Title: Quantum Cellular Automata Applications

Date: Jun 03, 2007 10:00 AM

URL: http://pirsa.org/07060049

Abstract:

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QLA.

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

Constitution

Applications of Quantum Cellular Automata

Carlos A. Pérez-Delgado

Institute for Quantum Computing
University of Waterloo
Waterloo, Ontario, Canada
Research supported in part by CIAR, ARDA, ORDCF, CFI, MITACS, and OIT.

Canadian Quantum Information Student's Conference, 2007

Pirsa: 07060049 Page 2/177

Outline

QCA Applications

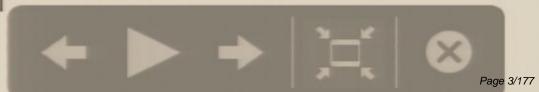
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

5.Emitivation

OCA


Sasic Algorithm

The physics of the Algorithm

Cat State
Creation and

Motivation

- 1 Introduction
- 2 Single-Spin Measurement
 - Motivation
 - QCA
 - Basic Algorithm
 - The physics of the Algorithm
- 3 Cat State Creation and Verification
 - Motivation
 - Construction

Outline

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

SENSUMERON

-

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

Construction

- 1 Introduction
- 2 Single-Spin Measurement
 - Motivation
 - QCA
 - Basic Algorithm
 - The physics of the Algorithm
- 3 Cat State Creation and Verification
 - Motivation
 - Construction

Applications we will discuss are...

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

uun.

The physics of the Algorithm

Cat State
Creation and

Motivation

- Single spin Measurement (described in [P., Mosca, Cappellaro, Cory. PRL 97, 100501 (2006)]).
- Large (macroscopic) Schrödinger Cat State creation and verification (work in progress).

Applications we will discuss are...

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Branco Alexandro

The physics of the Algorithm

Cat State Creation and Verification

Medivation

Construction

- Single spin Measurement (described in [P., Mosca, Cappellaro, Cory. PRL 97, 100501 (2006)]).
- Large (macroscopic) Schrödinger Cat State creation and verification (work in progress).

Pirsa: 07060049 Page 6/177

Outline

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

5.Emillionition

OCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Modivation

- 2 Single-Spin Measurement
 - Motivation
 - QCA
 - Basic Algorithm
 - The physics of the Algorithm

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA

Basic Algorithm

The physics of the Alcorithm

Cat State Creation and

Motivation

Construction

In NMR, as in other settings, it would be desirable to be able to measure a single spin.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA

Sasic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

- In NMR, as in other settings, it would be desirable to be able to measure a single spin.
- This would allow, among other things, NMR quantum computers that are not reliant on large ensembles.
- An NMR spectrometer can only detect the magnetic footprint of a large enough ensemble, of roughly size 10⁶ spins.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

- In NMR, as in other settings, it would be desirable to be able to measure a single spin.
- This would allow, among other things, NMR quantum computers that are not reliant on large ensembles.
- An NMR spectrometer can only detect the magnetic footprint of a large enough ensemble, of roughly size 10⁶ spins.

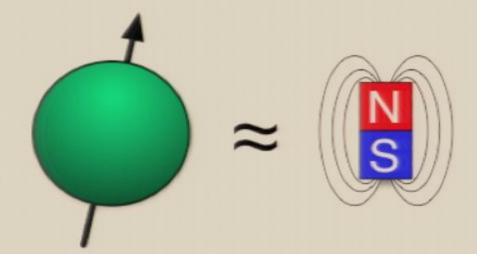
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


QCA

Basic Algorithm

The physics of the Alporithm

Cat State Creation and

Motivation

QCA Applications

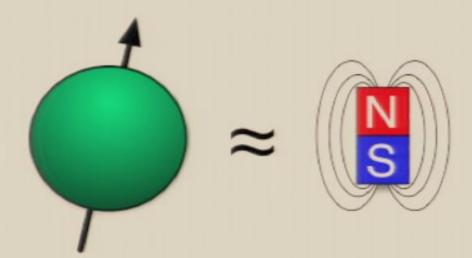
C. A. Pérez-Delgado

ntroduction

Single-Spin Measurement

Mothestine

uun.


Sasic Algorithm

The physics of the Almosthim

Cat State Creation and

Motivation

Construction

Pirsa: 07060049 Page 12/177

QCA Applications

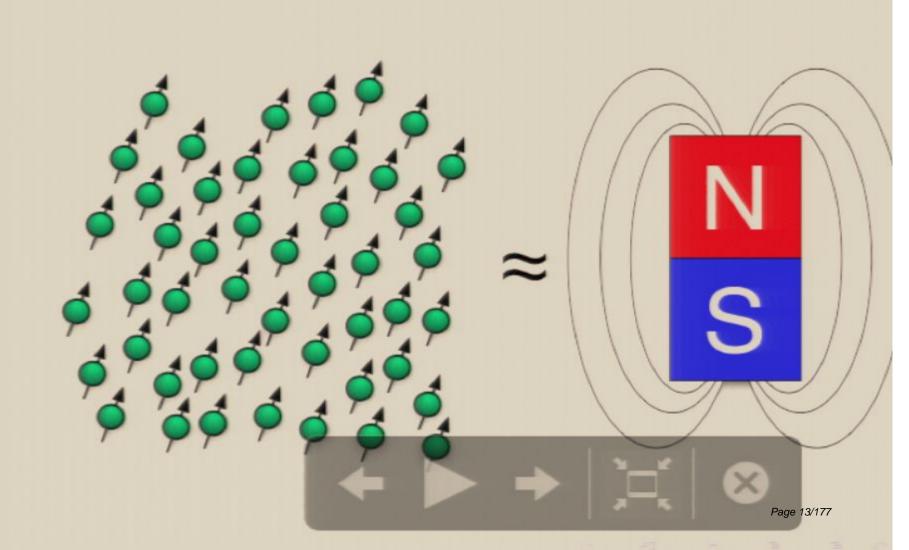
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

uc.


Básic Aigerithm

The physics of the Alcoeithm

Cat State Creation and Verification

Medivation

Construction

QCA Applications

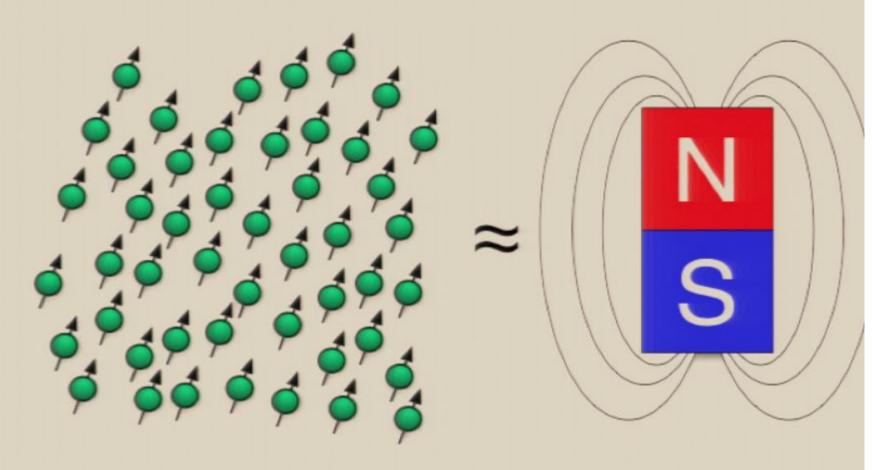
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA:


Basic Algorithm

The physics of the Alcorithm

Cat State Creation and Verification

Medivation

Construction

Pirsa: 07060049

Page 14/177

QCA Applications

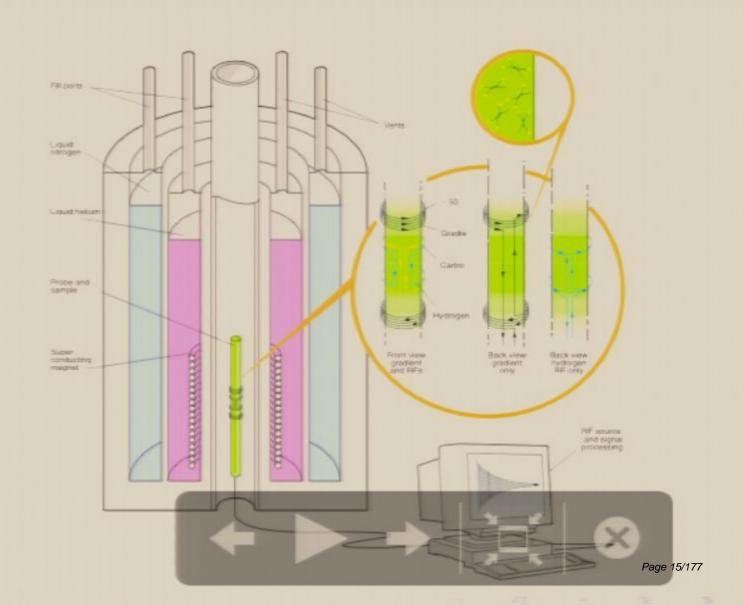
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA


Sasic Algorithm

The physics of the Algorithm

Cat State Creation and Varification

Motivation

Construction

QCA Applications

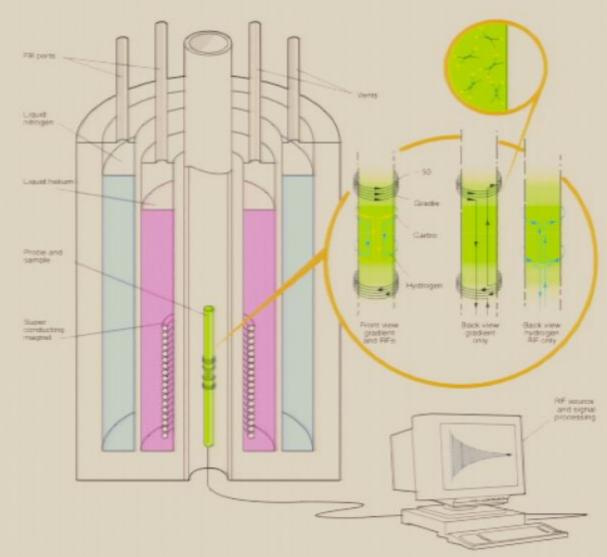
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

ULK


Sissic Algorithm

The physics of the Alacethm

Cat State Creation and

Motivation

Construction

Pirsa: 07060049

Page 16/177

QCA Applications

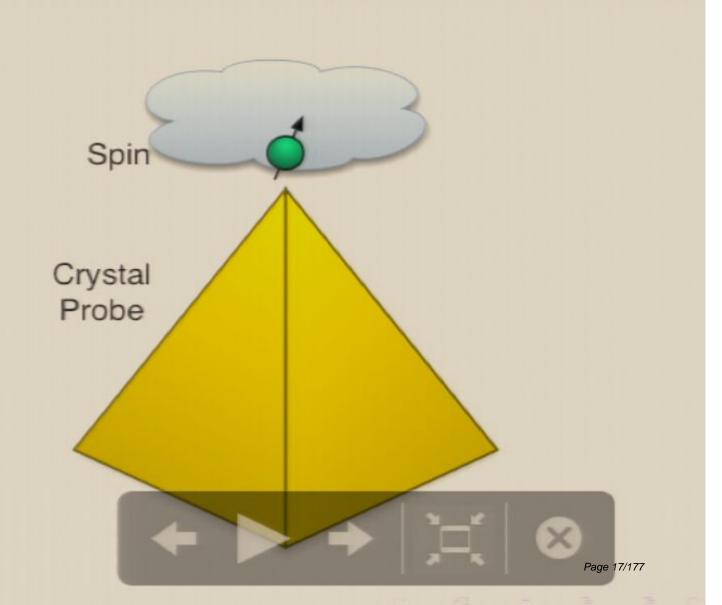
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QGA:


Sasic Algorithm

The physics of the Aloseithm

Cat State Creation and Verification

Motivation

Construction

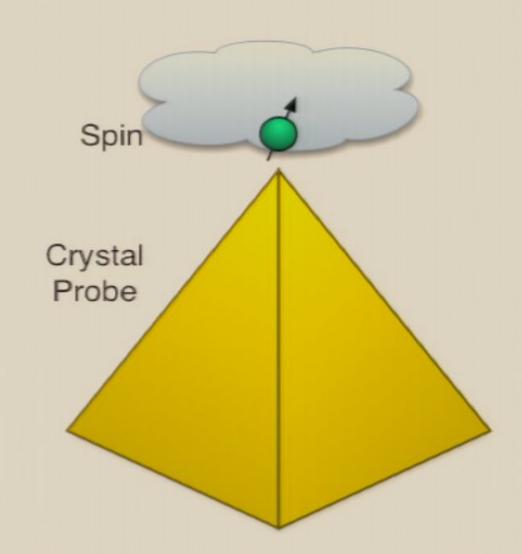
QCA Applications

C. A. Pérez-Delgado

introduction

Single-Spin Measurement

Motivation


Basic Algorithm

The physics of the Alcoeithm

Cat State Creation and

Motivation

Construction

Pirsa: 07060049

Page 18/177

QCA Applications

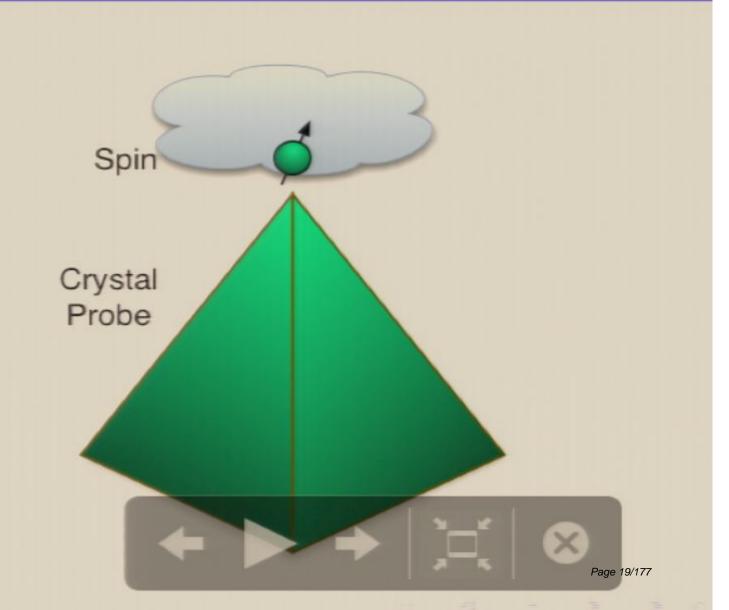
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Mothestine

QCA:


Sasic Algorithm

The physics of the Alabeithm

Cat State Creation and

Motivation

Construction

QCA Applications

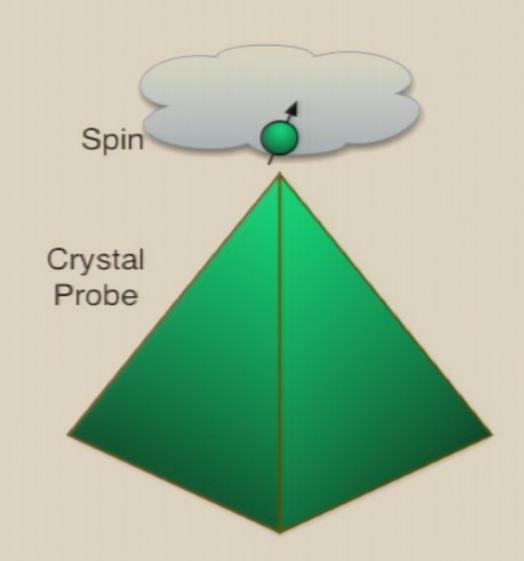
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA


Sauc Aigorithm

The physics of the Algorithm

Cat State Creation and

Motivation

Construction

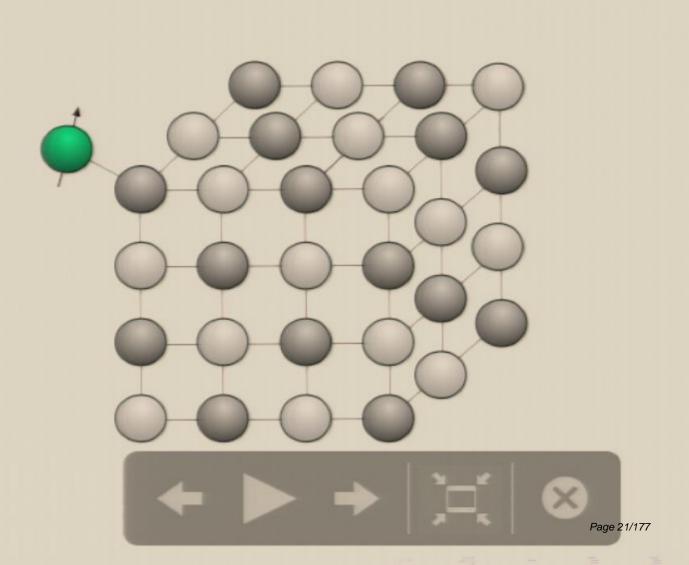
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Medivation

QCA Applications

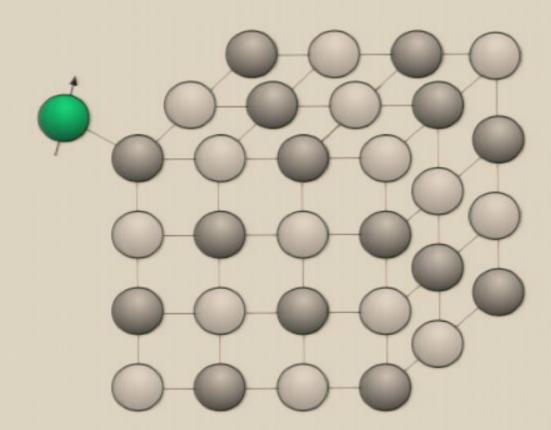
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

uun


Sasic Algorithm

The physics of the Aloneithm

Cat State Creation and Verification

Motivation

Construction

Pirsa: 07060049 Page 22/177

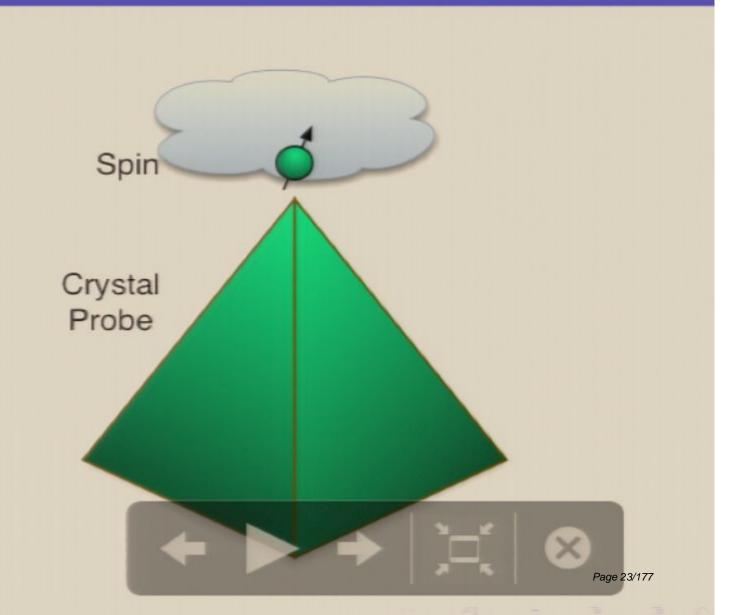
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Modiustine


OCA

Basic Algorithm

The physics of the Alcorithm

Cat State Creation and

Motivation

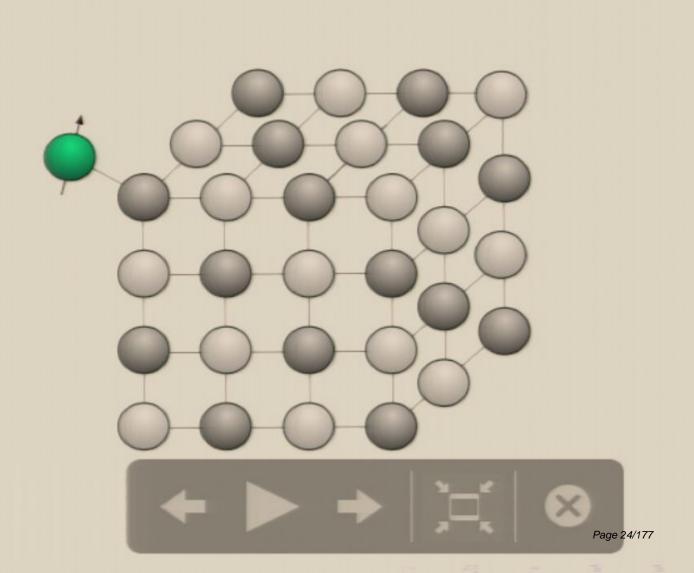
QCA Applications

C. A. Pérez-Delgado

introduction

Single-Spin Measurement

Motivation


QCA

Sauc Aigorithm

The physics of the Alapethm

Cat State Creation and

Medivation

QCA Applications

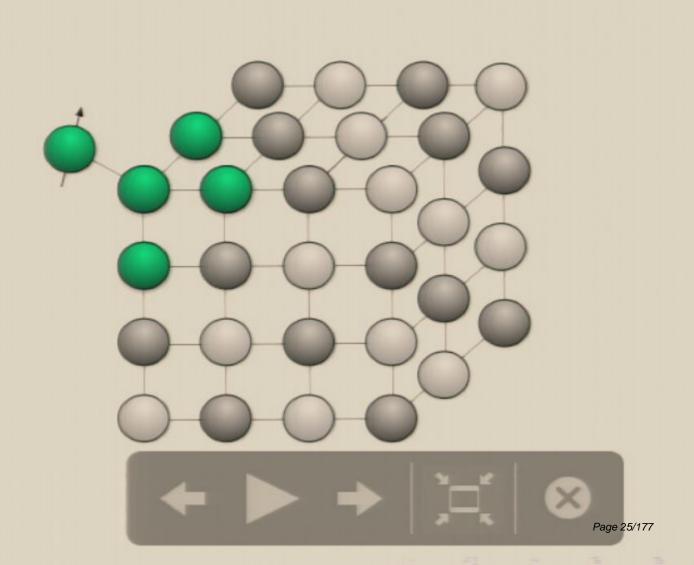
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA:


Sasic Algorithm

The physics of the Alogethm

Cat State Creation and

Motivation

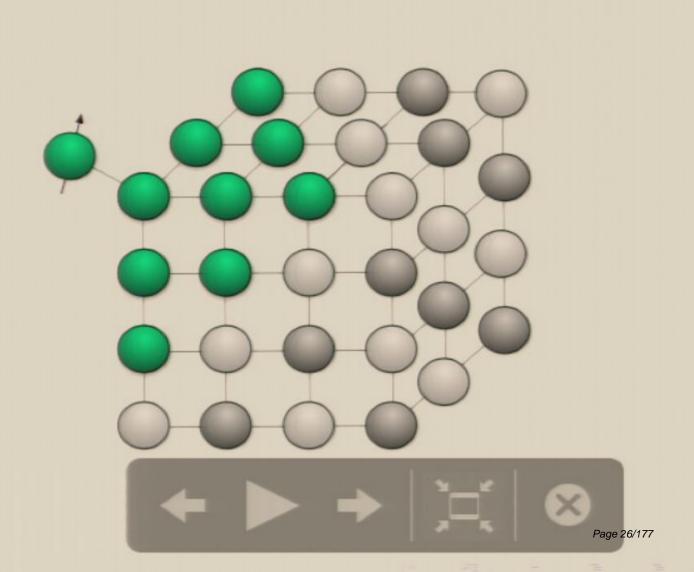
Construction

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement


Motivation

Sasic Algorithm

The physics of the Algorithm

Cat State Creation and Varification

Motivation

QCA Applications

C. A. Pérez-Delgado

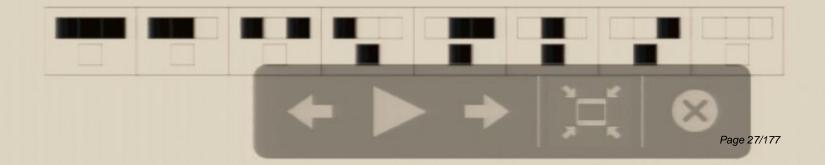
Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Alcorithm


Cat State Creation and Verification

Motivation

Construction

A Cellular Automata consists of a lattice structure, where each cell is in one of a finite number of given states

For instance, Rule 30 from S. Wolfram's "A New Kind of Science" is:

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Medivation

Construction

A Cellular Automata consists of a lattice structure, where each cell is in one of a finite number of given states

For instance, Rule 30 from S. Wolfram's "A New Kind of Science" is:

Pirsa: 07060049 Page 28/177

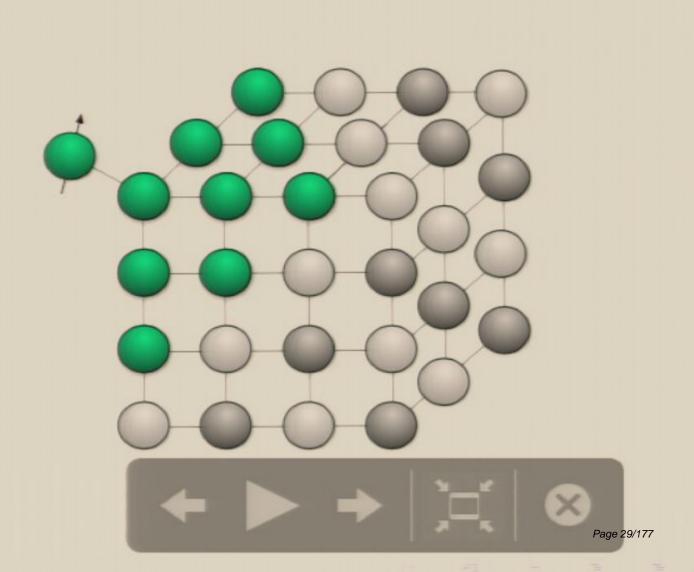
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


OCA

Basic Algorithm

The physics of the Alcoeithm

Cat State Creation and

All residence

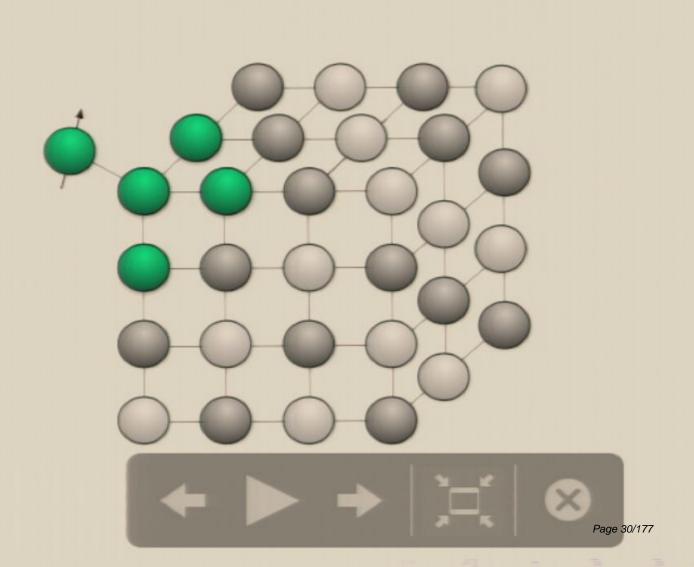
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

QCA Applications

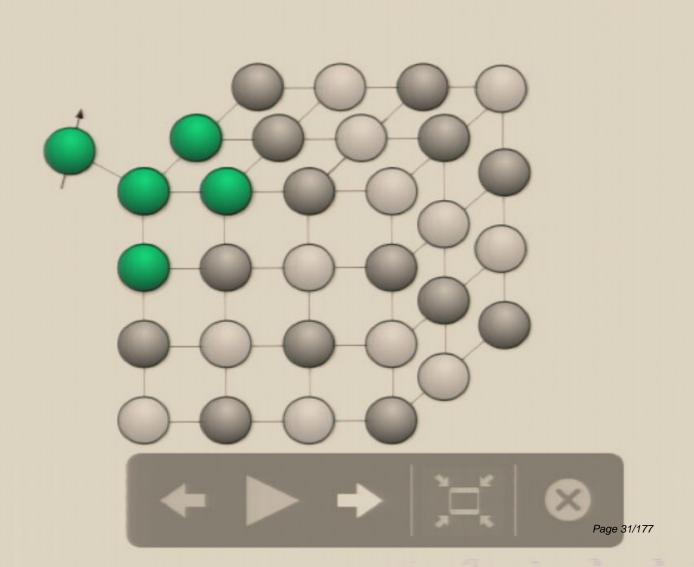
C. A. Pérez-Delgado

introduction

Single-Spin Measurement

Motivation

QUA


Básic Aiganthm

The physics of the Algorithm

Cat State Creation and

Motivation

Construction

QCA Applications

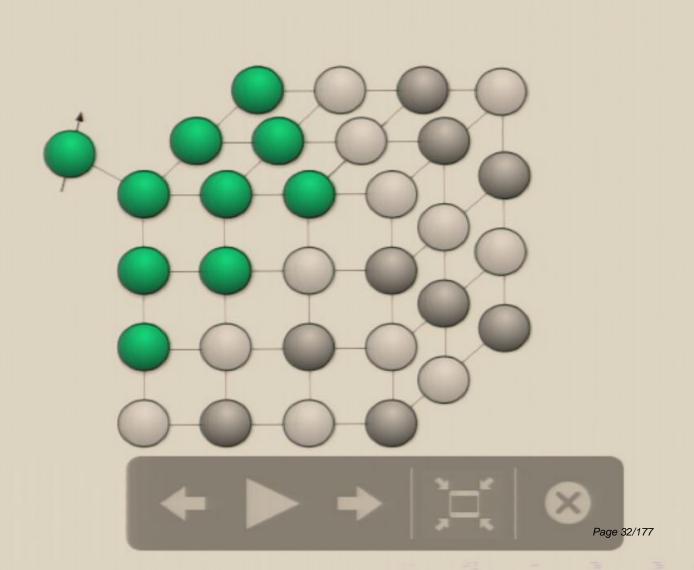
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA


Basic Algorithm

The physics of the Alapeithm

Cat State Creation and

Married Street

Construction

QCA Applications

C. A. Pérez-Delgado

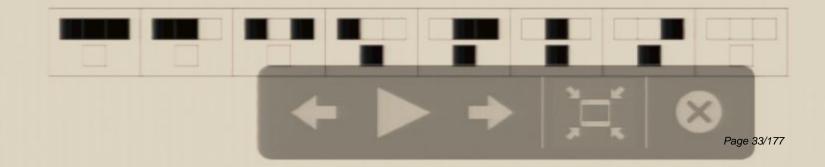
Introduction

Single-Spin Measurement

Mothration

Basic Algorithm

The physics of the Alapothin


Cat State Creation and Verification

Motivation

Constnution

A Cellular Automata consists of a lattice structure, where each cell is in one of a finite number of given states

For instance, Rule 30 from S. Wolfram's "A New Kind of Science" is:

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Alancithm

Cat State Creation and Verification

Motivation

Constitution

A Cellular Automata consists of a lattice structure, where each cell is in one of a finite number of given states

For instance, Rule 30 from S. Wolfram's "A New Kind of Science" is:

Pirsa: 07060049 Page 34/177

QCA Applications

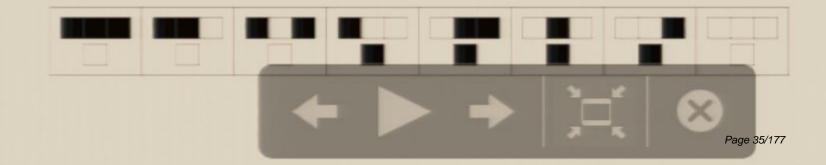
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

QCA

Sasic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Construction

- A Cellular Automata consists of a lattice structure, where each cell is in one of a finite number of given states
- At each discrete time-step, every cell is updated, in parallel, according to a local, spatially uniform rule.

For instance, Rule 30 from S. Wolfram's "A New Kind of Science" is:

QCA Applications

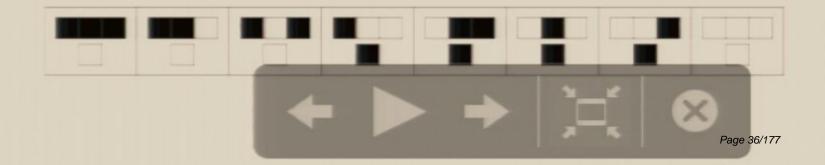
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

QCA

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Construction

- A Cellular Automata consists of a lattice structure, where each cell is in one of a finite number of given states
- At each discrete time-step, every cell is updated, in parallel, according to a local, spatially uniform rule.
- Alternative computational model from circuits, TMs, etc.

For instance, Rule 30 from S. Wolfram's "A New Kind of Science" is:

Interlude: Cellular Automata

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement Motivation

QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Construction

- A Cellular Automata consists of a lattice structure, where each cell is in one of a finite number of given states
- At each discrete time-step, every cell is updated, in parallel, according to a local, spatially uniform rule.
- Alternative computational model from circuits, TMs, etc.

For instance, Rule 30 from S. Wolfram's "A New Kind of Science" is:

Pirsa: 07060049 Page 37/177

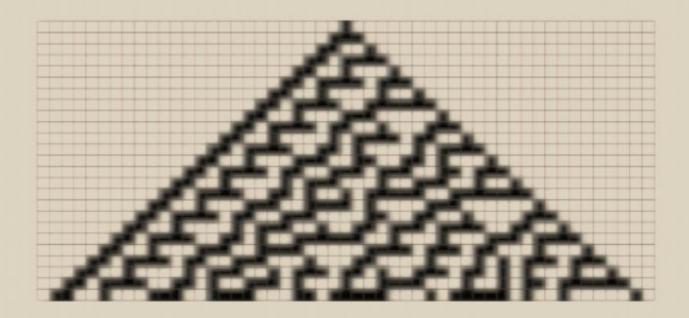
"Rule 30" Evolution

QCA Applications

C. A. Pérez-Delgado

introduction

Single-Spin Measurement


Motivatio

The physics of the

Cat State Creation and

Motivation

Construction

"Rule 30" Evolution

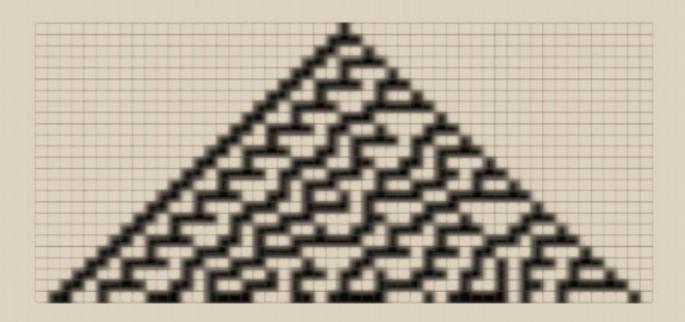
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio


Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Medivation

Construction

Pirsa: 07060049 Page 39/177

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Modustin

Basic Algorithm

The physics of the Alapethm

Cat State Creation and

Aller Street Land

Construction

Previous CA is not reversible.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Countration

- Previous CA is not reversible.
- There are many ways of making a reversible classical CA, most famous is the Margolus CA.
- These can be extended to make quantum CA, or QCA
- We shall study another QCA type, the Coloured QCA, or CQCA.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

- Previous CA is not reversible.
- There are many ways of making a reversible classical CA, most famous is the Margolus CA.
- These can be extended to make quantum CA, or QCA
- We shall study another QCA type, the Coloured QCA, or CQCA.

Pirsa: 07060049 Page 42/177

QCA Applications

C. A. Pérez-Delgado

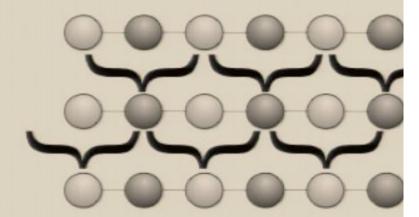
Introduction

Single-Spin Measurement

Motivatio

-

Basic Aigorithm


The physics of the Alcorithm

Cat State Creation and

Motivation

Construction

In a CQCA each lattice is assigned a colour in a checkerboard fashion.

QCA Applications

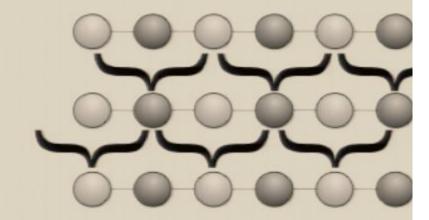
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Danie Blanding


The physics of the Algorithm

Cat State
Creation and

Motivation

Construction

- In a CQCA each lattice is assigned a colour in a checkerboard fashion.
- At each time step only points of a certain colour are updated with a unitary dependant on their neighbours' values.

QCA Applications

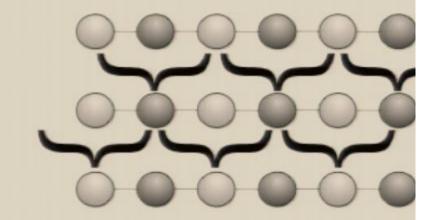
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm


The physics of the Algorithm

Cat State Creation and

Motivation

Construction

- In a CQCA each lattice is assigned a colour in a checkerboard fashion.
- At each time step only points of a certain colour are updated with a unitary dependant on their neighbours' values.

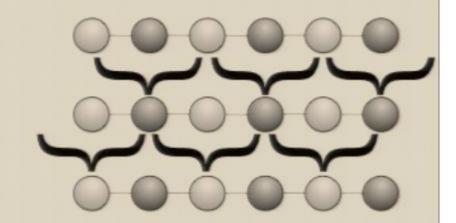
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- In a CQCA each lattice is assigned a colour in a checkerboard fashion.
- At each time step only points of a certain colour are updated with a unitary dependant on their neighbours' values.

QCA Applications

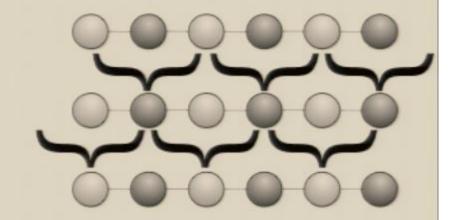
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

uun.


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- In a CQCA each lattice is assigned a colour in a checkerboard fashion.
- At each time step only points of a certain colour are updated with a unitary dependant on their neighbours' values.

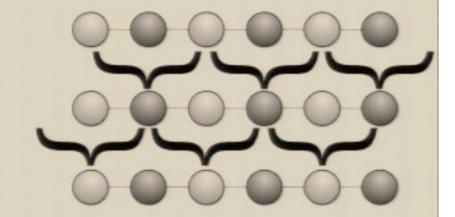
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

NAMES OF TAXABLE PARTY.


Rasic Alterration

The physics of the Algorithm

Cat State Creation and Verification

Motivation

- In a CQCA each lattice is assigned a colour in a checkerboard fashion.
- At each time step only points of a certain colour are updated with a unitary dependant on their neighbours' values.
- Neighbours which are of the same colour are not distinguishable.

CQCA

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

....

The physics of the Algorithm

Cat State Creation and Verification

Monvation Cassingston CQCA were introduced in quant-ph/0508164 (C. Perez and D. Cheung). The paper also discusses their relationship to other QCA, namely the Margolus QCA and Werner-Schumacher QCA.

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motividue

Rusic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

- CQCA were introduced in quant-ph/0508164 (C. Perez and D. Cheung). The paper also discusses their relationship to other QCA, namely the Margolus QCA and Werner-Schumacher QCA.
- The idea for CQCA was inspired by that of pulse-driven quantum computers, basically finite 1D, CQCA, proposed for a scalable NMR implementation of a QC.

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

004

UUA

The physics of the Algorithm

Cat State Creation and Verification

- CQCA were introduced in quant-ph/0508164 (C. Perez and D. Cheung). The paper also discusses their relationship to other QCA, namely the Margolus QCA and Werner-Schumacher QCA.
- The idea for CQCA was inspired by that of pulse-driven quantum computers, basically finite 1D, CQCA, proposed for a scalable NMR implementation of a QC.

C. A. Pérez-Delgado

Introduction

Single-Spin Measuremen

OCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation Construction

- CQCA were introduced in quant-ph/0508164 (C. Perez and D. Cheung). The paper also discusses their relationship to other QCA, namely the Margolus QCA and Werner-Schumacher QCA.
- The idea for CQCA was inspired by that of pulse-driven quantum computers, basically finite 1D, CQCA, proposed for a scalable NMR implementation of a QC.
- These were first introduced by S. Lloyd (Science 261, 1993), it has since been further developed by S. Benjamin, and others.

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

OCA

Basic Algorithm The physics of the

Cat State Creation and Verification

Motivation Construction

- CQCA were introduced in quant-ph/0508164 (C. Perez and D. Cheung). The paper also discusses their relationship to other QCA, namely the Margolus QCA and Werner-Schumacher QCA.
- The idea for CQCA was inspired by that of pulse-driven quantum computers, basically finite 1D, CQCA, proposed for a scalable NMR implementation of a QC.
- These were first introduced by S. Lloyd (Science 261, 1993), it has since been further developed by S. Benjamin, and others.

QCA Applications

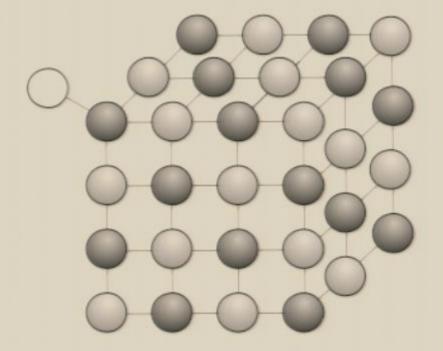
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivedi

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Varification

Motivation

Construction

Suppose we have a three dimensional 2 colour finite QCA.

QCA Applications

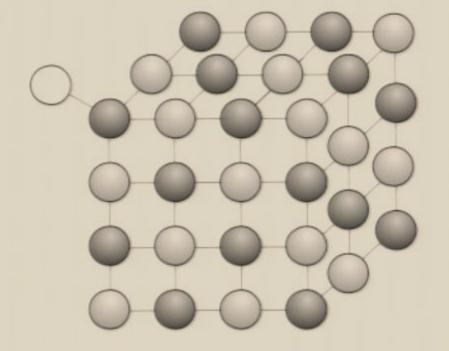
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

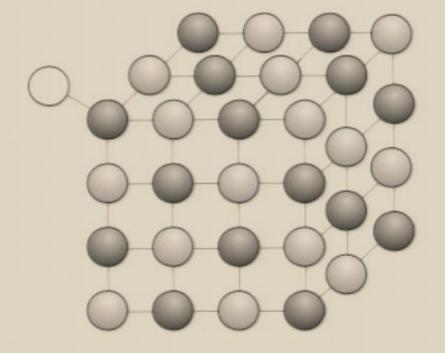

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.



QCA Applications

C. A. Pérez-

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

QCA Applications

C. A. Pérez-Delgado

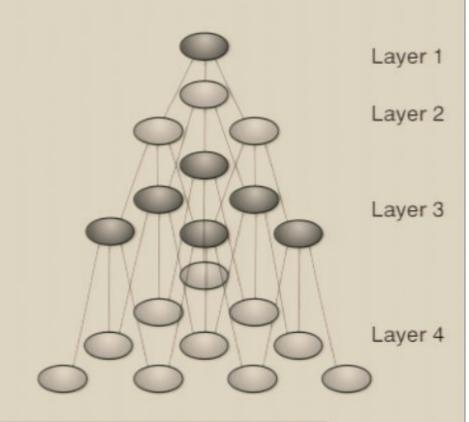
Introduction

Single-Spin Measurement

Motivation

QCA

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Métivation

Construction

Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

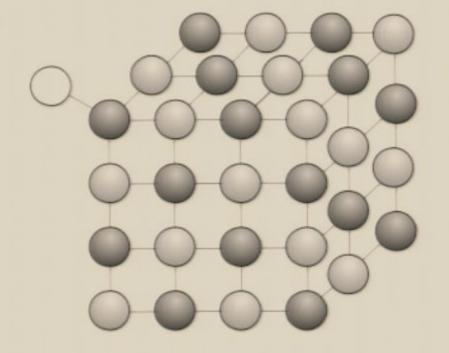
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

QCA Applications

C. A. Pérez-Delgado

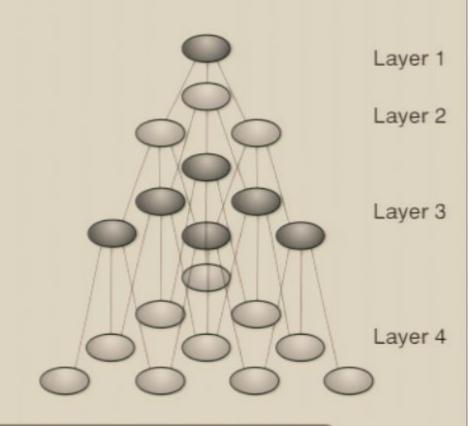
Introduction

Single-Spin Measurement

Motivation

OCA

Basic Algorithm


The physics of the Alsorithm

Cat State Creation and Verification

Möthvatiom

Construction

Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

QCA Applications

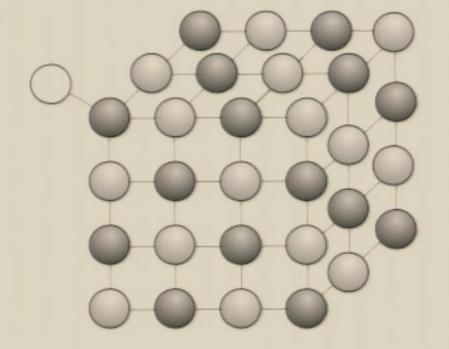
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivistics

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Monvillon

Construction

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

QCA Applications

C. A. Pérez-Delgado

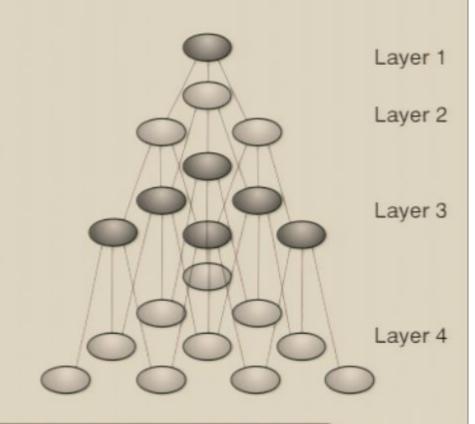
Introduction

Single-Spin Measurement

Mottuntion

ons

Basic Algorithm


The physics of the Alsorithm

Cat State Creation and Varification

Motivation

Construction

Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

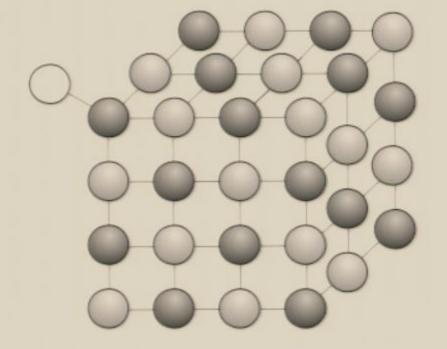
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Monwhole Canada e-Ees

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

QCA Applications

C. A. Pérez-Delgado

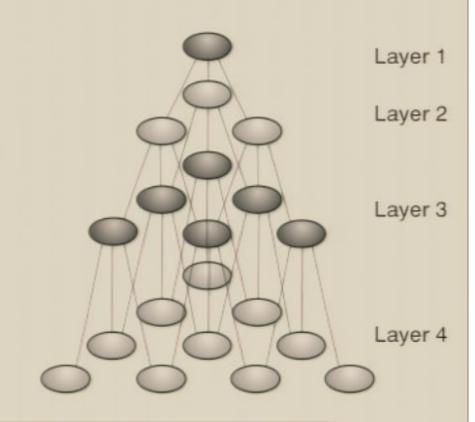
Introduction

Single-Spin Measurement

Mottuntion

ona

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Varification

Motivation

Construction

Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

QCA Applications

C. A. Perez-Delgado

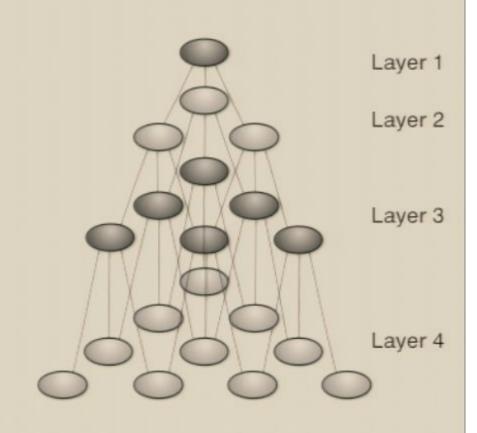
Introduction

Single-Spin Measurement

Motivation

GCA

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivotion

Construction

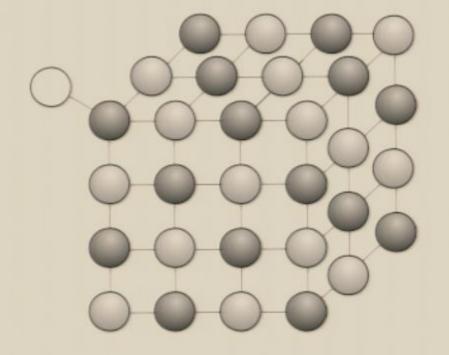
Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement


Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

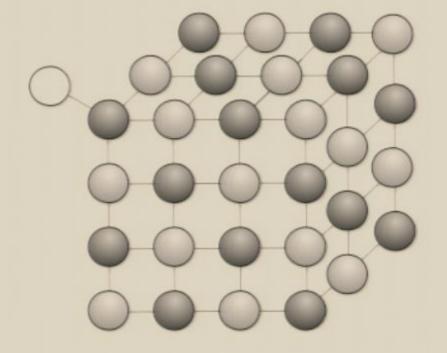
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivision Construction

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

QCA Applications

C. A. Pérez-Delgado

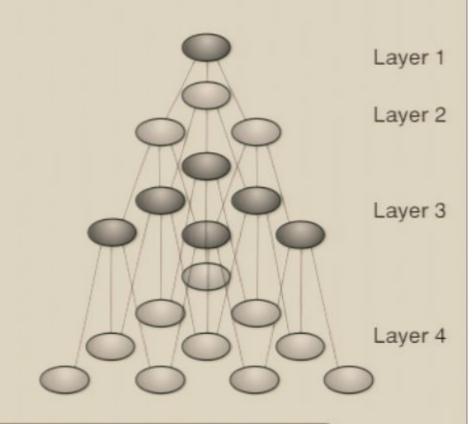
Introduction

Single-Spin Measurement

Mintuntier

OCA

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

QCA Applications

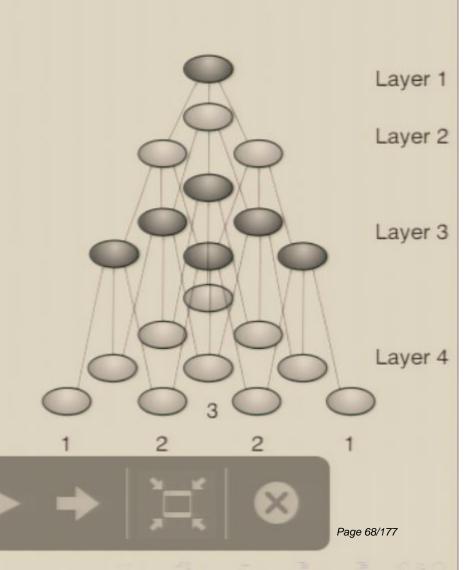
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivati

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Varification

Motivation

Construction

Each spin has anywhere from four to six neighbours,

QCA Applications

C. A. Pérez-Delgado

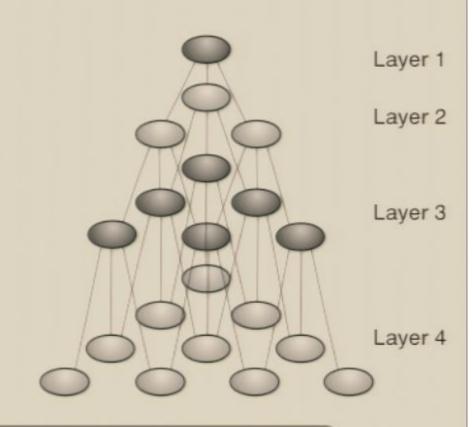
Introduction

Single-Spin Measurement

Mottunition

oca

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

QCA Applications

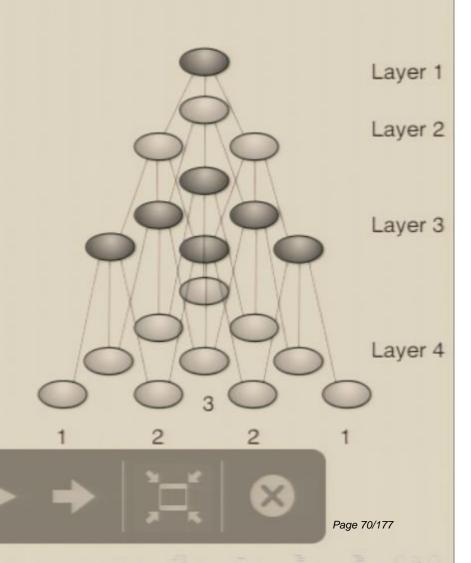
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Varification

Motivation.

Construction

Each spin has anywhere from four to six neighbours,

QCA Applications

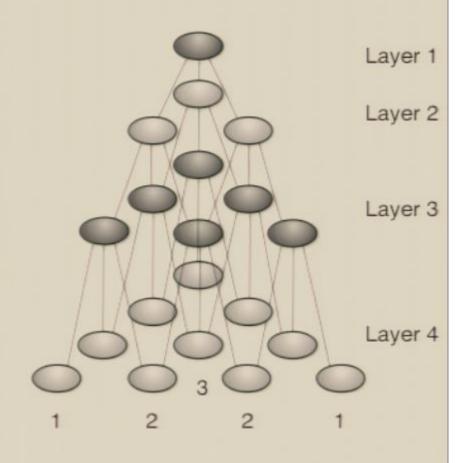
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm


The physics of the Algorithm

Cat State Creation and

A STATE OF THE PARTY NAMED IN

Construction

Each spin has anywhere from four to six neighbours,

QCA Applications

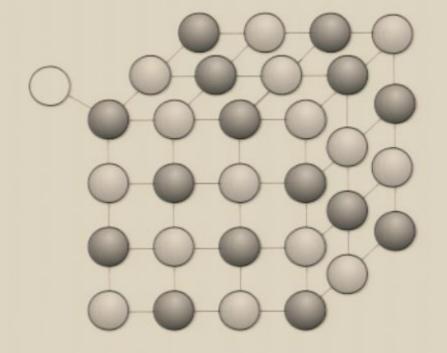
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm


The physics of the Algorithm.

Cat State Creation and Verification

Motivation

Construction

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

A-B Cube

QCA Applications

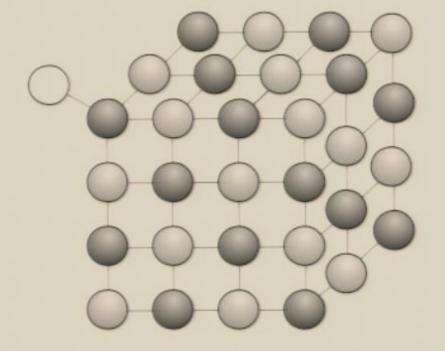
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

....


This industries of th

The physics of the Algorithm

Cat State Creation and Verification

Motivision
Construction

- Suppose we have a three dimensional 2 colour finite QCA.
- Each cell is a spin 1/2 particle, initially pointing down, except for the top-front-left corner which is initialized to the value we wish to 'amplify'.

QCA Applications

C. A. Pérez-Delgado

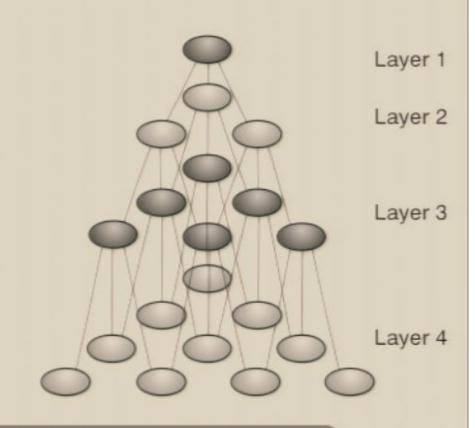
Introduction

Single-Spin Measurement

Motivation

OCA

Basic Algorithm


The physics of the Alsorithm

Cat State Creation and Verification

Motivation

Construction

Top-front half of the cube can be visualized as a pyramid. We will only concern ourselves with this half of the cube lattice.

QCA Applications

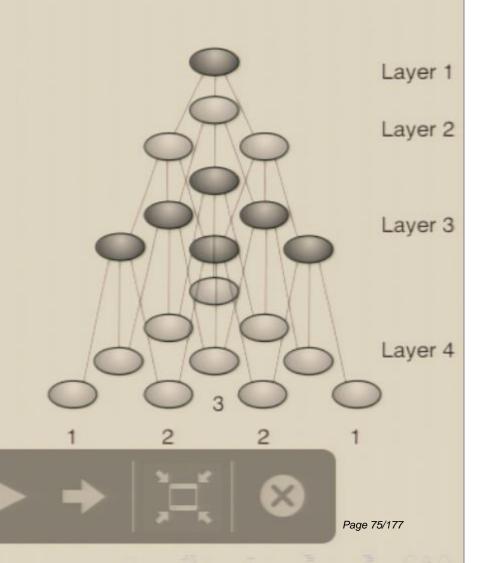
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

The physics of the


Cat State Creation and Verification

Activation

Construction

Each spin has anywhere from four to six neighbours,

three neighbours in the layer below, and

QCA Applications

C. A. Pérez-Delgado

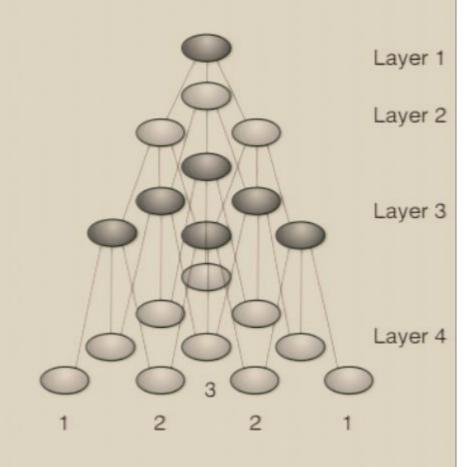
Introduction

Single-Spin Measurement

Motivation

one

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation.

Construction

- Each spin has anywhere from four to six neighbours,
- three neighbours in the layer below, and

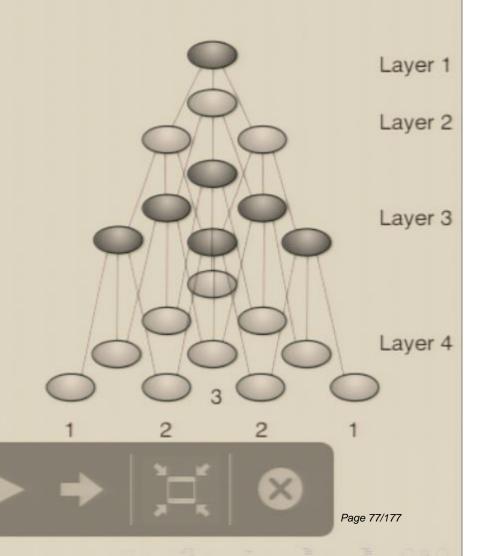
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation Construction

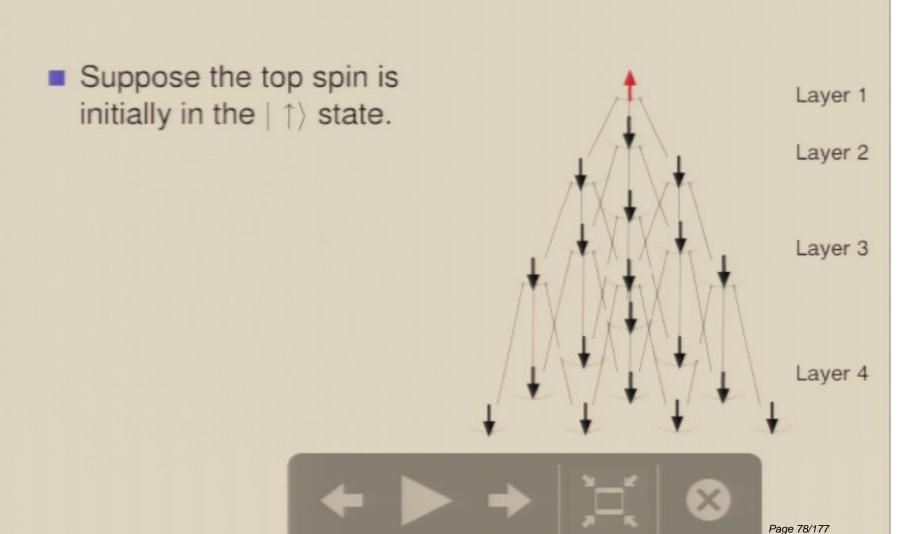
- Each spin has anywhere from four to six neighbours,
- three neighbours in the layer below, and
- one to three neighbours in the layer above.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement


McDirection

.

The physics of the

Cat State Creation and Verification

Motivation

QCA Applications

C. A. Pérez-Delgado

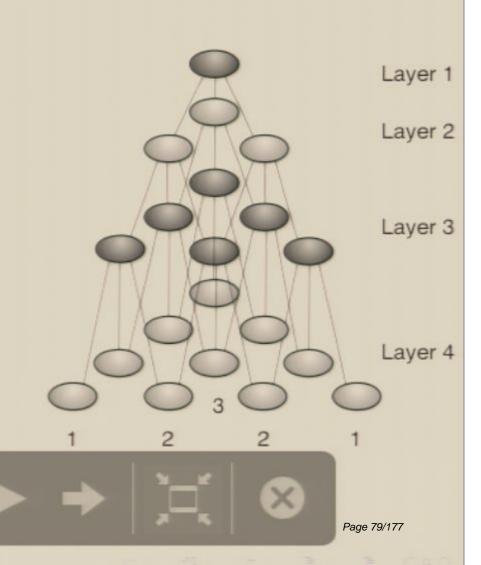
Introduction

Single-Spin Measurement

MODINE

Danie Alexandre

The physics of the Algorithm


Cat State Creation and Verification

Motivation

Construction

Each spin has anywhere from four to six neighbours,

 three neighbours in the layer below, and

QCA Applications

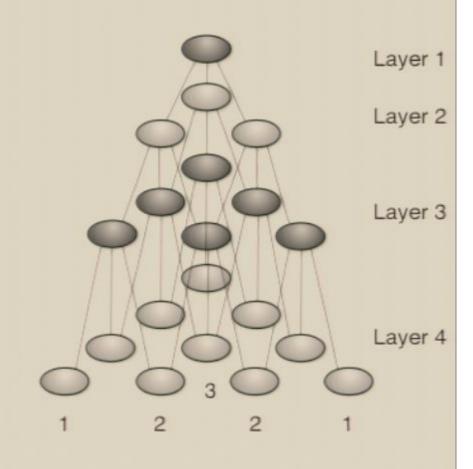
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

MODENS

Donle Alexandre


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- Each spin has anywhere from four to six neighbours,
- three neighbours in the layer below, and

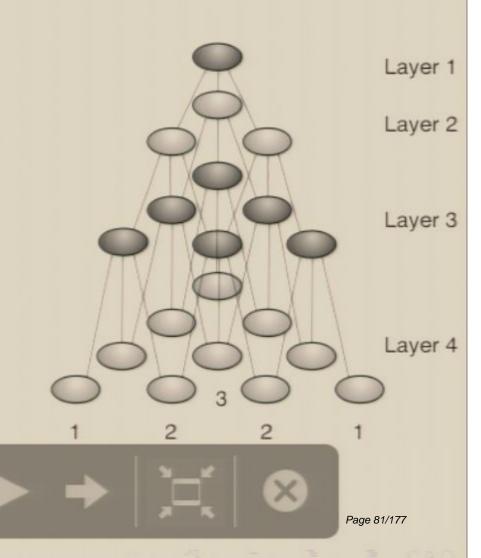
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

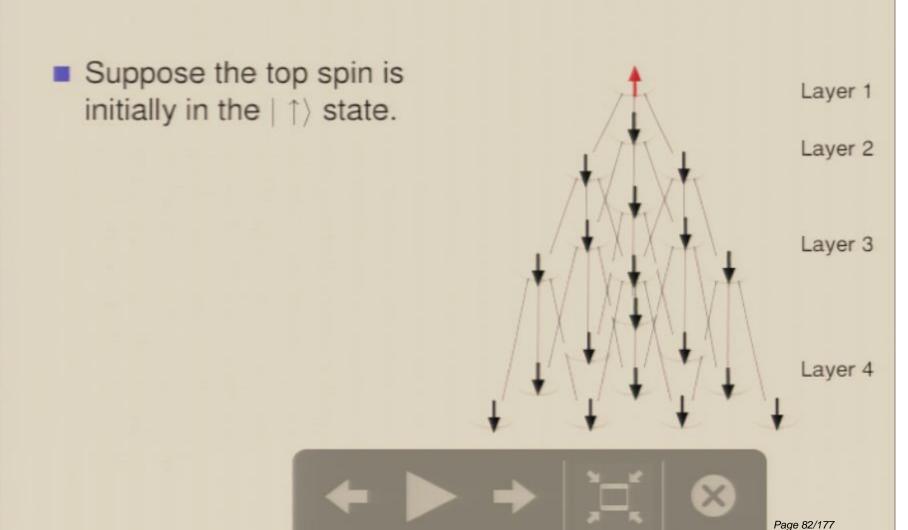
- Each spin has anywhere from four to six neighbours,
- three neighbours in the layer below, and
- one to three neighbours in the layer above.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement


Motivatio

The physics of the

Cat State Creation and

Motivation

Construction

QCA Applications

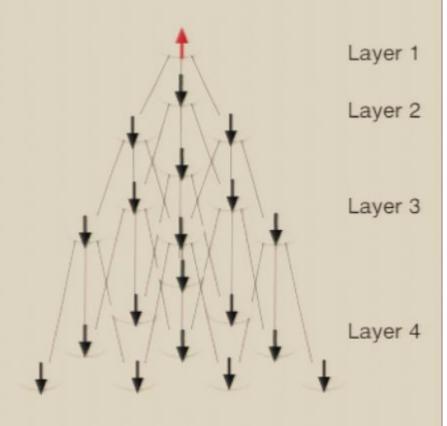
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm


The physics of the Algorithm

Cat State Creation and

Motivation

Construction

Suppose the top spin is initially in the | ↑ > state.

QCA Applications

C. A. Pérez-Delgado

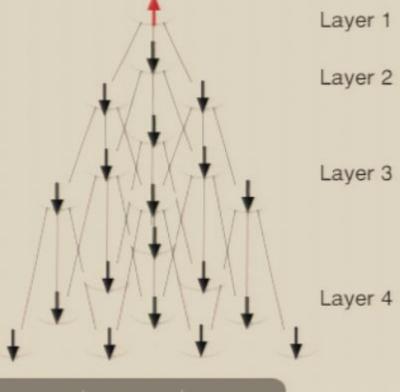
Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm


Cat State Creation and Verification

Motivation

Construction

Suppose the top spin is initially in the | ↑⟩ state.

If we were to apply a NOT gate to B spins with neighbour field −2, all second layer spins would be flipped to the | ↑⟩ state,

QCA Applications

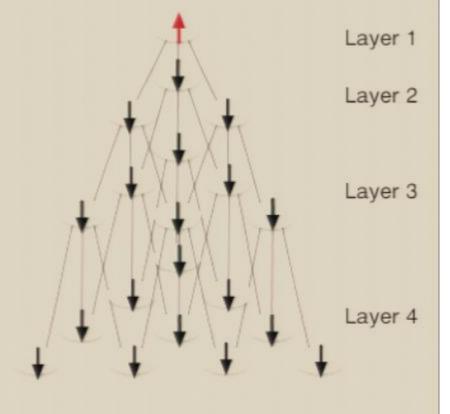
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

QCA.

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- Suppose the top spin is initially in the | ↑⟩ state.
- If we were to apply a NOT gate to B spins with neighbour field −2, all second layer spins would be flipped to the | ↑⟩ state,

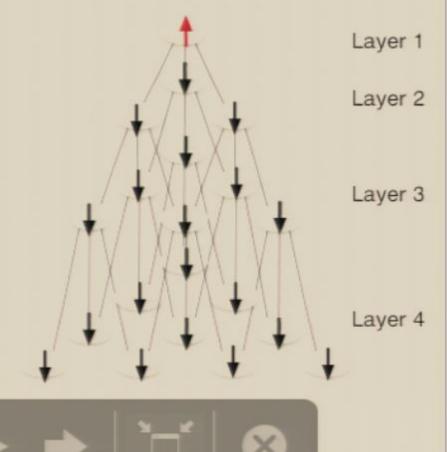
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

OCA.


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation.

- Suppose the top spin is initially in the | ↑⟩ state.
- If we were to apply a NOT gate to B spins with neighbour field −2, all second layer spins would be flipped to the | ↑⟩ state,
- Nothing else in the pyramid would be affected.

Page 86/177

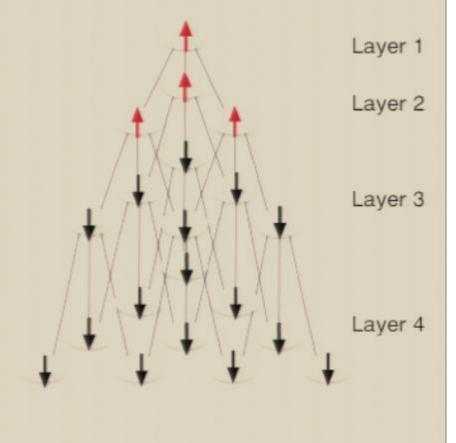
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

- Suppose the top spin is initially in the | ↑⟩ state.
- If we were to apply a NOT gate to B spins with neighbour field −2, all second layer spins would be flipped to the | ↑) state,
- Nothing else in the pyramid would be affected.

QCA Applications

C. A. Pérez-Delgado

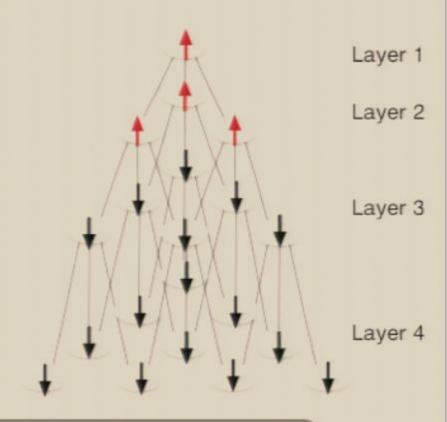
Introduction

Single-Spin Measurement

Motivation

OCA

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

In the next step, in order to flip all spins in the third layer we apply NOT gates to A spins with neighbour fields -2 and -1.

QCA Applications

C. A. Pérez-Delgado

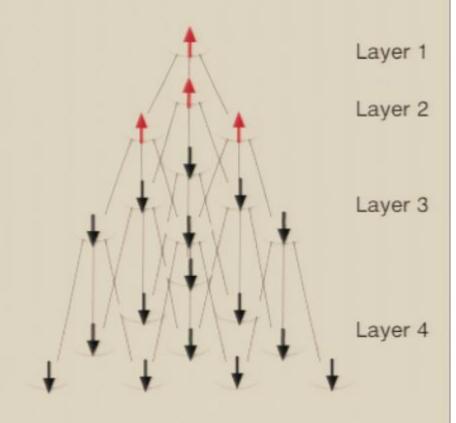
Introduction

Single-Spin Measurement

Mediculina

OCA

Basic Algorithm


The physics of the Alsorithm

Cat State Creation and Verification

Andrew Law

Construction

In the next step, in order to flip all spins in the third layer we apply NOT gates to A spins with neighbour fields -2 and -1.

QCA Applications

C. A. Pérez-Delgado

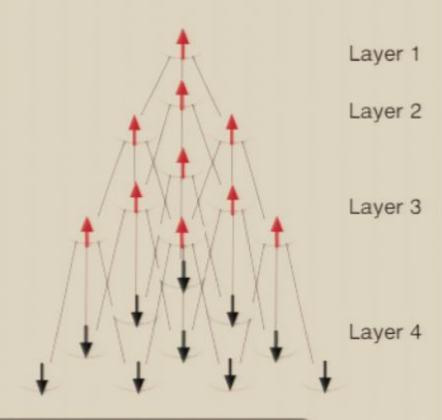
Introduction

Single-Spin Measurement

Mintlemation

OCA

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

In the next step, in order to flip all spins in the third layer we apply NOT gates to A spins with neighbour fields -2 and -1.

QCA Applications

C. A. Pérez-Delgado

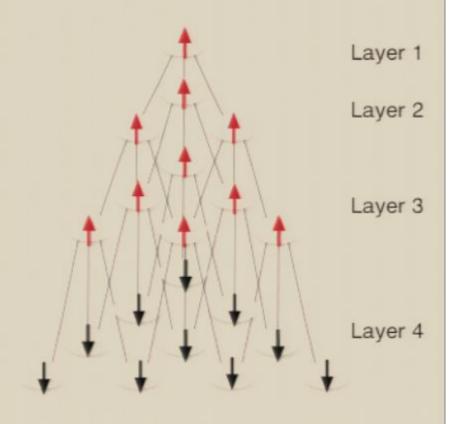
Introduction

Single-Spin Measurement

Minthundino

DCA.

Basic Algorithm


The physics of the Algorithm

Cat State Creation and

Aidington

Construction

In the next step, in order to flip all spins in the third layer we apply NOT gates to A spins with neighbour fields -2 and -1.

QCA Applications

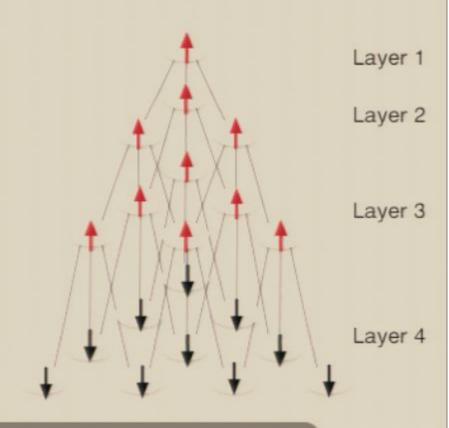
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

In subsequent steps we need to apply NOT gates to spins with neighbour fields -2, -1, and 0.

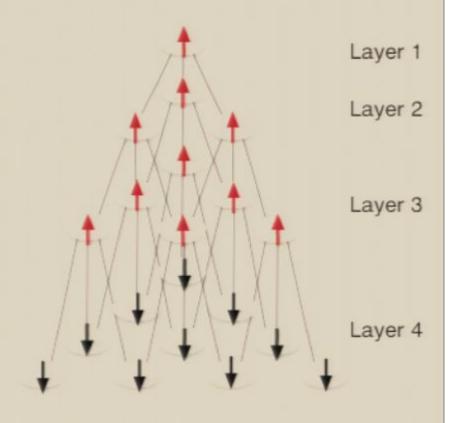
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


OCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

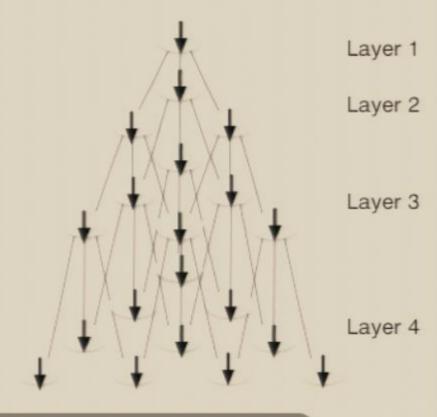
Motivation Construction In subsequent steps we need to apply NOT gates to spins with neighbour fields -2, -1, and 0.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement


Motivation

Basic Algorithm

The physics of the Alsorithm

Cat State Creation and Verification

Motivation Construction Notice that if the top spin is initially in the state $|\downarrow\rangle$, then the procedure leaves the lattice invariant.

QCA Applications

C. A. Perez-Delgado

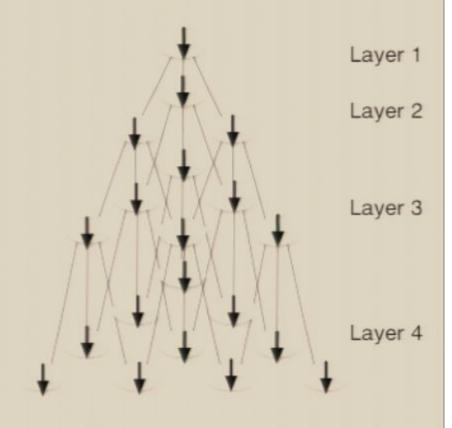
Introduction

Single-Spin Measurement

Motivation

QCA

Basic Algorithm


The physics of the Algorithm

Cat State Creation and

Motivation

Construction

Notice that if the top spin is initially in the state $|\downarrow\rangle$, then the procedure leaves the lattice invariant.

QCA Applications

C. A. Pérez-Delgado

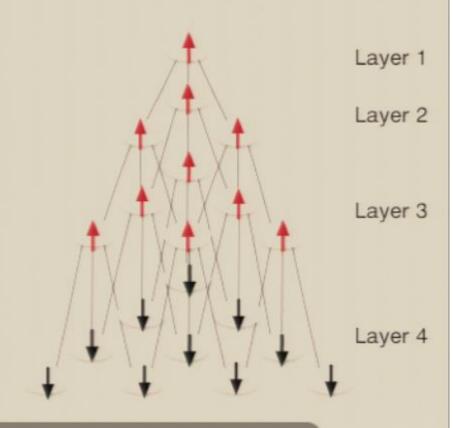
Introduction

Single-Spin Measurement

Motivation

QCA.

Basic Algorithm


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

In subsequent steps we need to apply NOT gates to spins with neighbour fields -2, -1, and 0.

QCA Applications

C. A. Pérez-Delgado

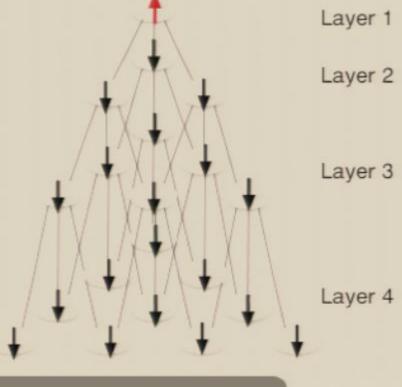
Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Algorithm


Cat State Creation and Verification

Activation

Construction

Suppose the top spin is initially in the | ↑⟩ state.

If we were to apply a NOT gate to B spins with neighbour field −2, all second layer spins would be flipped to the | ↑⟩ state,

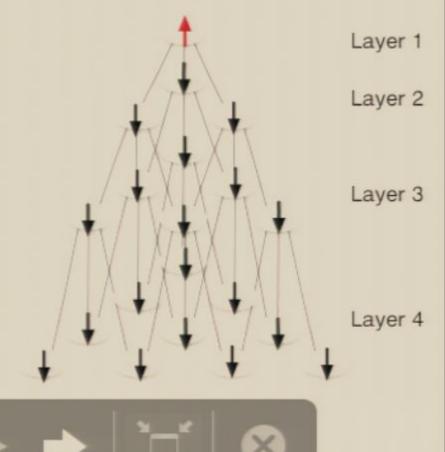
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Notwation.

- Suppose the top spin is initially in the | ↑⟩ state.
- If we were to apply a NOT gate to B spins with neighbour field −2, all second layer spins would be flipped to the | ↑⟩ state,
- Nothing else in the pyramid would be affected.

Page 98/177

QCA Applications

C. A. Pérez-Delgado

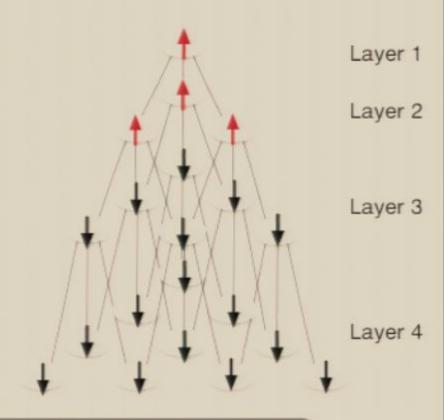
Introduction

Single-Spin Measurement

Motivation

one

Basic Algorithm


The physics of the Alsorithm

Cat State Creation and Varification

Motivation

Construction

In the next step, in order to flip all spins in the third layer we apply NOT gates to A spins with neighbour fields -2 and -1.

QCA Applications

C. A. Pérez-Delgado

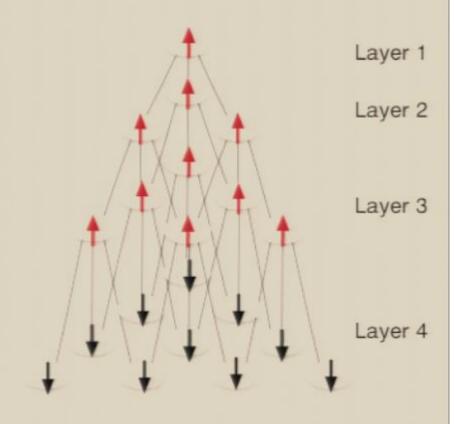
Introduction

Single-Spin Measurement

Mintheation

maria

Basic Algorithm


The physics of the Alsorithm

Cat State Creation and Verification

Motivation

Construction

In the next step, in order to flip all spins in the third layer we apply NOT gates to A spins with neighbour fields -2 and -1.

QCA Applications

C. A. Pérez-Delgado

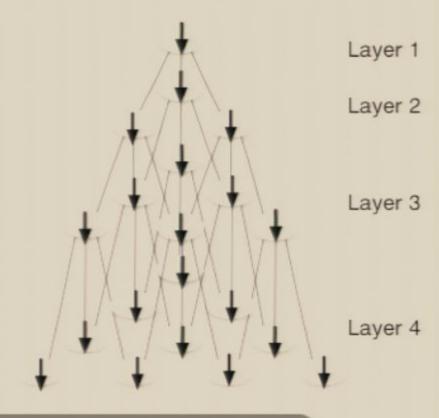
Introduction

Single-Spin Measurement

Motivation

oca

Basic Algorithm


The physics of the Alsorithm

Cat State Creation and Verification

Motivation

Construction

Notice that if the top spin is initially in the state $|\downarrow\rangle$, then the procedure leaves the lattice invariant.

QCA Rule / Algorithm

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

QCA.

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

The QCA rule can be summarized as

$$NOT(A, \{-2, -1, 0\})NOT(B, \{-2, -1, 0\})$$

The algorithm simply repeats these two steps until enough spins have been properly polarized. It take $O(\sqrt[3]{N})$ steps to polarize N spins.

QCA Rule / Algorithm

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

The QCA rule can be summarized as

$$NOT(A, \{-2, -1, 0\})NOT(B, \{-2, -1, 0\})$$

The algorithm simply repeats these two steps until enough spins have been properly polarized. It take $O(\sqrt[3]{N})$ steps to polarize N spins.

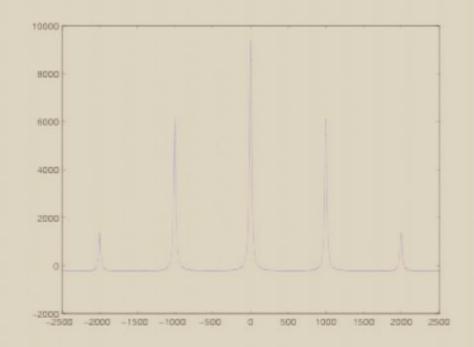
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


State Alexandra

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Until now we have assumed a very simple nearest neighbour only coupling Hamiltonian.
Under this assumption the spectrum of a layer two spin would look like

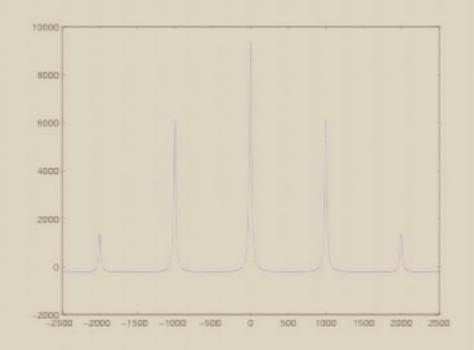
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


State Standing

The physics of the Algorithm

Cat State Creation and Verification

Motivation.

Until now we have assumed a very simple nearest neighbour only coupling Hamiltonian.
Under this assumption the spectrum of a layer two spin would look like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation occa

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Varification

More accurately, however, a solid crystal is governed by a direct dipole coupling Hamiltonian,

$$\mathcal{H} = \sum_{i < j} d_{i,j} \left[2\sigma_z^{(i)} \sigma_z^{(j)} - k_{i,j} \frac{1}{2} \left(\sigma_+^{(i)} \sigma_-^{(j)} + \sigma_-^{(i)} \sigma_+^{(j)} \right) \right],$$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Roser Absortton

The physics of the Algorithm

Cat State Creation and Verification

Motivision

Construction

 More accurately, however, a solid crystal is governed by a direct dipole coupling Hamiltonian,

$$\mathcal{H} = \sum_{i < j} d_{i,j} \left[2\sigma_z^{(i)} \sigma_z^{(j)} - k_{i,j} \frac{1}{2} \left(\sigma_+^{(i)} \sigma_-^{(j)} + \sigma_-^{(i)} \sigma_+^{(j)} \right) \right],$$

 $\mathbf{k}_{i,j}$ equals 1 if i, j are the same species, 0 otherwise.

$$d_{i,j} = \frac{g_{i,j}}{r_{i,j}^3} \frac{1}{2} \left(3\cos^2\Theta_{i,j} - 1 \right),$$

- $r_{i,j}$ is the distance between the two nuclei,
- $\Theta_{i,j}$ is the angle between the vector connecting the two nuclei and the z-axis (determined by the magnetic field)

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation
Construction

 More accurately, however, a solid crystal is governed by a direct dipole coupling Hamiltonian,

$$\mathcal{H} = \sum_{i < j} d_{i,j} \left[2\sigma_z^{(i)} \sigma_z^{(j)} - k_{i,j} \frac{1}{2} \left(\sigma_+^{(i)} \sigma_-^{(j)} + \sigma_-^{(i)} \sigma_+^{(j)} \right) \right],$$

 $\mathbf{k}_{i,j}$ equals 1 if i,j are the same species, 0 otherwise.

$$d_{i,j} = \frac{g_{i,j}}{r_{i,j}^3} \frac{1}{2} \left(3\cos^2\Theta_{i,j} - 1 \right),$$

- $r_{i,j}$ is the distance between the two nuclei,
- $\Theta_{i,j}$ is the angle between the vector connecting the two nuclei and the z-axis (determined by the magnetic field)
- $g_{i,j}$ is a simple constant that depends only on the nuclear types of i and j.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Ranio Almortton

The physics of the Algorithm

Cat State Creation and Verification

Motivation Construction More accurately, however, a solid crystal is governed by a direct dipole coupling Hamiltonian,

$$\mathcal{H} = \sum_{i < j} d_{i,j} \left[2\sigma_z^{(i)} \sigma_z^{(j)} - k_{i,j} \frac{1}{2} \left(\sigma_+^{(i)} \sigma_-^{(j)} + \sigma_-^{(i)} \sigma_+^{(j)} \right) \right],$$

 $\mathbf{k}_{i,j}$ equals 1 if i,j are the same species, 0 otherwise.

$$d_{i,j} = \frac{g_{i,j}}{r_{i,j}^3} \frac{1}{2} \left(3 \cos^2 \Theta_{i,j} - 1 \right),$$

- $r_{i,j}$ is the distance between the two nuclei,
- $\Theta_{i,j}$ is the angle between the vector connecting the two nuclei and the z-axis (determined by the magnetic field)
- $g_{i,j}$ is a simple constant that depends only on the nuclear types of i and j.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

Construction

The couplings depend on the angle to the Z axis of the magnetic field.

QCA Applications

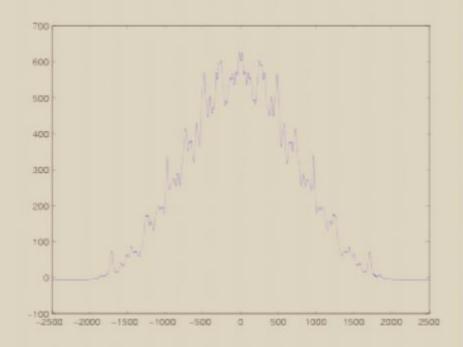
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Aboutton


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

In a rombohedral lattice, with angles between edges of 60 degrees, the spectrum of the same second layer spin under this Hamlitonian looks like

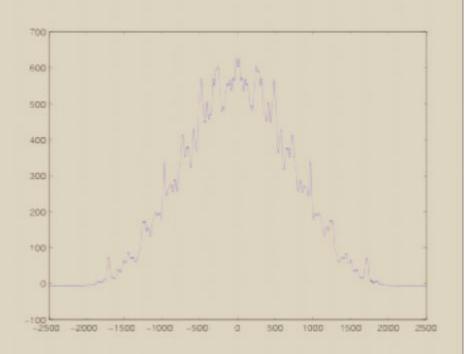
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Range Masselline

The physics of the Algorithm

Cat State Creation and Verification

Josephurben

In a rombohedral lattice, with angles between edges of 60 degrees, the spectrum of the same second layer spin under this Hamlitonian looks like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation OCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

Construction

It is obvious that the right spins cannot be addressed without affecting unwanted spins.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

- It is obvious that the right spins cannot be addressed without affecting unwanted spins.
- This situation can be corrected by suppressing the homonuclear coupling

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation oca

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Construction

- It is obvious that the right spins cannot be addressed without affecting unwanted spins.
- This situation can be corrected by suppressing the homonuclear coupling
- Methods for doing so under several conditions in NMR have been studied (e.g. D. Cory et. al. J. Magnetic, 90, 205 - 213),

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation.

- It is obvious that the right spins cannot be addressed without affecting unwanted spins.
- This situation can be corrected by suppressing the homonuclear coupling
- Methods for doing so under several conditions in NMR have been studied (e.g. D. Cory et. al. J. Magnetic, 90, 205 - 213).

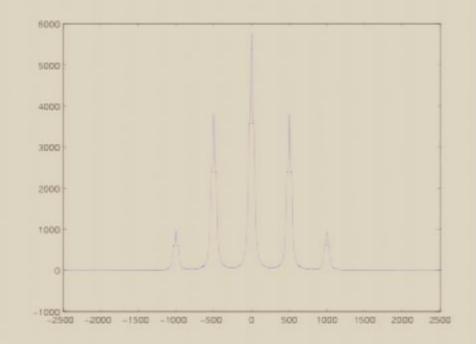
QCA Applications

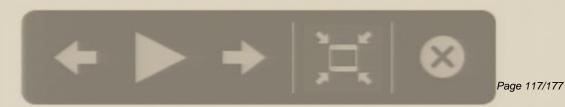
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Rosen Atsauction


The physics of the Algorithm

Cat State Creation and Verification

Motivistion

The spectrum of the same second layer spin, under the dipole-dipole coupling, with homonuclear couplings suppressed looks like

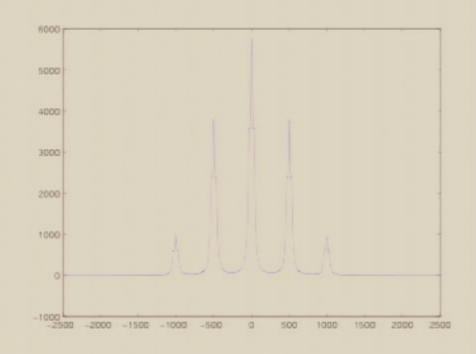
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


State Streethe

The physics of the Algorithm

Cat State Creation and Varification

Motivation.

The spectrum of the same second layer spin, under the dipole-dipole coupling, with homonuclear couplings suppressed looks like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

NAOSWISSIC

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Varification

Carrie

Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

The physics of the Algorithm

Cat State Creation and Verification

Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Materialista Constitueitas

- Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!
- The pulse sequence for an individual step of the algorithm needs to be within the t₂ time, but the full algorithm need not.

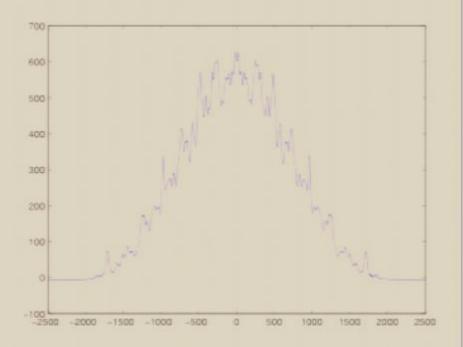
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Busin Absorbing

The physics of the Algorithm

Cat State Creation and Varification

Motivation

In a rombohedral lattice, with angles between edges of 60 degrees, the spectrum of the same second layer spin under this Hamlitonian looks like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation Construction

- The couplings depend on the angle to the Z axis of the magnetic field.
- Hence, it makes sense to orient the crystal in such a way that ensures maximum symmetry.
- This, however, means that we cannot use a perfect cubic crystal.
- However, we shall see that any simple rombohedral lattice crystal will do fine.

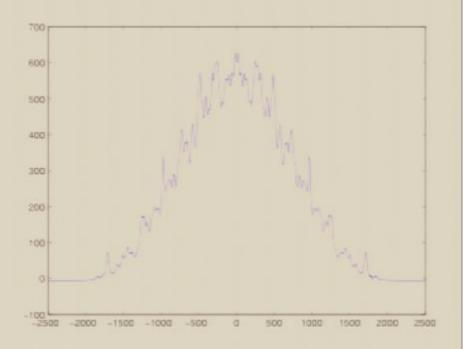
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Basin Standber

The physics of the Algorithm

Cat State Creation and

Motivistion

In a rombohedral lattice, with angles between edges of 60 degrees, the spectrum of the same second layer spin under this Hamlitonian looks like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

> Motivation Construction

- The couplings depend on the angle to the Z axis of the magnetic field.
- Hence, it makes sense to orient the crystal in such a way that ensures maximum symmetry.
- This, however, means that we cannot use a perfect cubic crystal.
- However, we shall see that any simple rombohedral lattice crystal will do fine.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation
Construction

 More accurately, however, a solid crystal is governed by a direct dipole coupling Hamiltonian,

$$\mathcal{H} = \sum_{i < j} d_{i,j} \left[2\sigma_z^{(i)} \sigma_z^{(j)} - k_{i,j} \frac{1}{2} \left(\sigma_+^{(i)} \sigma_-^{(j)} + \sigma_-^{(i)} \sigma_+^{(j)} \right) \right],$$

 $\mathbf{k}_{i,j}$ equals 1 if i, j are the same species, 0 otherwise.

$$d_{i,j} = \frac{g_{i,j}}{r_{i,j}^3} \frac{1}{2} \left(3\cos^2\Theta_{i,j} - 1 \right),$$

 $r_{i,j}$ is the distance between the two nuclei,

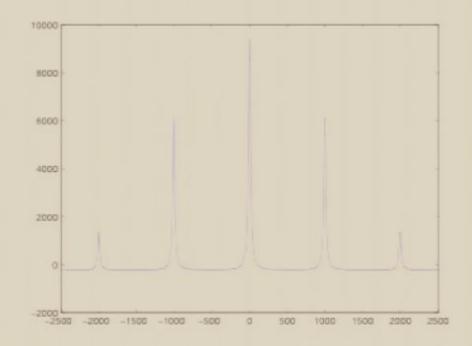
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation


Rapin Abandha

The physics of the Algorithm

Cat State Creation and Verification

Motivation.

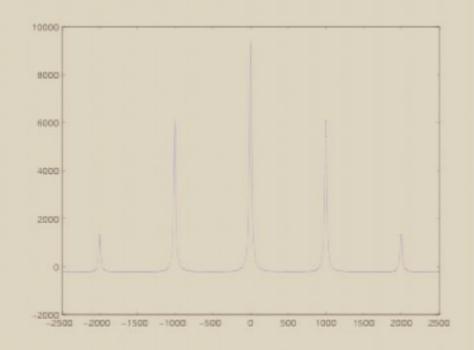
Until now we have assumed a very simple nearest neighbour only coupling Hamiltonian.
Under this assumption the spectrum of a layer two spin would look like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement


Motivation

Sania Alanottina

The physics of the Algorithm

Cat State Creation and Verification

Until now we have assumed a very simple nearest neighbour only coupling Hamiltonian.
Under this assumption the spectrum of a layer two spin would look like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Spinis Streether

The physics of the Algorithm

Cat State Creation and Verification

Construction

 More accurately, however, a solid crystal is governed by a direct dipole coupling Hamiltonian,

$$\mathcal{H} = \sum_{i < j} d_{i,j} \left[2\sigma_z^{(i)} \sigma_z^{(j)} - k_{i,j} \frac{1}{2} \left(\sigma_+^{(i)} \sigma_-^{(j)} + \sigma_-^{(i)} \sigma_+^{(j)} \right) \right],$$

 $\mathbf{k}_{i,j}$ equals 1 if i,j are the same species, 0 otherwise.

$$d_{i,j} = \frac{g_{i,j}}{r_{i,i}^3} \frac{1}{2} \left(3\cos^2\Theta_{i,j} - 1 \right),$$

- $r_{i,j}$ is the distance between the two nuclei,
- $\Theta_{i,j}$ is the angle between the vector connecting the two nuclei and the z-axis (determined by the magnetic field)
- $g_{i,j}$ is a simple constant that depends only on the nuclear types of i and j.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

 More accurately, however, a solid crystal is governed by a direct dipole coupling Hamiltonian,

$$\mathcal{H} = \sum_{i < j} d_{i,j} \left[2\sigma_z^{(i)} \sigma_z^{(j)} - k_{i,j} \frac{1}{2} \left(\sigma_+^{(i)} \sigma_-^{(j)} + \sigma_-^{(i)} \sigma_+^{(j)} \right) \right],$$

 $\mathbf{k}_{i,j}$ equals 1 if i,j are the same species, 0 otherwise.

$$d_{i,j} = \frac{g_{i,j}}{r_{i,j}^3} \frac{1}{2} \left(3\cos^2\Theta_{i,j} - 1 \right),$$

- $r_{i,j}$ is the distance between the two nuclei,
- $\Theta_{i,j}$ is the angle between the vector connecting the two nuclei and the z-axis (determined by the magnetic field)
- g_{i,j} is a simple constant that depends only on the nuclear types of i and j.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

- It is obvious that the right spins cannot be addressed without affecting unwanted spins.
- This situation can be corrected by suppressing the homonuclear coupling

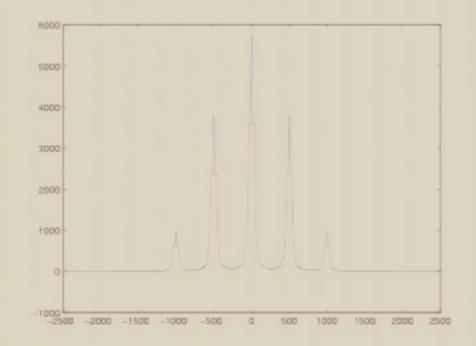
QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation OCA


Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

The spectrum of the same second layer spin, under the dipole-dipole coupling, with homonuclear couplings suppressed looks like

QCA Applications

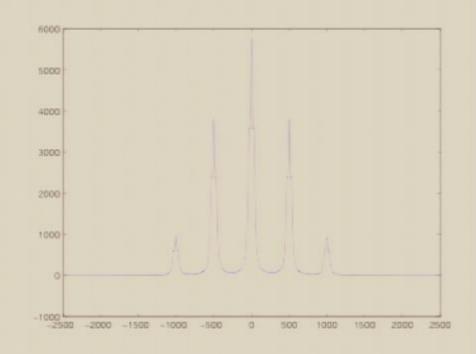
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

State Standing


The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

The spectrum of the same second layer spin, under the dipole-dipole coupling, with homonuclear couplings suppressed looks like

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Varification

Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and

Motivation

Algorithm

- Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!
- The pulse sequence for an individual step of the algorithm needs to be within the t₂ time, but the full algorithm need not.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Constitution

- Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!
- The pulse sequence for an individual step of the algorithm needs to be within the t₂ time, but the full algorithm need not.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification Motivation

- Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!
- The pulse sequence for an individual step of the algorithm needs to be within the t₂ time, but the full algorithm need not.
- The algorithm can be implemented in ways that make it tolerant to imperfect quantum control, and imperfect polarization in the ancillae. Feel free to ask me!

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

- Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!
- The pulse sequence for an individual step of the algorithm needs to be within the t₂ time, but the full algorithm need not.
- The algorithm can be implemented in ways that make it tolerant to imperfect quantum control, and imperfect polarization in the ancillae. Feel free to ask me!

Outline

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Rossic Almoritha

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- 3 Cat State Creation and Verification
 - Motivation
 - Construction

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification Motivation

- Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!
- The pulse sequence for an individual step of the algorithm needs to be within the t₂ time, but the full algorithm need not.
- The algorithm can be implemented in ways that make it tolerant to imperfect quantum control, and imperfect polarization in the ancillae. Feel free to ask me!

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification Motivation Simple (and not so simple) pulse-sequences can be given that perform the desired operations. Ask me!

- The pulse sequence for an individual step of the algorithm needs to be within the t₂ time, but the full algorithm need not.
- The algorithm can be implemented in ways that make it tolerant to imperfect quantum control, and imperfect polarization in the ancillae. Feel free to ask me!

Outline

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Alsorithm

Cat State Creation and Verification

Motivation

- 3 Cat State Creation and Verification
 - Motivation
 - Construction

Schrödinger and his Cat

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

OCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Construction

- Ever since Schrödinger noted that quantum mechanics allows for superpositions of arbitrarily large, even macroscopic, systems, e.g. cats, there has been a myriad of experiments, and experiment proposals for generating ever larger 'Cat States'.
- One purpose of such experiments is to better understand decoherence, and the transition from quantum to classical.

Schrödinger and his Cat

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

OCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation Construction

- Ever since Schrödinger noted that quantum mechanics allows for superpositions of arbitrarily large, even macroscopic, systems, e.g. cats, there has been a myriad of experiments, and experiment proposals for generating ever larger 'Cat States'.
- One purpose of such experiments is to better understand decoherence, and the transition from quantum to classical.

Pirsa: 07060049

Past Cats

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

- Bucky Ball (C₆₀) interferometer. (Arndt, Nairz, Vos-Andreae, Keller, van der Zouw, Zeilinger, 1999]
- Superposition of a mirror proposal [Marshal, Simon, Penrose, Bouwmeester, 2003]
- Many others, see for example [Legget. J. Phys, 2002]

Past Cats

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

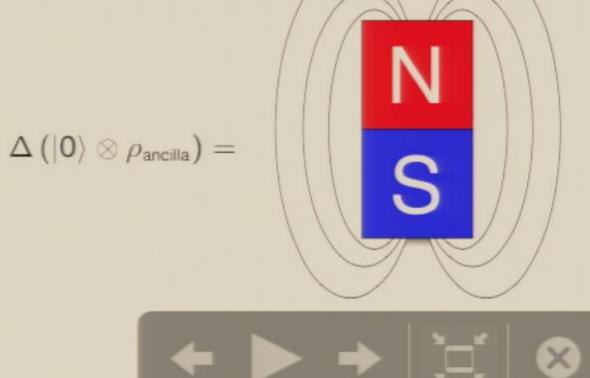
QCA

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation


- Bucky Ball (C₆₀) interferometer. (Arndt, Nairz, Vos-Andreae, Keller, van der Zouw, Zeilinger, 1999]
- Superposition of a mirror proposal [Marshal, Simon, Penrose, Bouwmeester, 2003]
- Many others, see for example [Legget. J. Phys, 2002]

Pirsa: 07060049

QCA Applications

Lets call our spin-amplification process Δ . Then

Pirsa: 07060049

QCA Applications

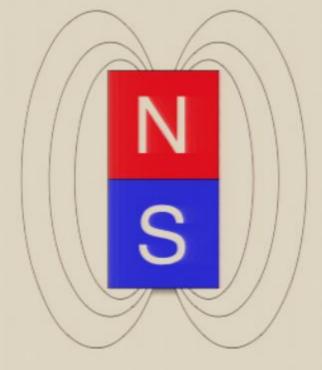
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

The physics of the


Cat State Creation and Verification

Jobiustion

Construction

Lets call our spin-amplification process Δ . Then

$$\Delta \left(\ket{0} \otimes
ho_{ ext{ancilla}}
ight) =$$

QCA Applications

C. A. Pérez-Delgado

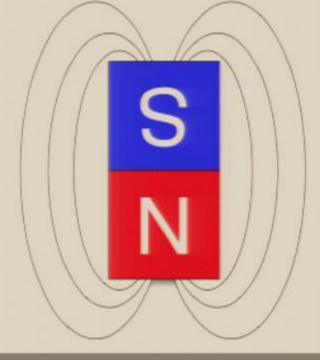
Introduction

Single-Spin Measurement

Motivetto

Basic Algorithm

The physics of the Algorithm


Cat State Creation and Varification

Motivostion

Construction

And of course,

$$\Delta (X|0) \otimes \rho_{\text{ancilla}}) =$$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm


Cat State Creation and

Motivation

Construction

And of course,

$$\Delta \left(X | 0 \right) \otimes
ho_{ ext{ancilla}} \right) =$$

QCA Applications

C. A. Pérez-Delgado

Introduction

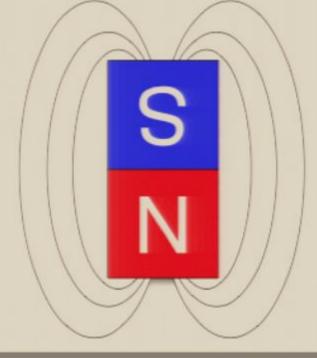
Single-Spin Measurement

Motivestic

QCA.

Basic Algorithm

The physics of the Absorbtom


Cat State Creation and

Motivation

Construction

And of course,

$$\Delta \left(X | 0
ight) \otimes
ho_{ ext{ancilla}}
ight) =$$

Pirsa: 07060049

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Darie Absorber

The physics of the

Cat State Creation and

Motivation

Construction

Ergo,

$$\Delta\left(H\ket{0}\otimes
ho_{ ext{ancilla}}
ight)=rac{1}{\sqrt{2}}$$

QCA Applications

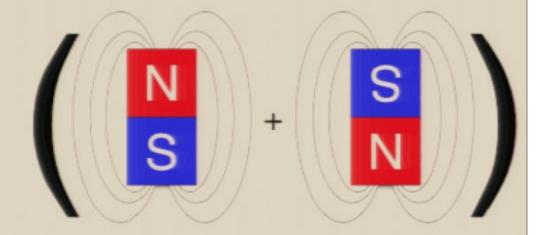
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Miștivatio

The physics of the


Cat State Creation and Verification

Motivation

Construction

Ergo,

$$\Delta\left(H\left|0
ight)\otimes
ho_{ ext{ancilla}}
ight)=rac{1}{\sqrt{2}}$$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Brisin Almoston

The physics of the Anorthm

Cat State Creation and Varification

Motivation

Construction

It is a priori unclear whether the state created is a cat state, i.e. a real superposition, or simply a classical mixture.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivati

Basic Algorithm

The physics of the Alsorithm

Cat State Creation and Verification

Motivotion

Construction

It is a priori unclear whether the state created is a cat state, i.e. a real superposition, or simply a classical mixture.

Pirsa: 07060049

QCA Applications

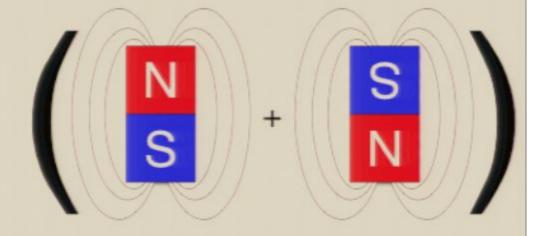
C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivida

The physics of the


Cat State Creation and

Motivation

Construction

Ergo,

$$\Delta\left(H\left|0
ight)\otimes
ho_{ ext{ancilla}}
ight)=rac{1}{\sqrt{2}}$$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

000

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- It is a priori unclear whether the state created is a cat state, i.e. a real superposition, or simply a classical mixture.
- In order to verify that we succeeded in creating a cat state it suffices to show that:

$$H\left(\mathrm{tr}_{\mathsf{ancilla}}\left(\Delta^{\dagger}\left(\Delta\left(H|0
ight)\otimes
ho_{\mathsf{ancilla}}
ight)
ight)
ight)=|0
angle$$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

QCA

Basic Algorithm

The physics of the Alsorithm

Cat State Creation and Verification

Motivation

Construction

- It is a priori unclear whether the state created is a cat state, i.e. a real superposition, or simply a classical mixture.
- In order to verify that we succeeded in creating a cat state it suffices to show that:

$$H\left(\mathrm{tr}_{\mathsf{ancilla}}\left(\Delta^{\dagger}\left(\Delta\left(H\left|0
ight)\otimes
ho_{\mathsf{ancilla}}
ight)
ight)
ight)
ight)=\left|0
ight
angle$$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}}(\rho_0 + \rho_1)$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Almostics

The physics of the

Cat State Creation and Verification

Motivation

Construction

Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}}(\rho_0 + \rho_1)$

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Metivation

Basic Mascribe

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}}(\rho_0+\rho_1)$

This is not a fundamental problem, e.g. Schrödinger's original cat.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Alsorithm

Cat State Creation and Verification

Control

- Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}} \left(\rho_0 + \rho_1 \right)$
- This is not a fundamental problem, e.g. Schrödinger's original cat.
- It does create a problem in trying to quantify the size of the cat state.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Abovetton

The physics of the Algorithm

Cat State Creation and Verification

Canada

- Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}}(\rho_0+\rho_1)$
- This is not a fundamental problem, e.g. Schrödinger's original cat.
- It does create a problem in trying to quantify the size of the cat state.

What's next...

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivatio

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

An experiment of this sort requires a high degree of quantum control in solid state NMR. It will not be implemented any time soon.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Danie Aboutton

The physics of the Algorithm

Cat State Creation and Verification

Motivation

Construction

- Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}} \left(\rho_0 + \rho_1 \right)$
- This is not a fundamental problem, e.g. Schrödinger's original cat.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Alsorithm

Cat State Creation and Verification

Motivation

Construction

- Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}}(\rho_0+\rho_1)$
- This is not a fundamental problem, e.g. Schrödinger's original cat.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

Basic Algorithm

The physics of the Algorithm

Cat State Creation and Verification

Constitution

- Technically, in the absence of perfect polarization the state we create is not a superposition of two basis states, but rather the superposition of two mixtures of basis states ρ_0 and ρ_1 , *i.e.* the state can be written as $\frac{1}{\sqrt{2}} \left(\rho_0 + \rho_1 \right)$
- This is not a fundamental problem, e.g. Schrödinger's original cat.
- It does create a problem in trying to quantify the size of the cat state.

QCA Applications

C. A. Pérez-Delgado

Introduction

Single-Spin Measurement

Motivation

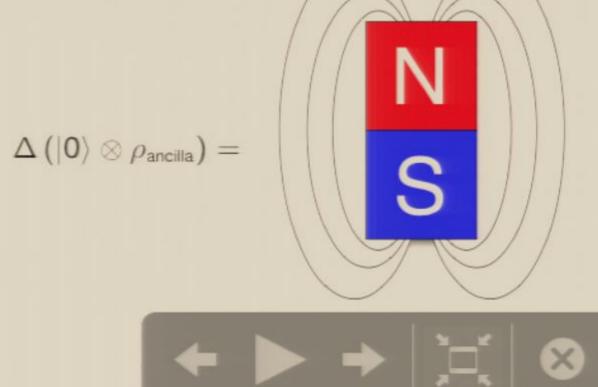
Basic Algorithm

The physics of the Alnovithm

Cat State Creation and Varification

Motivation

Construction


Thank you for waking up!

QCA Applications

Lets call our spin-amplification process Δ . Then

1 (= 10 > + 11>) @P

A(10) + 117) &

Pirsa: 07060049

rge 173/177

100人

QCA Applications

C. A. Perez-Delgado

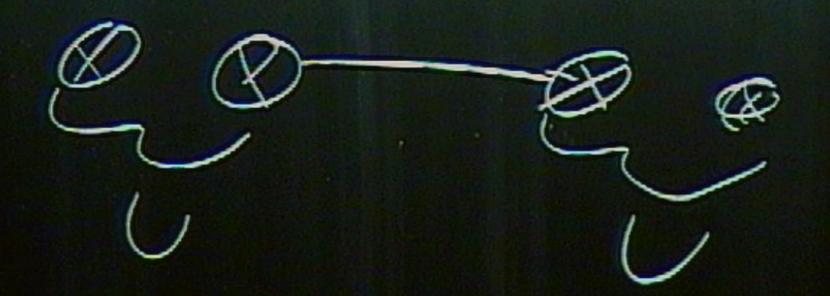
Introduction

Single-Spin Measurement

OCA

Basic Algorithm

The physics of the Alsorithm


Cat State Creation and Verification

Motivation

Construction

- It is a priori unclear whether the state created is a cat state, i.e. a real superposition, or simply a classical mixture.
- In order to verify that we succeeded in creating a cat state it suffices to show that:

$$H\left(\mathrm{tr}_{\mathsf{ancilla}}\left(\Delta^{\dagger}\left(\Delta\left(H\left|0
ight)\otimes
ho_{\mathsf{ancilla}}
ight)
ight)
ight)=\left|0
ight
angle$$

: 07060049

00 177/177