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1. Notation and Definitions

A classical two-valued measurement corresponds to a pair
@ = {xa,xs} where xa = 1 — xa. We interpret @ as having
the value 1 if x4 occurs and the value 0 if x4 does not occur.
If B = {xg, X5~} is another two-valued measurement, we form

their sequential product

@eB = {xXaXB, XAXB"» XA’ XB> XA XEB"}

= {XAnB, XAnB s XA'nB» XA'nB’ }

We interpret 1o B as the measurement resulting from first
performing (@ and then performing $. Then G $ has four
values depending on whether x4 and xg, X4 and xp, Xa
and xg, or xa- and xg- both occur. Since @c B = B - @ the
order of performing measurements is irrelevant in the
classical theory. Because of quantum interference, this is
no longer true in quantum mechanics.
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1. Notation and Definitions

A classical two-valued measurement corresponds to a pair
@ = {xa,Xa'} where Xar = 1 — x4. We interpret (1 as having
the value 1 if xa occurs and the value 0 if x4 does not occur.
If B ={xB,XB"} 1S another two-valued measurement, we form

their sequential product

{o B = {XaXB: XAXB s XA’ XB» XA XE '}

= {XAanB.: XANB s XA'nBs XA'nB"}

We interpret @ B as the measurement resulting from first
performing @ and then performing 8. Then @ = % has four
values depending on whether X4 and xp, X4 and X, Xa
and xz, or x4+ and xp both occur. Since Qo B = B -1 the
order of performing measurements 1S irrelevant in the
classical theory. Because of quantum interference, this is

no longer true in quantum mechanics.
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1. Notation and Definitions

A classical two-valued measurement corresponds to a pair
@ = {xa,Xa '} where Xa = 1 — xa. We interpret (1 as having
the value 1 if x4 occurs and the value 0 if x4 does not occur.
If B = {xg, xs"} is another two-valued measurement, We form

their sequential product

Qo B = {XAXE. XAXE > X' XB: XA'XB'}
= {XAnB: XAnB'» XA'nB» XA'nB }

We interpret @ 3B as the measurement resulting from first
performing @ and then performing 8. Then 1 B has four
values depending on whether X4 and xp, XA and X5, XA
and xg, or x4+ and xp’ both occur. Since @0 B = B @ the
order of performing measurements 1S irrelevant in the
classical theory. Because of quantum interference, this is

no longer true in quantum mechanics.

Page 10/4




)

ﬂ :







We can extend this discussion to discrete measurements which
have a finite or countable number of values. In this case,

(@ = {Xa: X42,---} where {A;, A5,...} is a partition of a sample
space (. In this case (@ is equivalent to a discrete random
variable. If B = {xg,, Xg,,---} is another discrete measurement

we form the sequential product
@oB = {XaiXitnj = 1.2.-..} = {xanz G = 1,2, ]

This corresponds to a finer partition of Q

We can extend this to classical fuzzy probability theory.
In this case fuzzy events are represented by functions in [0, 1]¥.
A discrete measurement is givenby @= {f], f,.. .} where
ficl0,1¥satisfy S f,=1. IfF B — {g1.9>,...} is another
discrete measurement their sequential product becomes

Qo B =] figji,j= Lz 1

As before e B=B -3
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The formalism for quantum measurements is similar to that
of fuzzy probability theory except now the fuzzy events are
represented by positive operators on a complex Hilbert space H.

Notaton:
B(H) = {Bnunded Operators on H }

§H) = jAesE)0=A<1I]

P(H) = {P € 6(H):P? = P}

D(H) = |p € E(H):x(p) = 1}
The elements of &(H) correspond to fuzzy quantum events and
are called effects.
The elements of $(H) are projections corresponding to quantum
events and are called sharp effects.
The elements of 9(H) are density operators corresponding to
probability measures and are called states.
If p e 9(H), A € 6(H) then tr(pA) is the probability that A

occurs in the state p.

If A,B € &(H), their sequential product is

AoB = AY2BAlZ2 ¢ §(H)
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A measurement is a finite or infinite sequence {A;}, where

A: € 6(H) satisfy Y A; =I1. fG@={A;} is a measurement, then
A; is the effect observed when @ is performed and the result is
the ith outcome. We call A;, A», ..., the elements of @. If the
system is in the state p and @ is performed, then the proba-
bility that the result is the ith outcome is tr(pA;). Notice that
i — tr(pA;) is a probability distribution because

S w(pA) =t (p Y Ar) =w(p) = 1

A measurement is also called a discrete POVM. If A; € 9(H),

then @ = {A;} is a sharp measurement or discrete PVM.

We denote the set of measurements on H by 9(H) and the set of
sharp measurements on by S(H).

For @ = {A;} € 9UH) and B = {B;} € IM(H) we define their
sequential product by @ 8B = {Ai o Bj]-- We interpret @ = S to
be the measurement obtained when @ is performed first and B is
performed second. We indeed have that @< $B = I(H) because

> AioB; = > A?B;AY* = A}° ZBJ-A}"E =S Ai=1I
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2. Equivalence

For (0,8 € 9 H), we write @ = B and say @ and B are equivalent
if the nonzero elements of @ are a permutation of the nonzero el-
ements of 8. We say that @ = {A;} and B = {B j} are compatible
if A;B; = BjA; for all i and j. It is clear that if @ and B are com-
patible, then @ B =~ B = @. The converse does not hold. Indeed,
(- @ = (@~ dand yet @ need not be compatible with itself. The

converse does hold under certain circumstances.

Theorem 2.1. P < S§(H), @€ M(H) and P-@ =~ @ - P then P and
(I are compatible.

We define the supplement of A € §(H) by A’ = — A.

Theorem 2.2. Suppose dimH < « and @ = {A,A'}, B={B,B'}).
(o B =~ B @, then @ and B are compatible.

Theorem 2.3. For @, B € M(H) we have @ B = S(H) if and only
if 4,8 € S(H) and @ and B are compatible.
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If @ = S(H). it is clear that @< @ = . It is easy to prove the
converse when @ = {A;,...,A,} is finite, A; # 0,1 =1,..., M.
If@- @A = @, then {Aic.—lj} ~ {A;} and since A; # 0, _4:-3 £
i=1,...,m. Since @o @ and @ have the same number of nonzero

elements, we conclude that A; - A; =0, i + j. Hence,

Ai=Aiel=A;e > Aj=) AjoAj= A7
J J
so A; =eP(H),i=1,...,n1. Hence, @ € S(H). This result holds in
general.

Theorem 3.1. For @ € 9(H) we have that G- @ = @ if and only if
d = S(H).

For 4,8 = 9(H) we call @ a refinement of B and write @ <
$ if we can adjoin Os to @ if necessary and organize the elements
of @so that@ = {A;—_,—} and B; = > ; A;; for all i.

For example, @ B < (. Indeed, G- B = {.-‘11* o B_,-} and
A; = 3 A; o Bj for all i. There are examples which show that
the converse does not hold. That is € < @ does not imply that
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If @ = S(H). it is clear that @- @ = (. It is easy to prove the
converse when @ = {A;,...,A,} is finite, A; #0,1=1,..., 7M.
IfG-@ ~ @ then {A; o A;} ~ {A;} and since A; # 0, A7 # 0,
i=1.....,m. Since @- @ and @ have the same number of nonzero

elements, we conclude that 4; - Aj =0, i # j. Hence,

Ai=Ajol =Aiﬂz.‘-'lj =ZA;- o Aj =.4.§
J J
so A; =P(H),i=1,...,n1. Hence, @ € &5(H). This result holds in
general.

Theorem 3.1. For @ € 9(H) we have that @- @ = @ if and only if
d e a(H).

For 0,8  9M(H) we call @ a refinement of B and write @ <

B if we can adjoin Os to @ if necessary and organize the elements

of @so that@ = {Aij} and B; = > ; A;; for all i

For example, @< B < A. Indeed, @B = {A;— o Bj} and

A: = 3 jA; o Bj for all i. There are examples which show that

the converse does not hold. That is € < @ does not imply that o
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The next result shows that < gives a partial order on 9M(H).
Strictly speaking, we are considering equivalence classes because

we use = instead of equality.

Theorem 3.2. (IN(H), <) is a poset with largest element 9 and
(< B implies Co @ < Co 3.

Theorem 3.3. (a) @€ S(H), B € IM(H) and B < @, then
B=AoB=Bo@ (b) A S(H), B € IMH) and @ < B, then
BESH)andA=QoB =B (c) FA,B € M(H) and B> B ~ G,
then (@ and B are compatible, B € S(H) and @ < B.

Theorem 3.4. For @ € 9(H) and B € S(H), @ A B exist if and
only if @ and B are compatible. In this case @A B = G« B.

The characterization of pairs @, B for which @A B (or G v B)
exist is an open problem. It is easy to show that if G, B IN(H),
B has two elements and @ £ B, then @v B = 4.
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4. Coexistence

Two effects A,B € &(H) coexist if there exist effects

G, C2, C3 € &6(H) such that C1 + G2 +C3<lIand A= C; + G2,
B—=GC+C K1 well known that if A, B € &S(H) are compatible
then A, B coexist. Moreover, if A € &(H), P € H) and A, P
coexist, then A, P are compatible. We say that A € &(H) 1s
associated with @ € IUH) if@<{A A}

Lemma 4.1. Two effects A,B € &(H) coexist if and only if A, B

are associated with a common measurement @ € I

We say that G, 8 € 9n(H) coexist if they have a common
refinement. Notice thatif @ o R =~ Bo@ then@=B =< @, B so
@, B coexist. By Theorem 2 2, the converse does not hold. The
next lemma shows that this definition generalizes the definition

of coexistence of effects.

Lemma 4.2. A,B € &(H) coexist if and only if {A,A’}, {B,B'}
coexist.

If {A;}, {B;} coexist, then A;, B; coexist for all i, j. The next
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then A, B coexist. Moreover, if A € &(H), P € 9(H) and A, F
coexist. then A, P are compatible. We say that A € 6(H) 1s
associated with @ € 9U(H) if A< {A A}

Lemma 4.1. Two effects A,B € &(H) coexasl if and only if A,B

are associated with a common measurement @ € 9L

We say that 3,8 € 9U(H) coexist if they have a common
refinement. Notice thatif @ B = RBo@ then@oB < @SB so
@, B coexist. By Theorem 2.2, the converse does not hold. The
next lemma shows that this definition generalizes the definition

of coexistence of effects.

Lemma 4.2. A,B € &(H) coexist if and only if {A,A’], {B,B'}
coexist.

If {A:}, {B;} coexist, then A;, B; coexist for all 7, j. The next
example shows that the converse does not hold. Since A<D
implies Co @ < €o B, it follows that if @, B coexist, then C=Q,

o B coexist. In contrast, if @, B are compatible, then €< (,
€< B need not be compatible.
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Example. Let P,Q € P(H) with PQ # QP and let A = 1 P,

B = 3 Q. Then A,B € §(H) and since A + B < I we have that A,B
coexist. Since B + B = Q € 9(H) and A is not compatible with
B + B, A and B + B do not coexist. We conclude that an effect A
can coexist with two effects B;, B where B; + B> < I and yet A
and B; + B> do not coexist. Letting A = %P, — :}Q as before,
define the measurements @ = {A, A"},

%= |B,B,3I-B,11-B}

The elements of @ and B mutually coexist, but since A does not

coexist with B + B we conclude that @ and @ do not coexist.

Theorem 3.4. If @ € IMYH), B € S(H) coexist, then @ and B are
compatible.
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5. Quantum Markov Chains

A transition effect matrix (TEM) is a (possibly infinite) square
matrix of effects E = [E;;] whose row sums are I, Le. 3> ;Eij; = I
for all i. Thus, each row is a POVM. If E = [E;;], F = [F;] are
TEM's we define E = F by

(E o F)ij = D Eix o Egj
k
The following calculation shows that E o F is again a TEM.
D(EcF);j=) > ExoExj=) Exo) Frj= Ex=1I
J Jj k k J k

A vector state is a column vector A = (A;,Ap,...) where A; is a
positive trace class operator, i = 1,2,...,and > tr(4;) = 1. We

use the notation tr(A) = (tr(A;),tr(Az),...) and denote the set

of vector states by O(H). f E is a TEM and A € T(H), we define
E * A 1o be the column vector E * A = ET o A: that is,

(ExA)i=D (ET)ij0A;= Ejic A;
' J

J
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5. Quantum Markov Chains

A transition effect matrix (TEM) is a (possibly infinite) square
matrix of effects E = [E;;] whose row sums are I, i.e. 3 ; Eij = I
for all i. Thus, each row is a POVM. If E = [E;;], F = [F;;] are
TEM's we define E o F by

(E o F)ij = > Eix o Eg;
k
The following calculation shows that E o F is again a TEM.
D(EoF)ij=2 > ExcoExj=) Exo) Fej= > Ea=1I
j ik k J k

A vector state is a column vector A = (A;,A>,...) where A; is a
positive trace class operator, i = 1,2,...,and > tr(4;) = 1. We
use the notation tr(A) = (tr(A;), r(A>),...) and denote the set
of vector states by O(H). f E is a TEM and A = T(H), we define
E * A to be the column vector E * A = ET o A; that is,

(E* A}L — Z(ET}:_J ’-"Aj = ZE‘” o A_I

J J
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The multiplication E « F of TEMs is a generalization of the
sequental product of measurements. For example, let
@={A,A'}, B={B,B’} be 2-valued measurements. Form
the TEMs

A A 00 B B 0 0]}
Al A 0 g 1o o0 B B

=lo o 1ol F|g o 0 a
(2 U ) THEY 1 1O, 0 O o

We then have
[AoB AcB" A'’cB A’opR’'-
EoF— |A°B AcB" A'aB A'op
= 0 0 I 0
iR 0 0

Thus, E o F contains two copies of the sequential product @ - B
together with two identity measurements. It is straightforward

to generalize this to measurements with more than two values.

Another pessibility is to let

r

A A 00 BB & ¢
S (i I Al ) ) 10" B B
L= & & r gl L= Q 0 J 0 Page 28/4
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the TEMs

A A 0 0] B B" O g
A A" 0 @ o o B B
==la' o r ol T lasalie
L IE 1 T ) TR 1Y) O @
We then have
FAcE AR AfcB AlchS
. AoB AoB' A'cB A'ecB

% = H-a 0 I 0

i @ 0 0 ) /LA

Thus, E = F contains two copies of the sequential product @ - B
together with two identity measurements. It is straightforward
to generalize this to measurements with more than two values.
Another possibility is to let

A A 00 BB @iig
o 1 9@ BN (L
- = D) T ) I B § U | 9 S
00 01 @ o e
Then
AocB AoB'" A'oB Ao B
EoF = 0 0 B B’ Page 29/4
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In general, the product of TEM's o is nonassociative and when we

write E, o - - - ¢ E3 o E; we mean
Eno---o{Ese[E3o (B2 En]}

We associate a TEM E = [E;;] with a quantum Markov chain
and interpret E;; as the effect that a quantum system evolves
(or performs a transition) from site 1 to site j in one time step.
The fact that 3 ; E;; = I shows that if the system is presently

at site 1, then it will evolve to some site j in one time step with
certainty. The probability distribution of the system is given by
a vector state A = (A4, Az,...) where tr(A;) is the probability
the system is at site i. The n-step TEM is given by

EM —FoFo---aoF (n factors)

We interpret E as the effect that the system evolves from
site 1 to site j in n time steps.

This formalism includes classical Markov chains as a special
case. Justlet E = [p;;I] where p;; > 0, 3 ; p;; = 1 for all i. In tBE#s™
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In general, the product of TEM's o is nonassociative and when we

write E,, o - - - o E> o E; we mean
Enc---n{E_lc[EBﬂ{EzﬂEI)]}

We associate a TEM E = [E;;] with a quantum Markov chain
and interpret E;; as the effect that a quantum system evolves
(or performs a transition) from site i to site j in one time step.
The fact that > ; E;; = I shows that if the system is presently

at site i, then it will evolve to some site j in one time step with
certainty. The probability distribution of the system is given by
a vector state A = (A, Az,...) where tr(A;) is the probability
the system is at site i. The n-step TEM is given by

E') =FcEc---oF (n factors)

We interpret E; as the effect that the system evolves from
site i to site j in n time steps.
This formalism includes classical Markov chains as a special

case. Justlet E = [p;;I] where p;; > 0, 3 ; p;; = 1 for all i. In thEs™

—
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In this formalism, there are two ypes of possible dynamics,
the state dynamics and the operator dynamics. For a state
dynamics, the vector state A evolves and the TEM E is considered
fixed. For an operator dynamics, the TEM evolves and the vector
state is considered fixed. This is analogous 1O the Schrodinger
and Heisenberg pictures for quantum dynamics and in this
framework the two types of dynamics are statistically equivalent.
Suppose the initial state vector is A and the evolution is
described by the TEM E. In the state dynamics the system will be

in the state

Ey(A) =E*---*%x[Ex (E* A)] (n E factors)

after n time steps. In the operator dynamics, the system
will be in the state E‘™ x A after n time steps. Because
of nonassociativity these are not identical. For example,
E % (E % A) # E® % A in general. However, they are

statistically equivalent in the sense we now define.
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A TEM is equitable if tr (E™ % A) = tr (En) (A)) for every
neNand A €e0(H).

Lemma 5.2. If E and F are TEM’s of the same size on H, then
w[(EoF) * A] =tr[F % (E % A)] for all A € TU(H).
Theorem 5.3. Any TEM E is equitable.

Proof. We show by induction on n that
tr (EM #A) = tr (Egmy (A))

for every A € V(H). The result clearly holds for n = 1.
Suppose the result holds for n = N. Applying Lemma 5.2
and the induction hypothesis gives
w(E™D x4) =ur [(E-E™) % Al =t [E™ « (E x A)]
=t [Egm(ExA)] =tr [Etns1)(A)]

The result follows by induction. 0O

We now give an example which shows that the two types of
dyvnamics need nat he identiral










A TEM is equitable if tr (E”‘-‘ % .-1) = tr (E(n)(A)) for every

neNand A e0(H).

Lemma 5.2. If E and F are TEM’s of the same size on H, then
tr[(EoF) x A] = tr[F % (E * A)] for all A e O(H).
Theorem 5.3. Any TEM E is equitable.

Proof. We show by induction on n that
T (E™ x A) = tr (Em) (4))

for every A € D(H). The result clearly holds for 7 = 1.
Suppose the result holds for n = N. Applying Lemma 5.2
and the induction hypothesis gives
w(E™D x4) =u [(E-E™) % Al =t [E™ x (E x A)]
=t [Em(ExA)] =tr [Etn+1)(A)]

The result follows by induction. 0O

We now give an example which shows that the two types OfF
dvnamics need nat he idantiral




Example. Let dimH =2, A,B € &§(H), S = (0,11).

sl A r_|A B
= = IR A

1| AeB+BaocB'
E#fE#.S']=§[ ]

A"cB+B oB

2

BoA+B'cB
BoA"+B'cB

WeseethatE{E}#S=E=+=(E#S}ifandnnlyianA=AaB;th
is, BA = AB.

Example. This example is a simple quantum random walk with
absorbing boundaries. In this example, P € (H) and the sites
labeled by —2,-1,0,1, 2.

I 0 0O 0 0O I 0O 0 0 o
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AcB+BoH
E*{E*Shé[awa;swﬂ']

[
[ —
o by
R — |

1 [ BuA+B’nB]

EL‘E! S = —
& 2| BoA"+B B

1#’eseethatE‘3’$S=E#(E#S}ifandﬂnlyifBuA=AuE;that
is, BA = AB.

Example. This example is a simple quantum random walk with
absorbing boundaries. In this example, P € P(H ) and the sites are
labeled by —2,-1,0,1, 2.
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I 0@ e o
B 0o g P
EG) — P g0 0 P E(3J=_E{-E-}=E[5}=....
P o0 ogr
e @ o @ £

Suppose the initial vector state is A = (0,0, P, 0,0). Then

tr(Ex A) = (U, (P'x,x),0, (Px, x) ,0)
w(E? xA) = ((P'x,x)0,0,0, (Px. x) )
w(E? % 4) =t (E® *A) =t (E® x4) = ..
The dynamics shows that if the system is initially at the site 0,
it moves directly to the right or to the left and is absorbed at

the boundary sites =2 in two time steps. There is no classical
random walk that would produce this type of dynamics.
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Example. Let dimH =2, A, B &(H), S = (0,%1).

Ja a -
E_[B B'J' =

1
A B 0| | 3B
E¢S=[A, B']c[éf}_[iﬂ’:'

I
[TE—
o
o oy
|

E e (E S}—I AoB+B-=B
= A'oB+B oB
1| B=A+B'oB
2) , — —
B T Z[BuA‘+B’uB’]

h"eseethatEm#S=E*{E$S)ifandﬂnlyifBaA=AuB;that
is, BA = AB.

Example. This example is a simple quantum random walk with
absorbing boundaries. In this example, P = P(H) and the sites are
labeled by —2, -1,0,1, 2.
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