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Robust quantum computation

John Preskill, Caltech
15 June 2007 ™7



Quantum fault tolerance

 Error correction and fault tolerance will be essential in the
operation of large-scale quantum computers, both to prevent
decoherence and to control the cumulative effects of small
errors in unitary quantum gates.

» This talk focuses on fault-tolerant processing of quantum
information using quantum error-correcting codes (the

- foundation for our belief that scalable quantum computers are
possible).

-+ There are a variety of other useful ideas concerning protecting
- quantum computers from noise ... e.g., dynamical decoupling,
noiseless subsystems, protection arising from (nonabelian)

- topological order, ...

« | won't say much about these other ideas, even though they
- are important, they are related to my main topic, and they can be
- Truitfully combined with the methods I'll discuss.



' Robust quantum computation

1. Quantum error-correcting codes
2. Fault-tolerant quantum computing
3. Quantum accuracy threshold theorem
- 4. New developments:
a) subsystem codes
b) local gates
c) slow measurements
d) postselected simulation
e) “one-way’ fault-tolerance
5. Questions:
a) high-frequency noise
b) asymmetric noise
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Quantum computer: the standard model

(1) Hilbert space of n qubits: § = C?
(2) prepare initial state: |0) " =[000...0)
(3) execute circuit built from set of
universal quantum gates: {Uan:aUga---UnG}
(4) measure in basis {0),| 1}

The model can be simulated by a classical computer with access to a
random number generator. But there is an exponential slowdown, since the
simulation involves matrices of exponential size... Thus we believe that
quantum model is intrinsically more powerful than the corresponding
classical model.

Qur goal is to simulate accurately the ideal quantum circuit model using the
imperfect noisy gates that can be executed by an actual device (assurrig
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Errors

The most general type of error acting on » qubits can be
expressed as a unitary transformation acting on the qubits and
their environment:

2
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Errors

The most general type of error acting on » qubits can be
expressed as a unitary transformation acting on the qubits and
their environment:

2
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Errors

The most general type of error acting on » qubits can be
expressed as a unitary transformation acting on the qubits and
their environment:

U |y)®|0)z = D, E, |w)®|a);
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Errors

The most general type of error acting on » qubits can be
expressed as a unitary transformation acting on the qubits and

their environment:
10810 > 3 E. 1118 0) 3E

The states | a") of the environment are nelther normalized
nor mutually orthogonal The operators are a basis for
operators acting on » qubits, convenlently chosen to be “Pauli

operators”™: { I X Y. Z}f"”

where

(0 1 0 ) (1 0
_.;.X — _ i Y —_— B Z s _
1 0 i 0 0 -1

The errors could be “unitary errors™if | a), =(C |0). or

decoherence errors If the states of the environment are e

AT TSR S T e |




Errors
U:ly)®|0); — ZJ E,|y)X] aﬁ@

Our objective is to recover the (unknown) state ‘ 4 > of the
quantum computer. We can't expect to succeed for arbitrary
errors, but we might succeed if the errors are of a restricted
type. In fact, since the interactions with the environment are
local, it I1s reasonable to expect that the errors are not too
strongly correlated.

Define the “weight” v of a Pauli operator to be the number of
qubits on which it acts nontrivially; that is 1.}, or Z is applied to w
of the qubits, and / is applied to »-w qubits. If errors are rare and
weakly correlated, then Pauli operators ' with large weight
have small amplitude ||| @), ||.
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Error recovery

We would like to devise a recovery procedure that acts on the

data and an ancilla:
- E ly)®[0), =>|lwv)R|a),

which works for any E_ < {Pauli operators of weight < r}.

Then we say that we can “correct 7 errors” in the block of »
gubits. Information about the error that occurred gets
transferred to the ancilla and can be discarded:

CITOr

[¥)®]0);®[0), > ) E, |¢)®|a):®]0),

_' v)X|a) la), =|lv)®|@).,
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Error recovery

CITOT

[ ¥)®[0):@[0), > ) E, |y)®|a);®]0),

‘ — S l// : ‘) : U)p — ‘ W>® ‘ Q)>EH

Errors entangle the data with the environment, producing
decoherence. Recovery transforms entanglement of the

data with the environment into entanglement of the ancilla

with the environment, “purifying” the data. Decoherence

Is thus reversed. Entropy introduced in the data is transferred to
the ancilla and can be discarded --- we “refrigerate” the data at
the expense of “heating” the ancilla. If we wish to erase the
-ane#la (cool itto 7 ~ (). sothat we can use it again) we need to
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Error recovery

CITOI

[¥)®[0):®[0), > ) E, |y)®|a);®]0),
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Errors entangle the data with the environment, producing
decoherence. Recovery transforms entanglement of the
data with the environment into entanglement of the ancilla
with the environment, “purifying” the data. Decoherence
Is thus reversed. Entropy introduced in the data is transferred to
the ancilla and can be discarded --- we “refrigerate” the data at
the expense of “heating” the ancilla. If we wish to erase the
-ane#la (cool itto 7 ~ (). sothat we can use it again) we need to
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Quantum error-correcting code

We won't be able to correct all errors of weight up to 7 for
arbitrary states l 4 > S 55” qubits- But perhaps we can succeed
for states contained in a code subspace of the full Hilbert space,

g

S:JC(HLIE: < jjn qubats
If the code subspace has dimension 2*, then we say that
encoded qubits are embedded in the block of » qubits.

How can such a code be constructed? It will suffice if

-{E .. € { Pauli operators of weight < 7¢ }
are mutually orthogonal ("nondegenerate code’).

If so, then it is possible in principle to perform an (incomplete)
orthogonal measurement that determines the error £, (without
revealing any information about the encoded state). We recover
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Fault tolerance

The quantum gates that we use to recover from error
are themselves noisy.

 The measured error syndrome (/.e., the eigenvalues
~ of the check operators) might be inaccurate.

» Errors might propagate during syndrome
measurement.

* We need to implement a universal set of quantum
- gates that act on encoded quantum states, without
unacceptable error propagation.

+* \\e need codes that can correct many errors in the,
code hlack



Fault-tolerant error correction

Fault: a location in a circuit where a gate or storage error occurs.
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Error. a qubit in a block that deviates from the ideal state.
X — | S m—
—1 Error [ — Error [
Correction | Correction X
i I M X —
If input has at most one error, and If input has no errors, and circuit has at
- circuit has no faults, output has no most one fault, output has at most one
errors. error.
- =1 =l | =
— . | XL
Error Error | Error
| Correction Correction ‘ Correction
— X | -

A quantum memoryv fails onlv iIf two faults occur In some “extended rectanale.”



Fault-tolerant quantum gates

Fault: a location in a circuit where a gate or storage error occurs.

Error-aqubitinab

% —
QOuantum

Gate

P

If input has at most one error, and
circuit has no faults, output has at most

one error in each block.

ock that deviates from the ideal state.

Quantum
Gate

X

X

If input has no errors, and circuit has at
most one fault, output has at most one
error in each block.

Error
Correction

Quantum
Gate

X

Error

Quantum

Correction

(Grate
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Each gate is preceded by an error cerrectlen step The circuit
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Fault-tolerant quantum gates

Error Quantum Error Quantum
Correction Gate Correction Gate |

Each gate is followed by an error correction step. The circuit
simulation fails only if two faults occur in some “extended rectangle.”

If we simulate an ideal circuit with L quantum gates, and faults occur
Independently with probability £ at each circuit location, then the probability of

failure is 3
E.<IA =z

fail max

where 4 ___Is an upper bound on the number of pairs of circuit locations in each
extended rectangle. Therefore, by using a quantum code that corrects one error
and fault-tolerant quantum gates, we can improve the circuit size that can be
simulated reliably to L=0(¢ =), compared to L=0(s ~) for an unprotected

qearitum circuit. Page 20173



Recursive simulation

In a fault-tolerant simulation, each (level-

Q) ideal gate is replaced by a 1-Rectangle:
a (level-1) gate gadget followed by (level-
1) error correction on each output block. 0-Ga
In a level-k simulation, this replacement is |- -

repeated k times - the ideal gate Is

1-Ga

I-E

a
|

1-E

®
|

replaced by a k-Rectangle.

s 11==

i
il

&

A Z-rectangle is built
from 1-rectangles.

A 1-rectangle is built
from quantum gates.

A 3-rectangle is built

from 2-rectangles.

(1) The computation is accurate if the faults in a level-k simulation are sparse.
(2) A non-sparse distribution of faults is very unlikely if the noise is weak.

TﬁéFé““isé rhreshoz‘d of accuracy. If the fault rate s below the threshold tH&H " an

| A e e e = g, | . B

B W =N

B el o LN




Level Reduction: “coarse-grained” computation

Simulated gate is correctif:

gate gadget | error correction | :g]eiﬁlggpt;der | :;Laagl;igztrg
e : e propagate
=120 EcC B ’\é\l = Em decoders to
= : S— the left
- Simulated measurements ¥ = Create
.~ and preparations —H M|} = g:ﬂ}]—@]
are correctif Ecr_______: — decoders
i = ' . annihilate
| L EC 1D — decoders

N & e

Decoders sweeping from right to left transform a level-1 computation to an
equivalent level-0 computation. Each “good” level-1 extended rectangle (with no
more than one fault) becomes an ideal level-0 gate, and each “bad” level-1
extended rectangle (with two or more faults) becomes a faulty level-0 gate. Ifour

Pirsa: 07060052
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Local Stochastic Noise

ﬂ‘ﬂ 1101001001 |

.I-“.“
/

LS time

Noisy Circuit = 2. “Fault Paths”

For /ocal stochastic noise with strength £, the sum of the probabilities
of all fault paths such that 7 specified gates are faulty is at most £°.

(For each fault path, the operations at the faulty locations are chosen by the
adversary.)

After one level reduction step, the circuit is still subject to local stochastic
noise with a “renormalized” strength: (1) 2 2
E g ig,=glels,)

The constant g, Is estimated by counting the number of “malignant” pairs of
fault locations that can cause a 1-rectangle to be incorrect. If level reduction

Is repeated k times, the renormalized strength becomes: £ ) Sk
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Accuracy Threshold

Quantum Accuracy Threshold Theorem: Consider a
guantum computer subject to local stochastic noise with
strength . There exists a constant g, >0 such that for a fixed ¢
< g, and fixed 0> 0. any circuit of size L can be simulated by a
circuit of size L™ with accuracy greater than 1-0, where, for
some constant c,

= = Aharonov, Ben-Or (1996)
L*=0 |:L (10g L) ] Kitaev (1996)

The numerical value of the accuracy threshold g, is of practical

interest! Aliferis,
o = 273 ) 10_5 Gottesman,
| Preskill (2005)
asstming. Reichardt (2005)

parallelism, fresh ancillas (necessary assumptions)

irsa:
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Five noteworthy developments

1) Improved thresholds with subsystem codes — Aliferis,

Cross (2006)
2) Threshold for local gates in 2D — Svore, DiVincenzo, Terhal

(2006)
3) Threshold when measurements are slow — DiVincenzo,

Aliferis (2006)

4) Threshold for postselected computation — Reichardt (2006),
Aliferis, Gottesman, Preskill (2007)

o) Topological protection with cluster states — Raussendorf,
Harrington, Goyal (2005, 2007)

Three questions

1) Threshold in terms of noise power spectrum?
2) Threshold for asymmetric noise?
m2podelf-correcting quantum memory (finite-temperature  ruess

t~armAalarmmiaal Ardar\?



Accuracy Threshold

Quantum Accuracy Threshold Theorem: Consider a
guantum computer subject to local stochastic noise with
strength . There exists a constant g, >0 such that for a fixed ¢
< g, and fixed 0> 0. any circulit of size L can be simulated by a
circuit of size L™ with accuracy greater than 1-0, where, for

some constant c.

— - Aharonov, Ben-Or (1996)
L*=0 |:L (IOg L) ] Kitaev (1996)

interest! |
o> 213 X 10
Preskill (2005)

The numerical value of the accuracy threshold g, is of practical
Aliferis,
‘ Gottesman,
assuming. Reichardt (2005)
parallelism, fresh ancillas (necessary assumptions)
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Subsystem codes

Hilbert space decomposes as:
L (s) (5)
H=P H, OH
\ \ ‘gauge”

5
syndrome — “togical L
subsystem y

» A subsystem code becomes a standard stabilizer code when the gauge
subsystem is trivial (e.g., If we “fix the gauge”).

» But there is no need to fix the gauge, as errors acting on gauge qubits
do not damage the protected information.

« Maintaining the gauge freedom reduces the number of check operators.

» Syndrome information can be extracted by measuring the gauge qubits,
and for some codes the gauge-qubit operators have lower weight than
the stabilizer generators, so it is easier to measure the gauge operators
fault tolerantly.
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check
operators:

logical
operators:

Lzz

(@ ” Shor (1995)
3 x 3 “Bacon-Shor code” -7 2005)

ZZ

corrects
one error

e
N

4
~ =}

XX

XX

These weight-two gauge Pauli operators

commute with the logical operations, and
measuring them determines the check operators

In the stabilizer. Because only weight-two

operators are measured, error correction gz
efficient and easilv made fault tolerant.




1 7 Shor (1993)
3 x 3 “Bacon-Shor code” -7 2005)

check
operators:
)
logical X X IX Z
operators: e 7 corrects
X Z Z [ one error
®

T—_.

The optimal threshold estimate is found using the
5 X 5 Bacon-Shor code (which corrects two errors):

XX Eg >1.9%10™
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Logical Qubit in a 2D Lattice

Svore, DiVincenzo, Terhal (2006)

R e = e s =
O, v3 a3 ab O 0 O
T . |
| - I
I O v2 15 ad al 0 9, :
| |
) 1 O P.vl) a2 0O <> a7 O Ol
P e e e T 1
) d4 O d2 O dl O di

One logical qubit is stored in a 6 X 8 lattice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (a¢), and 3 qubits (v) that are
used for ancilla verification; the rest (O) are “dummy qubits” that serve as
communication channels. We include a (noisy) swap in our gate set at

*egetrievel of the recursive hierarchy. There are 61 time steps in the  rwews
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Logical Qubit in a 2D Lattice
Svore. DiVincenzo. Terhal (2006)

One logical qubit is stored in a 6 X 8 latiice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (2), and 3 qubits (v) that are
used for ancilla verification: the rest (0) are “dummy gubits” that serve as
communication channels. We include a (noisy) swap in our gate set at
each level of the recursive hierarchy. There are 61 time steps in the
CNOT extended rectangle.
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Logical Qubit in a 2D Lattice
Svore. DiVincenzo. Terhal (2006)

One logical qubit is stored in a 6 X 8 lattice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (2), and 3 qubits (v) that are
used for ancilla verification; the rest (0) are “dummy qubits” that serve as
communication channels. We include a (noisy) swap in our gate set at
each level of the recursive hierarchy. There are 61 time steps in the
CNOT extended rectangle.
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Logical Qubit in a 2D Lattice
Svore. DiVincenzo. Terhal (20086)

One logical qubit is stored in a 6 X 8 latiice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (z), and 3 qubits (v) that are
used for ancilla verification; the rest (0) are “dummy gubits” that serve as
communication channels. We include a (noisy) swap in our gate set at
each level of the recursive hierarchy. There are 61 time steps in the
CNOT extended rectangle.
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Logical Qubit in a 2D Lattice
Svore. DiVincenzo. Terhal (2008)

One logical qubit is stored in a 6 X 8 lattice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (), and 3 qubits (v) that are
used for ancilla verification: the rest (0) are “dummy gubits” that serve as
communication channels. We include a (noisy) swap in our gate set at
each level of the recursive hierarchy. There are 61 time steps in the
CNOT extended rectangle.
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Logical Qubit in a 2D Lattice
Svore. DiVincenzo. Terhal (20086)

One logical qubit is stored in a 6 X 8 latiice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (), and 3 qubits (v) that are
used for ancilla verification: the rest (0) are “dummy gqubits” that serve as
communication channels. We include a (noisy) swap in our gate set at
each level of the recursive hieQn:hy. There are 61 time steps in the
CNOT extended rectangle.
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Logical Qubit in a 2D Lattice
Svore. DiVincenzo. Terhal (2006)

One logical qubit is stored in a 6 X 8 latiice cell. The cell contains a 7-
qubit code block (d) , a 7-qubit ancilla block (2), and 3 qubits (v) that are
used for ancilla verification: the rest (0) are “dummy gubits” that serve as
communication channels. We include a (noisy) swap in our gate set at
each level of the recursive hierarchy. There are 61 time steps in the
CNOT extended rectangle.
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| 1)
Fault tolerance with slow measurements e l >
Z

In some systems (e.g., spins in quantum dots) measurements take much
longer than gates. Yet fast measurements are desirable because:

I

|

. 1) Measurements extract the error syndrome (the measurements can be
| done “coherently” but the threshold suffers).
I
|
|
|

2) Measurements verify ancillas used for error correction.

3) Measurements allow “teleportation” of gates that are needed to
complete a universal fault-tolerant gate set.

1) Don't wait for the syndrome, or apply recovery operations. The
syndrome, once known, can be propagated through subsequent
gates by an efficient classical computation.

2) Decode the ancilla after use, measure it eventually, and infer
encoded errors that propagated through the circuit.

3) Teleport only at high levels in the recursive hierarchy, where encoded
gates take as long as measurements.

"THE threshold is little affected even if measurements take ~ 1000 time&’ i6hger
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Accuracy threshold using error-detecting codes

Using Bacon-Shor codes, we obtain a lower bound on the accuracy
threshold (for adversanal local stochastic noise, nonlocal gates)

z=>1.9x<10*

We can improve the threshold further if we can simulate gates with &4 < &,

. using gateswith € ~ g, . Knill's idea (2004):
| I .
gﬁ;ﬁ;@g V Prepare suitable ancillas offline
| encoded and teleport gates. Encoded error
S . Bell
| datain — : :
| meas. rate £ q <~ & can be achieved if
11U ::> entangled / the errors Iin the ancilla are nearly
| encoded | encoded independent and have error rate
ancilla data O% below e_g_ 5% .
Protect the ancilla-preparation error detect  decode

| | circult using a (recursive) error- | ‘ ‘
detecting code and accept the

ancilla only If no errors are
detected. Errors occurring during

irsa: 07060052

decoding are independent.
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Fault tolerance with slow measurements | l o
A

In some systems (e.g., spins in quantum dots) measurements take much
longer than gates. Yet fast measurements are desirable because:

1) Measurements extract the error syndrome (the measurements can be

|
!
| done “coherently” but the threshold suffers).

2) Measurements verify ancillas used for error correction.

3) Measurements allow “teleportation” of gates that are needed to
complete a universal fault-tolerant gate set.

1) Don't wait for the syndrome, or apply recovery operations. The
syndrome, once known, can be propagated through subsequent
gates by an efficient classical computation.

2) Decode the ancilla after use, measure it eventually, and infer
encoded errors that propagated through the circuit.

3) Teleport only at high levels in the recursive hierarchy, where encoded
gates take as long as measurements.

5/73

"THE threshold is little affected even if measurements take ~ 1000 timeg iGhger
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Accuracy threshold using error-detecting codes

Using Bacon-Shor codes, we obtain a lower bound on the accuracy
threshold (for adversanal local stochastic noise, nonlocal gates)

£>19x 10*

We can improve the threshold further if we can simulate gates with &, < &,

| usinggateswith & > & . Knill's idea (2004):
g?&ltgtgs V Prepare suitable ancillas offline
encoded and teleport gates. Encoded error
/ . Bell
| | datain _ : :
| meas. rate €4 <~ & can be achieved if
U ::> entangled / the errors In the ancilla are nearly
| encoded | encoded independent and have error rate
ancilla data O% below eqg. 59%.
Protect the ancilla-preparation error detect  decode

circuit using a (recursive) error- ‘ ‘ ‘

; detecting code and accept the - - - -
' | ancilla only if no errors are 1T T 1
detected. Errors occurring during y yr—

irsa; 07060052 ] Page 56/73
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Fault-tolerant gadgets

If we use a (distance-three) quantum error-correcting code:

] X

Error Quantum Error Quantum

| |——dCorrection XG{HH :lC'mTecrn’ o Gate

Each gate is followed by an error correction step. The circuit simulation fails only if two
faults occur in some “extended rectangle.” If faults occur with probability , then the

gadget fails with prob O(s2).

If we use a (distance-two) quantum error-detecting code:

| Error Quantum Error Quantum

Detection XGﬂfe Detection Gate

Each gate Is followed by an error detection step, and the computation is aborted if an
. error Is detected. The circuit simulation fails only if two faults occur in some “extended

Pirsa: 07%60052

Factafigle.” If faults occur with probability =, then the gadget fails with prob O(£2).""



' Threshold for postselected quantum computation

We can boost the reliability by building a hierarchy
- of gadgets within gadgets —- the fault-tolerant circuit -

simulates the ideal circuit if the faults are sparse.

However ... to assess the reliability of the
postselected circuit, we must estimate the
probability that it fails conditioned on global
acceptance — i.e., acceptance by every error

| detection in the entire circuit.

/ circuit fails here

—1 $E
1 EL

Devil turns off faults elsewhere 1o
nhance probability of failure

Pirsa:

| conditioned on global acceptance.

To obtain a threshold theorem
for postselected computation,
we must disallow correlations in
the noise that could be tolerated
If error correction were used
iInstead. Otherwise, the devil
could enhance greatly the
conditional probability of failure
In one part of the circuit by
turning off faults elsewheres



Threshold for postselected quantum computation
/r circuit fails here

Devil turns off faults elsewhere
to enhance probability of failure
1 m — conditioned on global

_ \_ aCCE,Df alice.

We need a noise model that Local stochastic noise has (b) but
a) Limits the adversary’s global control. | not (a). Independent noise has (a)
b) Is stable under level reduction. but not (b).

in between i1s /ocally correlated stochastic noise:

— different adversanes control
each noisy operation,

P — adversaries can communicate
19 only “locally,”

irsa: 07060052 Page 59/73

— messages are erased by
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' Threshold for postselected quantum computation

We can boost the reliability by building a hierarchy
of gadgets within gadgets --- the fault-tolerant circuit -

simulates the ideal circuit if the faults are sparse.

However ... to assess the reliability of the

| postselected circuit, we must estimate the

. probability that it fails conditioned on global

acceptance — i.e., acceptance by every error

. detection in the entire circuit.

/ circuit fails here

— -
1 EEL

Devil turns off faults elsewhere fo
| enhance probability of failure
| conditioned on global acceptance.

To obtain a threshold theorem
for postselected computation,
we must disallow correlations in
the noise that could be tolerated
If error correction were used
iInstead. Otherwise, the devil
could enhance greatly the
conditional probability of failure
In one part of the circuit by
turning off faults elsewhereso



Threshold for postselected quantum computation
/ circuit fails here

Devil turns off faults elsewhere
to enhance probability of failure

— = conditioned on global

_ \_ HCCE,DfanC e

We need a noise model that Local stochastic noise has (b) but
a) Limits the adversary’s global control. | not (a). Independent noise has (a)
b) Is stable under level reduction. | but not (b).

in between i1s /ocally correlated stochastic noise:

— different adversanes control
each noisy operation,

— adversaries can communicate
only “locally,”
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' Threshold for postselected quantum computation

The bad gadgets in the postselected circuit form connected clusters, surrounded by
error detections with no faults. Thus the clusters (which typically contain just one or a
small number of bad gadgets) are isolated from one another, enabling us to relate the
probability of failure of a gadget conditioned on local acceptance (within the cluster)
to its probability of failure conditioned on global acceptance. This means that error
detection and (global) postselection improves reliability, and we can show by an
- inductive step that the probability of failure in a recursive simulation gets arbitrarily
small if the noise is sufficiently weak..

N = N
1 Ry . .

Counting the ways for error-detecting gadgets to fail, we find &; o, —~ 1.04 x 103

(Aliferis-Gottesman-Preskill 2007, Reichardt 2006). This is the best rigorously
. established lower bound on the accuracy threshold so far, but still a factor of 30 below
Fmfitgestimate based on simulations. Note that the overhead cost of postseletgei
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Fault-tolerant one-way quantum computer
Raussendorf-Harrington-Goyal (2005, 2007)

- Raussendorf et al. obtained optimistic threshold estimates for local gates in

two dimensions, based on cluster states and topological codes (without

. concatenated coding). They achieve universal quantum computation using

— Robust measurement of logical Zand X
— Topologically protected CNOT gate

}
— Distillation of |0 +1]1 /\/_><

— Distillation of |0, ++/i|1 ! primal qubit

dual qubit

Their construction uses two topological encodings of qubits in pairs of
“defects” -— a magnetic (primal) encoding and an electric (dual) encoding.
The CNOT gate arises from the Aharonov-Bohm phase (-1) that arises
when a magnetic charge is transported around an electric charge.

They also describe how to

transform electrically encoded
qubits to magnetically encoded

irsa: 0706005 - Page 63/73
(and vice versa).



Fault-tolerant one-way quantum computer
Raussendorf-Harrington-Goyal (2005, 2007)

The CNOT gate is robust against \/

} dual qubit

depolarizing noise with fault rate e < 0.75%. S

defect

irsa: 07060052

defect

singular
qubit

} primal qubit

The state distillation has not been

rigorously analyzed, but also appears to
succeed for € < 0.75%.

Scheme Is effective despite the Y-Z
asymmetry of cluster state constructions.
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Terhal, Burkard (2004)

LOCE!I no n—Mark()Vian n0ise Aliferis, Gottesman, Preskill (2005)
Aharonov, Kitaev, Preskill (2005)

From a physics perspective, it is natural to formulate the noise model in
terms of a Hamiltonian that couples the system to the environment.

Non-Markovian noise
with a nonlocal bath. H=H Svystem

! (c1)
where H Svstem—Bath ~— Z Hsj;mm—f«;:jz

ferms a acting
locallv on the svstem

Then - -
Us, = 2 “Fault Paths

For /ocal noise with strength £, the norm of the sum of all fault paths
such that 7 specified gates are faulty is at most €.

+ HB(?IH + HSmfem—B:m’;

e N La)
‘<\7 ( Bath X D - —/ﬂldk HH:H:'sm—Sam r*f* v\
|'. - ) 3
vk . X 7 - time to
Pirsa: 07060052 b3 Data X Y over all times Pa%%m t
and locations XECIU e




Fault-tolerant recursive simulation

Non-Markovian noise with a nonfocal bath.

H = Hs_m +Hp,, +H

Quantum error correction works as long as the
coupling of the system to the bath is /ocal (only a
few system qubits are jointly coupled to the bath)
and weak (sum of terms, each with a small
norm). Arbitrary (nonlocal) couplings among the
bath degrees of freedom are allowed.

Svstem—Bath

-

tem

el
| Eﬁiiﬂ:__

=

A hierarchy of “gadgets
within gadgets’ is reliable
if the faults are sparse.

'We find a rigorous upper bound on the norm of the sum of all “bad” diagrams (such
that the faults are not sparsely distributed in spacetime). Actually, this works even for
iInteractions among the system qubits that decay algebraically with distance. ..

i e (B

P

irsa: 07060052 x
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| ocal non-Markovian noise

HHH .
.@ Bath D

.' However, expressing the
\ 4 \ '\x | threshold condition in terms
Data / Z of the norm of the system-bath

coupling has disadvantages.

i, <t

TIME ——

E.g., this noise strength Is not directly measurable in experiments, and
furthermore in the case of a bath of harmonic oscillators, the norm is infinite.

1 1

> o0
Hy + o = Y gonalan+ 30 (Lot gial)  Tlal*= [~ dese)
k k k

It would be more natural, and more broadly applicable, if we could express
the threshold condition in terms of the correlation functions of the bath.

X/\ Data }{(\ X/ ! I\x

x }‘: Page 67/73
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| ocal non-Markovian noise

A Daa ~\ [ |5 _]u<s
X

b3 X System— Bath

TIME ——

The norm condition constrains the very-high-frequency fluctuations of the
bath (the time-correlators at very short times). Intuitively, fluctuations with a
time scale much shorter than the time it takes to execute a quantum gate
should average out.

The threshold condition should be formulated in terms of an effective
description of the noise, with high frequencies integrated out. If expressed in
terms of e.g. the power spectrum of the noise, this criterion could be more
directly applied to real systems (and to e.g. the spin-boson model, where the
norm condition is not useful).

(Low-frequency noise, on the other hand, can be addressed with other
methods, such as spin echoes, composite pulses, “decoherence-free

- "SUgSystems” ...) Page 68173



Asymmetric Noise

gates, Z noise (dephasing) is stronger than .\’

noise (relaxation). Dephasing arises from low

frequency noise, while relaxation arises from K
noise with frequency ~w, , which is typically much
weaker.

In many physical implementations of quantum By
lIh%

Can we improve the accuracy threshold by exploiting this asymmetry in the
noise”? We can use a code that corrects more Z errors than X errors (for

example, a “rectangular’ Bacon-Shor code), but there is more to it than
that. Our universal set of gate gadgets must have the property that the

(common) Z errors do not propagate to become (rare) X errors. (For
example, transversal Hadamard gates should be avoided.)

Under level reduction using the “rectangular” " 5, | -

code, the asymmetric noise model is mapped
to a more nearly symmetrical model, so that

*
. coding suited for symmetric noise can be /
- eeygeg] gt higher levels of concatenation. vlr

Page

6
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Asymmetric Noise

Our universal set of gadgets must have the property that the (common) Z
errors do not propagate to become (rare) X errors. For example, transversal
Hadamard gates should be avoided. E.g., CNOT gates (which are
transversal for CSS codes) do not propagate Z to X, and other gates in the
universal set can be teleported. It might be instructive to estimate the
threshold for the case for asymmetric noise, which has not yet been done

carefully.
However ... gates are realized by a time-dependent

Hamiltonian that turns on and off, and a Z error
occuring while a qubit is rotating on the Bloch sphere
can generate an _Y error. Such effects can be
suppressed by using composite pulses, if the pulses
are fast compared to the coherence time of the bath.

Composite pulses would not be necessary If a fault-tolerant universal gate
set could be realized using a time-dependent Hamiltonian that commutes
with Z, together with " basis preparation and measurement. Is that

. possible? (A controlled-Z gate realized with a time-dependent Hamiltonian
- dess.not propagate Z to Y, but unfortunately it is not transversal for a ;..o
' “rectanaular code” that corrects more Z than Y errors. )



Example: 1D Ising model (repetition code)

o[ ofof o NN oo ]o]

When a connected (one-dimensional) droplet of
flipped spins arises due to a thermal fluctuation,
only the (zero-dimensional) boundary of the droplet
contributes to the energy; thus the energy cost is
Independent of the size of the droplet.

Therefore, thermal fluctuations disorder the spins at
any nonzero termperature. A one-dimensional
ferromagnet is not a robust (classical) memory.

Pirsa: 07060052



Topological order at finite temperature .

-+ L

In the 4D toric code, the energy cost of a 2D droplet of
flipped qubits is proportional to the length of its 1D

. boundary:. ’ .
’ @

To cause encoded errors, Droplets of linear size L, which
could cause encoded errors, are suppressed at sufficiently
low nonzero temperature 7 by the Boltzman factor

exp(-L / T), and are rare.

Question: Is “finite-temperature topological order’ possible in 3D?

In the 3D toric code, we can choose to have point defects at the boundary
of 1D bit-flip error chains and string defects at the boundary of 2D phase-
error droplets, or the other way around.

Absence of an obvious exactly solvable model (corresponding to an RG

fixed point) makes one suspect that robust 3D topological memory is not
possible.

But what about the 3D compass model? (Note that a gap may not be
necessary -— Cf. Bacon 2003.)
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Five noteworthy developments

1) Improved thresholds with subsystem codes — Aliferis,

Cross (2006)
2) Threshold for local gates in 2D — Svore, DiVincenzo, Terhal

(2006)
3) Threshold when measurements are slow — DiVincenzo,

Aliferis (2006)
4) Threshold for postselected computation — Reichardt (2006),

Aliferis, Gottesman, Preskill (2007)
o) Topological protection with cluster states — Raussendorf,
Harrington, Goyal (2005, 2007)

Three questions

1) Threshold in terms of noise power spectrum?
2) Threshold for asymmetric noise?
mapodelf-correcting quantum memory (finite-temperature  ruwens

tarnalarmmiaal Ardar\?



