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NOT(A.{-2.-1,0})NOT(B.{-2.-1.0})

The algorithm simply repeats these two steps until enough
spins have been properly polarized. It take O(v/N) steps to
polarize N spins.

-p > -
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polarize N spins.
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Until now we have
assumed a very simple
nearest neighbour only
coupling Hamiltonian.
Under this assumption the
spectrum of a layer two
spin would look like

-p > -

Page 104/177




Wat

%100 Bridging to Physics

QCA
Applications

Until now we have
assumed a very simple

nearest neighbour only

coupling Hamiltonian.

Under this assumption the
spectrum of a layer two

spin would look like

Page 105/177




Waterloo

52 Bridging to Physics

QCA

Applications m More accurately. however, a solid crystal is governed by
a direct dipole coupling Hamiltonian,

1 : :
H = Zd,, [202 oy - kij (69D + o }”(i))] |
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More accurately, however, a solid crystal is governed by
a direct dipole coupling Hamiltonian,

e — Z d; {erz rTz k”2 ( {f}n(_j) 4 nr(’]n(::))} .
m k;; equals 1 if /. j are the same species, 0 otherwise.

j 1
dﬁ.j = %é (3(:052 e” = 1) :

i.J

m r;; is the distance between the two nuclei,
m O, is the angle between the vector connecting the two

nuclei and the _ field)
| M
* ’ * i '—‘ ' 9 Page 107/177
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QCA

Applications m More accurately. however, a solid crystal is governed by
a direct dipole coupling Hamiltonian,

= Z d; {2”’2 sz k”i (n“}n’(_” - JU}HE‘:))} :

m k;; equals 1 if /. j are the same species, 0 otherwise.
a

d;j = @;— (3 cos® ©;; — 1) .

m r;; is the distance between the two nuclei,
m ©;; is the angle between the vector connecting the two
nuclei and the field)

m g is asimple 4= " ""

on the nuclear'aeasss s
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More accurately. however, a solid crystal is governed by
a direct dipole coupling Hamiltonian,

= Z d; [252%2:” - k,-J'E (rf{:}ﬁ(_” - rrmn(i)):l .

ki ; equals 1 if /. j are the same species, 0 otherwise.
gij1 2 ‘
d,===(3 Q;;,—1).
i rf!. 2 ( COS™ S, )

m r;; is the distance between the two nuclei,

m ©;; is the angle between the vector connecting the two
nuclei and the z-axis (determined by the magnetic field)

m g, is a simple constant that depends only
on the nuclear types of / and j.
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m The couplings depend on the angle to the Z axis of the
magnetic field.
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In a rombohedral lattice,
with angles between
edges of 60 degrees, the
spectrum of the same
second layer spin under
this Hamlitonian looks like

«-Pp > -
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second layer spin under
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m |t is obvious that the right spins cannot be addressed
without affecting unwanted spins.
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QCA
Applications

m |t is obvious that the right spins cannot be addressed
without affecting unwanted spins.

m This situation can be corrected by suppressing the
homonuclear coupling

m Methods for doing so under several conditions in NMR
have been studied (e.g. D. Cory et. al. J. Magnetic, 90,
205 - 213),

- p > -
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m This situation can be corrected by suppressing the
homonuclear coupling

m Methods for doing so under several conditions in NMR
have been studied (e.g. D. Cory et. al. J. Magnetic, 90,
205 - 213),
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The spectrum of the same
second layer spin, under
S the dipole-dipole coupling,
S \vith homonuclear
couplings suppressed
looks like

«p > OO
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The spectrum of the same
second layer spin, under
the dipole-dipole coupling,
with homonuclear
couplings suppressed
looks like

.......
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Applications

m Simple (and not so simple) pulse-sequences can be
given that perform the desired operations. Ask me!
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m Simple (and not so simple) pulse-sequences can be
given that perform the desired operations. Ask me!

m The pulse sequence for an individual step of the
algorithm needs to be within the f; time. but the full
algorithm need not.

-p > -
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second layer spin under
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m The couplings depend on the angle to the Z axis of the
magnetic field.

m Hence, it makes sense to orient the crystal in such a
way that ensures maximum symmetry.

m This, however, means that we cannot use a perfect
cubic crystal.

m However, we shall see that any simple rombohedral
lattice crystal will do fine.

«p > -
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m The couplings depend on the angle to the Z axis of the
magnetic field.

m Hence, it makes sense to orient the crystal in such a
way that ensures maximum symmetry.

m This, however, means that we cannot use a perfect
cubic crystal.

m However, we shall see that any simple rombohedral
lattice crystal will do fine.
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Applications m More accurately. however, a solid crystal is governed by
a direct dipole coupling Hamiltonian,

TE = Z d; [erz rTz k,jz ( {I)(TU) ﬁ“)ng‘:))} :

m k;; equals 1 if 1. j are the same species, 0 otherwise.
]

dﬁ.j = %é (3(:052 e” - 1) )

i.J

m r;; is the distance between the two nuclei,

P > -
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nearest neighbour only

coupling Hamiltonian.
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spectrum of a layer two

spin would look like
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More accurately, however, a solid crystal is governed by
a direct dipole coupling Hamiltonian,

75— Z d” {20’2 rTz k”i ( {-‘)g(_}) L {T{’]n'g{))} :

ki j equals 1 if /. j are the same species, 0 otherwise.

d;j= Eb% (3 cos® ©;; — 1) |

m r;; is the distance between the two nuclei,

m O, is the angle between the vector connecting the two
nuclei and the field)

m g, is asimple o " "" 9

on the nuclear'™aeasss a
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More accurately. however, a solid crystal is governed by
a direct dipole coupling Hamiltonian,

H=Y"d, {zﬁgug) ~ ki (o0 q%m |
iI<J

ki ; equals 1 if /. j are the same species, 0 otherwise.
iil
d;; = 9 (3 cos® ©;; — 1) .

m r;; is the distance between the two nuclei,

m ©;; is the angle between the vector connecting the two
nuclei and the z-axis (determined by the magnetic field)

m g, is a simple constant that depends only
on the nuclear types of / and j.
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m |t is obvious that the right spins cannot be addressed
without affecting unwanted spins.

m This situation can be corrected by suppressing the
homonuclear coupling

P> -
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The spectrum of the same
second layer spin, under
the dipole-dipole coupling,
with homonuclear
couplings suppressed
looks like

- Pp > -
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m Simple (and not so simple) pulse-sequences can be
given that perform the desired operations. Ask me!

m The pulse sequence for an individual step of the
algorithm needs to be within the > time, but the full
algorithm need not.
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m Simple (and not so simple) pulse-sequences can be
given that perform the desired operations. Ask me!

m The pulse sequence for an individual step of the
algorithm needs to be within the > time, but the full
algorithm need not.

m The algorithm can be implemented in ways that make it
tolerant to imperfect quantum control, and imperfect
polarization in the ancillae. Feel free to ask me!

«p > -
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m Simple (and not so simple) pulse-sequences can be
given that perform the desired operations. Ask me!

m The pulse sequence for an individual step of the
algorithm needs to be within the > time. but the full
algorithm need not.

m The algorithm can be implemented in ways that make it
tolerant to imperfect quantum control, and imperfect
polarization in the ancillae. Feel free to ask me!
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m Simple (and not so simple) pulse-sequences can be
given that perform the desired operations. Ask me!

m The pulse sequence for an individual step of the
algorithm needs to be within the > time, but the full
algorithm need not.

m The algorithm can be implemented in ways that make it
tolerant to imperfect quantum control, and imperfect
polarization in the ancillae. Feel free to ask me!
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“a%"m Schradinger and his Cat

QCA
Applications

m Ever since Schrédinger noted that quantum mechanics
allows for superpositions of arbitrarily large, even
macroscopic, systems, e.g. cats. there has been a
myriad of experiments, and experiment proposals for
generating ever larger ‘Cat States'.

® One purpose of such experiments is to better
understand decoherence, and the transition from
quantum to classical.

«p > -0
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m Ever since Schrédinger noted that quantum mechanics
allows for superpositions of arbitrarily large, even
macroscopic, systems, e.g. cats. there has been a
myriad of experiments, and experiment proposals for
generating ever larger ‘Cat States'.

m One purpose of such experiments is to better
understand decoherence, and the transition from
quantum to classical.
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Applications

m Bucky Ball (Cgg) interferometer. (Arndt, Nairz,
Vos-Andreae, Keller, van der Zouw, Zeilinger, 1999]

m Superposition of a mirror proposal [Marshal, Simon,
Penrose, Bouwmeester, 2003]

m Many others, see for example [Legget. J. Phys, 2002]

P> -
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m Bucky Ball (Cgg) interferometer. (Arndt, Nairz,
Vos-Andreae, Keller, van der Zouw, Zeilinger, 1999]

m Superposition of a mirror proposal [Marshal, Simon,
Penrose, Bouwmeester, 2003]

m Many others, see for example [Legget. J. Phys, 2002]
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Lets call our spin-amplification process A. Then

A( 0) & ,”Ell“!ﬂlla) A
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Ergo.

: 1
A(H 0 ’, ,"Jaf*zr:tlla a _2 ( I l )
= 9
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Ergo.

&(H 0 | ,.Ua_'";::llla — 1_2 ( I I )
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Applications

m |t i1s a priori unclear whether the state created is a cat
state. i.e. a real superposition, or simply a classical
mixture.

-p > -

Page 155/177




QCA
Applications

Creating a Cat in NMR

m It is a priori unclear whether the state created is a cat
state. i.e. a real superposition, or simply a classical
mixture.

Page 156/177




Creating a Cat in NMR

QCA
Applications

Ergo.

&(H 0 2 ,"J.r;mlla = _2 ( I l )
=gl
I
’_‘ | Page 157/177




"> Creating a Cat in NMR

QCA

Applications

m It 1s a priori unclear whether the state created is a cat
state. i.e. a real superposition, or simply a classical
mixture.

m In order to verify that we succeeded in creating a cat

state it suffices to show that:
H ( ancine (AT (A (HIO:' t f)aﬂczua)))) — iO.-}

-p > -
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m |t 1Is a priori unclear whether the state created is a cat
state. /.e. a real superposition, or simply a classical
mixture.

m In order to verify that we succeeded in creating a cat

state it suffices to show that:
H ([r.arc::ia (AT (A (H 0 f)ar%c:ﬂa))) ) — 0*
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QCA
Applications

m Technically, in the absence of perfect polarization the
state we create is not a superposition of two basis
states, but rather the superposition of two mixtures of
basis states pg and p4, /.e. the state can be written as

1 4.
N (P’U M )

- Pp > -

Page 160/177




“a%'m Creating a Cat in NMR

QCA
Applications

m Technically, in the absence of perfect polarization the
state we create is not a superposition of two basis
states, but rather the superposition of two mixtures of
basis states pg and p4, i.e. the state can be written as

:15 (HU L7 m)

Page 161/177




“'a%’;‘m Creating a Cat in NMR

QCA
Applications

m Technically, in the absence of perfect polarization the
state we create is not a superposition of two basis
states, but rather the superposition of two mixtures of
basis states pg and p4, I.e. the state can be written as

75 (Po + p1)
m This is not a fundamental problem. e.g. Schrédinger’s
original cat.
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m An experiment of this sort requires a high degree of
quantum control in solid state NMR. It will not be
implemented any time soon.

«p > =0
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m Technically, in the absence of perfect polarization the
state we create is not a superposition of two basis
states, but rather the superposition of two mixtures of
basis states pg and p4, /.e. the state can be written as

75 (Po + p1)
m This is not a fundamental problem. e.g. Schrodinger’s
original cat.

m |t does create a problem in trying to quantify the size of
the cat state.
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Thank you for waking up!

-p > -
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Lets call our spin-amplification process A. Then

A( 0 ,J'Janc:lla) s '. |
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QCA
Applications

m |t 1Is a priori unclear whether the state created is a cat
state. i.e. a real superposition, or simply a classical
mixture.

m In order to verify that we succeeded in creating a cat

state it suffices to show that:
H (ancma (A’ (A (H 0) f)ar.c:ila))) ) = 0)
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