(s) divide gg(s).



Quantum cyclic code construction

c(s) a linear cyclic code Iff g(s) Is a factor of s"-1.
s" —1 =TI fj(s), | € A and the f(s) are irreducible.
Desire Cg; < C, — Must have g,(s) divide gg(s).

Construct gg(s) = IT, fi(s), with {A} = Q < A, Q=A.
Construct g,(s) = I1, f,(s), with {u} =0 < Q, 5=Q.
d(Cq) — dye @and d(C'g) — ds.

The irreducible factors of s" — 1 used In
constructing g.(s) and gg(s) determine the
quantum code properties.



Example: a class of quantum codes

for fixed n with different ( dy;, d.¢).

A large # of irreducible factors for s" — 1 leads
to many different irreducible factor combinations
and many different possible C; c C, — g, | 9g
constructions with different ( d,;, d;) pairs.

Eg: n=15, s15-1 = f,(s) f,(s) f5(8) f4(S) fs(S) =
(s+1)(s%+s+1)(s?+s3+s2+s+1)(s4+s+1)(s?+s3+1) mod 2.
9o = f3 14,95 = f3 T4 fs > d(Cp) =35 (dyy), d(Clp) =2 (dyy).
9o =1 123,95 =1 f f3 1, — d(Cy) =4, d(Clp) =3.




Stabilizer picture yields

encoded X, Z operations

Recall stabilizer operators S = { Sy, S, } where
Sy = X’s in parity check locations of C_,

S, = Z's In parity check locations of Ciﬁ.
Normalizer of the Pauli group is the group of
elements which commute with all the stabilizer

elements. The elements of the normalizer not Iin
the stabilizer yield the encoded X, Z operations.







Adaptive Quantum Error Correctlon
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Adaptation and feedback useful and common
In classical signal processing.

Use syndrome outcomes to adaptively adjust
the quantum code so that adequate, but not

excessive, code distances contain the errors.

Fault tolerant gate constructions must also
be updated when the code used is changed.

By keeping the quantum code structure closely
tied to the noise level present in the system, one
keeps the computational resources (time and
gates) needed for error correction to a minimum.



Adaptive Code Update Options

Swap distances between bf's and pf's for fixed n

—> Increase/decrease d,; at the expense of d .

Change codeword length, thereby
shrinking/increasing dy;, d; or both.

Keep the codeword length constant, but change the #
of encoded qubits by changing the d, d,; per qubit ?

(Where do you store the swapped out encoded qubits ?)
Combinations of the above.

* These degrees of freedom exist in quantum
code design and can be understood and
manipulated using the asymmetric techniques
previously outlined.



VWhen is adaptation useful ?

Adaptation works best for slowly varying noise.

and

In this case, one does not change the underlying
code structure too often, but often enough to aid
overall execution performance.

One may also wish to utilize different codes for

different computational stages/operations:
moving qubits, laser read/write, gate operations.



Computational Gate Error Analysis

The determination of the relative probability
of bf versus pf errors Is complicated by error
conversion due to computational gates.

Appropriate bit flip, phase flip code distances
for upcoming computational blocks depend on
the anticipated gates to be implemented, as
well as consideration of the computational
gates executed In previous computational
stages from which statistics were extracted.

— Make broad assumptions to reduce the
complexity of estimating the error probabilities.



Computational Gate Error Conversion

Computational gates may convert
one type of error into another.

Example: bit flip error — phase flip error
Consider the Hadamard gate H. Recall XH =
HZ. A bit flip error before H propagates as a
phase flip error after the H gate. Depending on

whether the bit flip error occurs before or after
the Hadamard affects which error propagates.

X error Z error



Estimating the Errors & Bootstrapping

. Error
Computational .
Stage Correction
Stage
X error X error Z error
X error Z error

How is one to track all these error probabilities ?




Error Estimation

X error (p,;) X €rmor (Py)  Z error (p,,)

X error (Pys) Z error (Pyy) Z error (Py)

Make simplifying error assumptions.

Use the observed syndrome distribution to predict
how the noise parameterization degrees of freedom
are behaving.

Use error parameterization + gate information to predict
code properties for upcoming computational blocks.




Adaptive Algorithm Summary

Precompile in an ancillary classical computer a
range of [ n,k,dy;,d ;] quantum codes with their
corresponding fault tolerant implementations.

Make generalizing assumptions about noise
behavior and determine what the error
correction syndromes indicate about the
noise parameterization degrees of freedom.

Analyze syndrome measurement outcomes,

In light of past and upcoming computational
gates to estimate code requirements for future

blocks.

Implement a new code and corresponding
fault tolerant gates as needed.



|s adaptive error correction worth the trouble ?
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Conclusion & Summary

Adaptive error schemes yield improved efficiency in
quantum communication and quantum computation
architectures which have time varying bit flip/phase
flip noise levels. Time varying noise may occur due
to quantum computer/communication hardware
modifications and/or as equipment ages.

Approach may be useful in simplifying detailed error
correction architecture design. (Error noise locking.)

Asymmetric and adaptive error correction schemes
maximize the time spent by the quantum computer
executing the algorithm of interest, while minimizing
the resources and time needed to implement error
correction.



