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Error-detection-based threshold scheme
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Results

e Existence of tolerable noise rates for
many fault-tolerance schemes,
including:

e Schemes based on error-detecting
codes, not just ECCs (Knill-type)

e Fibonnacci-type thresholds

e Tolerable threshold lower bounds™

e 0.1% simultaneous depolarization
noiset

e |.1%,if error model known exactly

* Subject to minor numerical caveats i Versus .02% best lower bound for error-
correction-based FT scheme [Aliferis. Cross 2006]
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Technique: Mixing of distributions

~—— Aand B independent

Event Probability
A 2p
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Fault-tolerance problem

Controlled-NOT gate Noise model
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For proof sketch:
flips target if control Model a noisy gate as a perfect

bit is set gate followed by independent bit-
flip errors (XI, IX or XX) — with
total error rate px+pixtpxx at
most p




Fault-tolerance intuition

Noise model . Encode into an error-correcting code
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Fault-tolerance intuition

Improved reliability beneath constant
tolerable noise threshold
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Fault-tolerance intuition

Improved reliability beneath constant
tolerable noise threshold

Prob. diaeram
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Repeat for arbitrarily improved
reliability.




Error-detection-based FT intuition

Improved reliability beneath constant
tolerable noise threshold

Prob. diagram

| ED -

fails to commute

)
wls

noisy transversal CNOTs

perfect perfect
decoding decoding

T b

perfect CNOT

Repeat for arbitrarily improved
reliability.




Fault-tolerance based on error detection

ED

In simulations, tolerates |10x higher noise rates than error-
correction-based FT schemes

But previously, no proven positive threshold at all!

Note: Overhead is substantial, but theoretically efficient




Renormalization frustrates previous proofs

Most of the time, errors are detected —
Controlled \ Uncphtrplled but (counterintuitively) survival probability for
well-bounded) | woBsl=¢ase uncontrolled portion could be much higher
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with occasional failures
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Talk overview

e Error-detection-based threshold proof intuition

e Numerical threshold lower bound calculations




Fault-tolerance based on error detection

CNOT gate
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Proof intuition

CNOT gate

Notation: Noisy encoder
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Rerlrk: Distribution here can be arbitrary
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Proof intuition

Notation

P[XXXX] ~ p?2




Proof intuition

Notation

-

bitwise-independent errors
bitwise-independent errors following encoded CNOT gate,
preceding encoded CNOT gate plus quadratically suppressed
independent logical errors
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Proof intuition

_® nice dist.

A

e true dist.




Proof intuition
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Known error model
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e |[f error distribution is known exactly, then can deliberately introduce

errors to force equality

e Pauli errors can be (effectively) introduced by changing the Pauli frame

e Results:

e 0.7% depolarization per CNOT (other operations similar noise rates),
by permutation- and Hadamard-symmetrizing (28-2=64) dimensions
down to ||

e |.1% symmetrizing to |7-dimensions (permutations only)
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e |[f error distribution is known exactly, then can deliberately introduce
errors to force equality

e Pauli errors can be (effectively) introduced by changing the Pauli frame

e Results:

e 0.7% depolarization per CNOT (other operations similar noise rates),
by permutation- and Hadamard-symmetrizing (28-2=64) dimensions
down to ||

e |.1% symmetrizing to |7-dimensions (permutations only)
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Proof intuition

—& nice dist.  |n fact, true distribution is close to
many nice (RHS) distributions, and
® true dist) lies in their convex hull

nice dist.




Induction step
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Analysis of the next encoded CNOT gate proceeds by picking one of
the vertices — a nice distribution — then applying the CNOT mixing
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Each output distibution can again be rewritten as mixture of nice
distributions, etc.




Proof intuition

In fact, true distribution is close to
many nice (RHS) distributions, and

nice dist, —

= ® true dist lies in their convex hull
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Proving that mixing works

e Existence argument (for threshold existence proofs):

e characterize simplex convex hull of dit-wise independent distributions

Pl f

Mixing Lemma

e “pull back” actual distribution onto distn. on dits

ke | | />\Now different events can

because every error event \ . lead to same error
has distinct effect {convex g : s ) : el - ~ ~— convex hull no longer
hull of n points in n-1 o : L - a simplex
dimensions) S e " ~ Eg., convex hull of 64
points in |5 dimensions
e MNumerical approach (for numerical threshold lower bounds)...




Mixing of bitwise-independent error
distributions: Two-bit example

e Four error events Il (no error),
X1, X, XX

e bitwise independence if
P XTI or XX]| - P[IX or XX| = P[XX




Mixing of bitwise-independent error
distributions: Two-bit example

e Four error events |l (no error),
X1, X, XX

e : P|XX ([ p- . ;13
e bitwise independence if

P[XI or XX] - P[IX or XX] = P[XX

e Claim: Convex hull of all product
distributions with bit error rates
Spis:

PIXI or XX

P[IX or XX




Mixing of bitwise-independent error
distributions: Two-bit example

e Four error events |l (no error),
X1, X, XX

C : P|XX [ p- p. ;13
e bitwise independence if

P[XI or XX] - P[IX or XX] = P[XX

e Claim: Convex hull of all product
distributions with bit error rates
=pis:

PIXI or XX

Remarks:
1. Natural lattice coordinates
2. 3=4-1 dimensions

3. 4=22 extremal distributions PIIX or XX
(each bit can be noisy or not) —
simplex

(0,0.0)




Product distribution mixing: General case

~ i I-I

® [our error events |l (no error), e |lattice:
X1, X, XX

® bitwise independence if

P[XI or XX] - P[IX or XX| = P|XX

® Claim: Convex hull of all product e Mixing Lemma: Convex hull of all
M - s product distributions with ith bit
Zpis: -
error rate < p;, is {P[*]} s.t.

| P12




Product distribution

mixing: General case

¢ Four error events |l (no error), e Lattice:
X1, X, XX

® bitwise independence if

P|XI or XX| - P[IX or XX| = P|XX

e Claim: Convex hull of all product e Mixing Lemma: Convex hull of all
distributions with bit error rates
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Product distribution mixing: General case

® Mixing Lemma: Convex hull of all
product distributions with ith bit
error rate < pj, is {P[*]} s.t:

e Corollary: If P[{y<x}]=0O(p/) for all x in {0,1}", then P[] lies in convex
hull of product distributions with bit error rates O(p).




Product distribution

® [our error events |l (no error),
X, X, XX

® bitwise independence if

PXI or XX] - P[IX or XX| = P[XX

e Claim: Convex hull of all product
distributions with bit error rates
Spis

P
[
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mixing: General case

Lattice:

Mixing Lemma: Convex hull of all
product distributions with ith bit
error rate < p;,is {P[*]} s.t.




Product distribution mixing: General case

® Mixing Lemma: Convex hull of all
product distributions with ith bit
error rate < pj, is {P[*]} s.t:

Vr € {0,1}"

Y8

Ptz x}
p\*!

e Corollary: If P[{y<x}]=0O(p/) for all x in {0,1}", then P[] lies in convex
hull of product distributions with bit error rates O(p).




Product distribution mixing: General case

® Mixing Lemma: Convex hull of all
product distributions with ith bit

error rate < p;, is {P[*]} s.t:
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e Corollary: If P[{y<x}]=0O(p/) for all x in {0, [}", then P[] lies in convex
hull of product distributions with bit error rates O(p).
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Product distribution mixing: General_gasg—""‘

Theorem (Mixing Lemma). For i € {1 n}. fix probabilities pt satisfying
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Corollary: If P[{y<x}]=0(pX) for all x in {0,1}", then P[*] lies in convex hull
of product distributions with bit error rates O(p).

Standard fault-tolerance techniques achieve this bound...

Problem! Mixing Lemma requires distribution over {I.X,Y,Z}", whereas we
have a distribution over error equivalence classes {I.X,Y,Z}" / Stabilizers




Corollary: If P[{y<x}]=0(pX) for all x in {0,1}", then P[*] lies in convex hull
of product distributions with bit error rates O(p).

Standard fault-tolerance techniques achieve this bound...

Problem! Mixing Lemma requires distribution over{EX,Y,Z}", whereas we
have a distribution over error equivalence classes({}X.Y,Z}” | Stabilizers
3L

Solution:

e Define f : {5 — ()| mapping error to its equivalence class




Corollary: If P[{y<x}]=0(p) for all x in {0,1}", then P[*] lies in convex hull
of product distributions with bit error rates O(p).

Standard fault-tolerance techniques achieve this bound...

Problem! Mixing Lemma requires distribution over {kX,Y,Z}", whereas we
have a distribution over error equivalence classes({}X.Y,Z}“ | Stabilizers
3L

Solution:
e Define f : {5 — ()| mapping error to its equivalence class

e finduces map on distributions, f (”)(wij == Z-&'z:f (wo)=w1 ’-TT(UJE_)
taking product distn’s to bitwise-independent error distn’s




Corollary: If P[{y<x}]=0(p™) for all x in {0.1}", then P[*] lies in convex hull
of product distributions with bit error rates O(p).

Standard fault-tolerance techniques achieve this bound...

)
Problem! Mixing Lemma requires distribution over{EX,Y,Z}", whereas we
have a distribution over error equivalence classes({}X.Y,Z}“ | Stabilizers
¥y

Solution:
Define [ : {}o — ()1 mapping error to its equivalence class
f induces map on distributions, f (VT) (;.,:.,‘1] == Z-&'z:f (wo)=w1 ’T('-vz)
taking product distn’s to bitwise-independent error distn’s
Pull back 7: Choose p such that f(p) ==«

e E.g, divide probability mass on an error equivalence class equally
among all minimum-weight representatives in ()

Mixing Lemma tells us if p = E pipi ,implying m = Z 0 f




Remark

Corollary: If P[{y<x}]= B(pl"') for all x in {0,1}", then P[*] lies in convex hull
of product d]StFlb“U’ ol e pr rates O(p).
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f induces map G::I\i{ =8

taking product distn’s to bitwise-independent error distn’s

= re =T ——

Pull back 7: Choose p such that f(p) ==«

e E.g, divide probability mass on an error equivalence class equally
among all minimum-weight representatives in ()

Mixing Lemma tells us if p = Z pipi ,implying m = Z pif(p:)




Error rate lower bounds

Standard fault-tolerance techniques achieve error rates P[{y<x}]=0(p/x/)?

Upper bound achievable by, e.g., recursive state purification

But lower bound may or may not hold; some gates might be much more
accurate than others. 2 cases:

|. At physical level, gate error rates may all be comparable to each other

2. At higher levels of concatenation, gate error model depends on which
element of the mixture has been chosen. Error ratios diverge doubly-

exponentially quickly.

-—asy answer: Deliberately introducing errors in Pauli frame ensures lower

bounds
e .. will occasionally reject states without any detected physical errors

e [f deliberate error cancels out physical error, will accept

Numerically, assume gates fail identically at physical level — errors
introduced with quadratic probability dont much harm threshold




Remaining proof ingredients

e Conclusion: Mixing argument shows that concatenation works to reduce
errors in the CNOT gate.

e After remixing output distribution, an encoded CNOT is applied that
creates only logical error correlations.

e Error events are correlated, but error correlations do not explode.
e Remaining problems for proving a fault-tolerance threshold:

e Efficiency — won't restarting the computation whenever an error is
detected cause exponential overhead?

e Universality — CNOT and similar “linear” gates can be efficiently
simulated on a classical computer. Need a nonlinear operation (AND or

Toffoli).
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Standard fault-tolerance techniques achieve error rates P[{y<x}]=0(p/)?

Upper bound achievable by, e.g., recursive state purification

But lower bound may or may not hold; some gates might be much more
accurate than others. 2 cases:

|. At physical level, gate error rates may all be comparable to each other

2. At higher levels of concatenation, gate error model depends on which
element of the mixture has been chosen. Error ratios diverge doubly-

exponentially quickly.

—asy answer: Deliberately introducing errors in Pauli frame ensures lower

bounds
e .. will occasionally reject states without any detected physical errors

e |[f deliberate error cancels out physical error, will accept

Numerically, assume gates fail identically at physical level — errors
introduced with quadratic probability dont much harm threshold




Remaining proof ingredients

e Conclusion: Mixing argument shows that concatenation works to reduce
errors in the CNOT gate.

e After remixing output distribution. an encoded CNOT is applied that
creates only logical error correlations.

e Error events are correlated, but error correlations do not explode.
e Remaining problems for proving a fault-tolerance threshold:

e Efficiency — won't restarting the computation whenever an error is
detected cause exponential overhead!?

e Universality — CNOT and similar “linear” gates can be efficiently
simulated on a classical computer. Need a nonlinear operation (AND or
Toffoli).




Error-detection/postselection-based
quantum fault tolerance
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Numerical threshold lower bound techniques

Main concern is efficiency of the lower-bound computation, and of the lower
bound itself

Simplify:
® Minimize cases to check
e Minimize distribution dimensionality for efficient mixing
Techniques
e Direct numerical mixing by linear programming
e with strictest independence constraints
e enforced symmetrization
® Reduction to encoded Bell pair preparation
e Simple subsystem code (four-qubit with depolarized spectator)
Caveats
e Limited precision arithmetic

e Monotonicity assumptions




Direct numerical mixing

2. Numerically: Ve are given upper
and lower bounds for each coordinate
of the distribution... So use a linear
program to check that each vertex of
the hypercube lies in the convex hull
of extremal “nice” distributions.
(Computationally expensive in high
dimensions.)




Reduction to encoded Bell pair preparation:
Teleporting a CNOT gate

Logical
operations
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Teleporting a CNOT gate

Logical Physical
operations operations
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Teleporting a CNOT gate

Logical Physical
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Teleporting a CNOT gate

Logical Physical
operations operations

|OG>L E} >a~:~$ume
independent
+]11), 2 #

|OD:} L / > assume

independent

+111), s
L/

= Achieving independent errors on CNOT output blocks

reduces to preparing encoded Bell states with block-independent
errors




Encoded Bell pair preparation in [[4,2,2]] code

e Encoded CNOT teleportation state has 4*4=16 qubits, 2'¢ dimensions
e Reducing to Bell pair preparation: 8 qubits, 2% dimensions

e Far too many for direct brute force numerical mixing: 2234 vertices to
check!




Encoded Bell pair preparation

e Encoded Bell pair on first logical qubit of four-qubit [[4.2,2]] code:
XX XX TII1]
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R N N
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lock gives eight generators, 28

m
o

Fixing second encuded_dubit in each cod
dimensions (inequivalent syndromes)

Deliberately depolarizing spectator qubits leaves only six generators to track
syndromes on

Symmetrizing against the permutation symmetry group leaves |7 dimensions

Symmetrizing too against the Hadamard leaves | | dimensions




Numerical threshold lower bound techniques

Main concern is efficiency of the lower-bound computation, and of the lower
bound itself

Simplify:
® Minimize cases to check
e Minimize distribution dimensionality for efficient mixing
Techniques
® Direct numerical mixing by linear programming
e with strictest independence constraints
e enforced symmetrization
® Reduction to encoded Bell pair preparation
e Simple subsystem code (four-qubit with depolarized spectator)
Caveats
e Limited precision arithmetic

e Monotonicity assumptions




Results

e [Existence of tolerable noise rates for
many fault-tolerance schemes,
including:

® Schemes based on error-detecting
codes, not just ECCs (Knill-type)

e Fibonnacci-type thresholds

e Tolerable threshold lower bounds*

e 0.1% simultaneous depolarization
noiset

e |.1%, if error model known exactly

* Subject to minor numerical caveats i Versus .02% best lower bound for error-
correction-based FT scheme [Aliferis. Cross 2006]




