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Introduction

Introduction

Main conceptual problem for the quantization of gravity:

Spacetime should be observable in the sense of quantum physics,
*  but

spacetime in quantum field theory is merely a tool for the
parametrization of observables (local fields) (a priori structure)

Analogous problem in quantum mechanics:
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Introduction

Introduction

Main conceptual problem for the quantization of gravity:

Spacetime should be observable in the sense of quantum physics,
but

spacetime in quantum field theory is merely a tool for the
parametrization of observables (local fields) (a priori structure)

Analogous problem in quantum mechanics:

Time as a quantum mechanical observable
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Time of occurence observable of a given event

Time of occurence observable of a given event

Time of an event in classical mechanics:
F function on phase space representing the event.
Times of occurence

{t < R.F(q(t). p(t)) = 0}
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Time of occurence observable of a given event

Time of occurence observable of a given event

Time of an event in classical mechanics:
F function on phase space representing the event.
Times of occurence

{t < R.F(q(t). p(t)) = 0}

Example: 1d free motion, with the event “passing through the
origin”

p
[) =X+ —L
x{t) = x =

I.e. associated classical time observable

JF= —mi,
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Time of occurence observable of a given event

Quantum mechanics: Aharanov’s time operator
m
T=—{(p"
> (P

Problem: T is not selfadjoint.

x+xp~ 1)
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Time of occurence observable of a given event

Quantum mechanics: Aharanov’s time operator
m, -1, ..—1
F=—4p "x+0p7)

Problem: T is not selfadjoint.
Reason: On momentum space T is given by

mi , d d

r=—4{n —+—8
2(p dp+dp )

with domain {¢® € D(R).0 € suppao}.
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Time of occurence observable of a given event

Quantum mechanics: Aharanov’s time operator
m, -1 -1
F=—oAp "x+p ]

Problem: T is not selfadjoint.
Reason: On momentum space T is given by

mi d g
T=—(p"o=+—pP")
2 dp dp

with domain {© € D(R).0 € suppo}.
The adjoint of T has eigenfunctions

(p) = |p|~2e!Pl(a©(p) + bO(—p))

with eigenvalues = S pt. v is normalizable iff Ry < 0, hence T**
is maximally symmetric with deficiency indices (2.0), and T has
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Time of occurence observable of a given event

Theorem: There is no selfadjoint time operator if the spectrum of
the Hamiltonian is not the full real axis.
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Time of occurence observable of a given event

Theorem: There is no selfadjoint time operator if the spectrum of
the Hamiltonian is not the full real axis.

Proof:

Let P(/) be a spectral projection of T for a finite interval /. Then
P(1)eHtP(1) = 0 for large |t|. The Fouriertransform is analytic
and vanishes outside of the spectrum of H. Thus P(/) = 0 or
spH = R.
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Time of occurence observable of a given event

Theorem: There is no selfadjoint time operator if the spectrum of
the Hamiltonian is not the full real axis.

Proof:

Let P(/) be a spectral projection of T for a finite interval /. Then
P(1Ye™tP(I) = 0 for large |t|. The Fouriertransform is analytic
and vanishes outside of the spectrum of H. Thus P(/) = 0 or
spH = R.

Therefore: Time observables must be POVM's with
supp{t — P(/)P(/ + t)} noncompact.
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Time of occurence observable of a given event

Theorem: There is no selfadjoint time operator if the spectrum of
the Hamiltonian is not the full real axis.

Proof:
Let P(/) be a spectral projection of T for a finite interval /. Then
P(1)e™tP(1) = 0 for large |t|. The Fouriertransform is analytic

and vanishes outside of the spectrum of H. Thus P(/) =0 or
spH = R.

Therefore: Time observables must be POVM's with
supp{t — P(I)P(/ + t)} noncompact.

Examples: " Time of arrival observables” (Busch et al and
references therein)
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Time of occurence observable of a given event

Theorem: There is no selfadjoint time operator if the spectrum of
the Hamiltonian is not the full real axis.

Proof:
Let P(/) be a spectral projection of T for a finite interval /. Then
P(1) et P(1) = 0 for large |t|. The Fouriertransform is analytic

and vanishes outside of the spectrum of H. Thus P(/) = 0 or
spH = R.

Therefore: Time observables must be POVM's with
supp{t — P(I/)P(/ + t)} noncompact.

Examples: " Time of arrival observables” (Busch et al and
references therein)
New construction: " Time of occurence” (Brunetti-Fredenhagen
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Time of occurence observable of a given event

System described by a Hilbert space H and a selfadjoint
Hamiltonian H
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Time of occurence observable of a given event

System described by a Hilbert space 'H and a selfadjoint
Hamiltonian H

A > 0 quantum observable describing a given event
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Time of occurence observable of a given event

System described by a Hilbert space 'H and a selfadjoint
Hamiltonian H

A > 0 quantum observable describing a given event

B(l) = / dte™t Ae=Ht
i
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Time of occurence observable of a given event

System described by a Hilbert space 'H and a selfadjoint
Hamiltonian H

A > 0 quantum observable describing a given event

B(l) = / dte™t Ae=Ht
J |

(measures the time, the event lasts, within the interval /)

Pirsa: 07060045 Page 27/106




Time of occurence observable of a given event

System described by a Hilbert space H and a selfadjoint
Hamiltonian H

A > 0 quantum observable describing a given event

B(l) = / dtet Ae—Ht
g4I

(measures the time, the event lasts, within the interval /)

Limit /| — R?

C =inf((B(/)+1)"1

f
ICR
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Time of occurence observable of a given event

System described by a Hilbert space H and a selfadjoint
Hamiltonian H

A > 0 quantum observable describing a given event

B(l) = / de " Ao
J |

(measures the time, the event lasts, within the interval /)
Limit /| — R?

C :;i%((s(z)— 1)1

8<.C<

Pirsa: 07060045 Page 29/106




Time of occurence observable of a given event

Decomposition of H:

Pirsa: 07060045 Page 30/106




Time of occurence observable of a given event

Decomposition of H:
H=Hod Hf & Hx

Ho eigenspace of C with eigenvalue 1 (i.e. B(R) = 0)

(event does never happen)
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Time of occurence observable of a given event

Decomposition of H:
H="Hod Hf € Hx

Ho eigenspace of C with eigenvalue 1 (i.e. B(R) = 0)
(event does never happen)
H . eigenspace of C with eigenvalue 0 (i.e. B(R) = )

(event lasts infinitely long)
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Time of occurence observable of a given event

Decomposition of H:
H="Hod Hf € Hx

Ho eigenspace of C with eigenvalue 1 (i.e. B(R) = 0)
(event does never happen)

H . eigenspace of C with eigenvalue 0 (i.e. B(R) = x)
(event lasts infinitely long)

On H¢

B(R) := C~! — 1 exists as a positive selfadjoint operator with the
densely defined inverse C(1 — C)™!
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Time of occurence observable of a given event

Decomposition of H:
H=Hod Hf & Hx

Ho eigenspace of C with eigenvalue 1 (i.e. B(R) = 0)
(event does never happen)

H . eigenspace of C with eigenvalue 0 (i.e. B(R) = x)
(event lasts infinitely long)

On H¢

B(R) := C~! — 1 exists as a positive selfadjoint operator with the
densely defined inverse C(1 — C)™!

irsa: 0706001

‘nterpretation: B(IR) measures the duration of the event =




Time of occurence observable of a given event

Construction of a positive operator valued measure by operator
normalization:
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Time of occurence observable of a given event

Construction of a positive operator valued measure by operator
normalization:

Associate to every interval / of the real line an operator P(/) with

0< P()<1
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Time of occurence observable of a given event

Construction of a positive operator valued measure by operator
normalization:

Associate to every interval / of the real line an operator P(/) with

0< P()<1

The expectation value of P(/) is interpreted as the probability
that the measured value lies in the interval |.
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Time of occurence observable of a given event

Construction of a positive operator valued measure by operator
normalization:

Associate to every interval / of the real line an operator P(/) with

The expectation value of P(/) is interpreted as the probability
that the measured value lies in the interval |.
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Time of occurence observable of a given event

H = L?(spec(H). K):
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Time of occurence observable of a given event

H = L[?(spec(H). K):
Explicit form of the density P(t) of P
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Time of occurence observable of a given event

H = L?(spec(H). K):
Explicit form of the density P(t) of F

in terms of the integral kernel a of A,
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Time of occurence observable of a given event

H = L[?(spec(H). K):
Explicit form of the density P(t) of P
in terms of the integral kernel a of A,

P(t)(E.E') = (2n)'a(E.E)"2a(E.E')a(E', E')~1¢t(E-F)
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Time of occurence observable of a given event

H = L?(spec(H). K):
Explicit form of the density P(t) of F

in terms of the integral kernel a of A,

o =

oit(E—E")

I

P(t)(E.E") = (2r)ta(E,E)"2a(E. E")a(E'. E')"

“Time operator:”

Page 43/106
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Time of occurence observable of a given event

H = [?(spec(H). K):
Explicit form of the density P(t) of P
in terms of the integral kernel a of A,

P(t)(E,E') = (27)~Ya(E, E)~3a(E.E")a(E’, E')" 2 ¢(E-E')

“Time operator:”
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Time of occurence observable of a given event

H = L?(spec(H).K):
Explicit form of the density P(t) of P
in terms of the integral kernel a of A,

P(t)(E.E') = (2x)1a(E.E)~2a(E.E")a(E’. E') 2 (E-E")

“Time operator:”

1 d

= /‘dr tP(t) = ~JE + ga(E)

ga function on spec(H) with values in the hermitean operators on
the multiplicity space X
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Time of occurence observable of a given event

H = L?(spec(H). K):
Explicit form of the density P(t) of P
in terms of the integral kernel a of A,

P(t)(E,E") = (2r)~Ya(E, E)~2a(E, E")a(E’, E')~2*(E-F')

“Time operator:”

T — / de tP(t) = 1L 1 ga(E)

i dE
ga function on spec(H) with values in the hermitean operators on
the multiplicity space X
_r derivative operator with Dirichlet boundary conditions on
Jspec(H).
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Time of occurence observable of a given event

Example: Particle moving freely in 1 dimension.
Event: Particle stays in a neighbourhood of the origin.
Event represented by the projection

oty ={ %) < 2
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Time of occurence observable of a given event

Example: Particle moving freely in 1 dimension.
Event: Particle stays in a neighbourhood of the origin.

Event represented by the projection

d(x) . |x| <a/2
A} = { 0 else (1)

Time, the particle spends inside the interval [—a/2, a/2]:
ma sin pa

Ba — _(1 oy
P pa

M)

with the parity operator [1.
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Time of occurence observable of a given event

Example: Particle moving freely in 1 dimension.
Event: Particle stays in a neighbourhood of the origin.

Event represented by the projection

d(x) . |x| <a/2
Aaliex)= { 0 else (1)

Time, the particle spends inside the interval [—a/2, a/2]:
ma sin pa

Bg S _(1 = p

p| pa

with the parity operator [1.
POVM in the limit a — O:

)

-

_ . u..h_ F
ﬂelt 2m : pq ":, O

P(f}(p-t?){ 2rm=  °

0 . else

Page 49/106
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Time of occurence observable of a given event

Example: Particle moving freely in 1 dimension.
Event: Particle stays in a neighbourhood of the origin.

Event represented by the projection

) o(x) . x| £ a/2
. )= { 0 else (1)
Time, the particle spends inside the interval [—a/2, a/2]:
. E(l o sin pa
P pa

with the parity operator [1.
POVM in the limit 3 — 0:

B,

)

~

_ . E—L..L_ 3
:&ﬁelt 2m : pq '::, O

P(f)(p.q){ 2rm*= °

0 . else

Page 53/106
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" First moment yields Aharanov's time operator.
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Event localization on Minkowski space

x — U(x) unitary strongly continuous representation of the
translation group of Minkowski space,
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Event localization on Minkowski space

Event localization on Minkowski space

x — U(x) unitary strongly continuous representation of the
translation group of Minkowski space,
A > 0 "event”

R . :
— analogous decomposition of the Hilbert space
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Event localization on Minkowski space

Event localization on Minkowski space

x — U(x) unitary strongly continuous representation of the
translation group of Minkowski space,
A > 0 "event”

— analogous decomposition of the Hilbert space

H="Hod Hf & Hx

Construction of a positive operator valued measure on Minkowski
space
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Event localization on Minkowski space

Event localization on Minkowski space

x — U(x) unitary strongly continuous representation of the
translation group of Minkowski space,
A > 0 "event”

— analogous decomposition of the Hilbert space

Construction of a positive operator valued measure on Minkowski
space

P(G) = [Sd‘*x P(x)

with values in the positive contractions on Hy.
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m

U(x)AU(—x) = a*(x)%a(x)?
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m
U(x)AU(—x) = a*(x)%a(x)?

a.a" annihilation and creation operators
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m
U(x)AU(—x) = a*(x)?*a(x)?

a.a" annihilation and creation operators

Interpretation: 2 particles collide at the spacetime point x
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m
U(x)AU(—x) = a*(x)?*a(x)?

a.a" annihilation and creation operators
Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: Hf is the space of s waves
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m
U(x)AU(—x) = a*(x)?a(x)?

a.a" annihilation and creation operators
Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: Hy is the space of s waves
(collisions occur only if the relative angular momentum vanishes)
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m
U(x)AU(—x) = a*(x)%a(x)?

a.a" annihilation and creation operators
Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: Hf is the space of s waves
(collisions occur only if the relative angular momentum vanishes)

He = 12(H,,)

(as representations of the translation group)
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Event localization on Minkowski space

Example: Free scalar field on Fock space with mass m
U(x)AU(—x) = a*(x)%a(x)*

a.a" annihilation and creation operators
Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: Hy is the space of s waves
(collisions occur only if the relative angular momentum vanishes)

Hy =~ LZ(H."' )

>2m
(as representations of the translation group)
H, ={pecM", p? > 4m?. pg > 0} 2 particle momentum
spectrum
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Event localization on Minkowski space

Density P(x) of the corresponding positive operator valued measure
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Event localization on Minkowski space

Density P(x) of the corresponding positive operator valued measure

P(x)®(p) = (2r)~* /H+ d*k e (P=F)x ¢ (k)
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Event localization on Minkowski space

Density P(x) of the corresponding positive operator valued measure

P(x)®(p) = (2:)—4/ d*k e P=K)x ¢ (k)
: H_:Jm
“Coordinate operators” :
1 0
i dp,

AfE

Pl
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Event localization on Minkowski space

Density P(x) of the corresponding positive operator valued measure
P(x)®(p) = (2:)—4/ d*k e (P=K)x (k)
i H'_:Jm

“Coordinate operators” :

1 0
i Jpy

o

¥ =

(with Dirichlet boundary conditions on the boundary of H;L‘zm)
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Event localization on Minkowski space

Density P(x) of the corresponding positive operator valued measure

P(x)®(p) = (2r)~* /H+ d*k e (P=K)x ¢ (k)

“Coordinate operators” :

1 0
i Jdpy

X

—

(with Dirichlet boundary conditions on the boundary of Hi‘zm)

( “Toplitz quantization” of Minkowski space)
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Event localization on NC Minkowsk: space

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

[q;.l‘ qL’] —- ,‘H,{.{L*
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Event localization on NC Minkowsk: space

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

[q;t‘ qﬂ] — .‘;H’HU

# constant symplectic form on Minkowski space

“Event” a*(q)%a(q)?
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Event localization on NC Minkowsk: space

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates
1. q"] = iO*
# constant symplectic form on Minkowski space
“Event” a*(q)?a(q)?
2(q) == [ du(k)a(k)e™
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Event localization on NC Minkowsk: space

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates
. q"] = 6"
# constant symplectic form on Minkowski space
“Event” a*(q)%a(q)*
2(q) == [ du(k)a(k)e™a

a( k) annihilation operator for a particle with momentum k.
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Event localization on NC Minkowsk: space

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates
T i ! L
# constant symplectic form on Minkowski space
“Event” a*(q)%a(q)?
a(q) = [ dpu(k)a(k)e*?
a( k) annihilation operator for a particle with momentum k.

Weyl algebra: & = W(f) = [ d*k f(k)e™ @

irsa: 07060045 Page 75/106




Event localization on NC Minkowsk: space

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates
. q"] = iG*
# constant symplectic form on Minkowski space
“Event” a*(q)?a(q)?
a(q) = [ du(K)a(k)eka
a( k) annihilation operator for a particle with momentum k.

Weyl algebra: & = W(f) = [ d*k f(k)e™*d
with testfunctions f and Weyl operators oikq iR the Wi
relations
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Event localization on NC Minkowsk: space

"Measures” on a noncommutative space correspond to positive
functionals on the algebra.
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Event localization on NC Minkowsk: space

"Measures” on a noncommutative space correspond to positive
functionals on the algebra.

S C (E€})+ set of positive functionals w such that 1, (k) = w(e'™9)
is a Schwartz function.
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Event localization on NC Minkowsk: space

"Measures” on a noncommutative space correspond to positive
functionals on the algebra.

S C (£})+ set of positive functionals w such that 1,(k) = w(e™9)
is a Schwartz function.

B(w) = [ dulha)dy(ke)dp(ks)d(ha)

3*(1(1)3* ( kz)a( kg )3( k4)w,(E—f’que—fk:qeikgqefku;f)
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Event localization on NC Minkowsk: space

"Measures” on a noncommutative space correspond to positive
functionals on the algebra.

S C (£})+ set of positive functionals w such that 1, (k) = w(e™9)
is a Schwartz function.

B(w) = [ dulha)di(ke)dp(ks)d(ha)

3*(1‘(1)3* ( kz)a( k3 )a( k4),i.,-'(E_';que_hfk:qejka‘qeth)

Restriction to the 2 particle subspace:
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Event localization on NC Minkowsk: space

"Measures” on a noncommutative space correspond to positive
functionals on the algebra.

S C (&) )+ set of positive functionals w such that v, (k) =w (e”“q)
is a Schwartz function.

B(w) = / (ke )dja (ko) dye (ka)dja(ka)

a*(kl)a* ( kz)a( k3 )a( k4),;.,-'(E_f-que*fk:qejkgqefk‘lq)

Restriction to the 2 particle subspace:
= Hy = [3(H,)
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Event localization on NC Minkowsk: space

"Measures” on a noncommutative space correspond to positive
functionals on the algebra.

=

S C (£})+ set of positive functionals w such that 1, (k) = w(e™9)
is a Schwartz function.

B(w) = / dpe(ky)dpe (k) dpe(ks)dpa(ka)

3*(1‘(1)3* ( kz)a( k3 )3( k4),‘.,-'(E_';que_hfk:qetheikdq)

Restriction to the 2 particle subspace:

— H” = LE(HiEm)
Integral kernel of B(w):
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Event localization on NC Minkowsk: space

"Measures” on a noncommutative space correspond to positive
functionals on the algebra.

S C (£})+ set of positive functionals w such that 1/,(k) = w(e™9)
is a Schwartz function.

B(w) = [ dulha)dye(ke)dp(ks)du(ka)

3*(1‘(1)3* ( kz)a( k3 )3( k4)#,(E—f’quE——fk:qefkgqeth)

Restriction to the 2 particle subspace:
= Hf = LE(HTEITT)

Integral kernel of B(w):

bo(k. p) = c(k)c(p)w(e*eP9)
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Event localization on NC Minkowsk: space

Trace functional on the Weyl algebra:
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Event localization on NC Minkowsk: space

Trace functional on the Weyl algebra:

tr(/d“k}f(k)e“‘q) — £(0)
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Event localization on NC Minkowsk: space

Trace functional on the Weyl algebra:
tr( / d*k f(k)e™ @) = £(0)

induces a map [ — wr from positive operators to positive
functionals by
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Event localization on NC Minkowsk: space

Trace functional on the Weyl algebra:
tr(/d“k?(k)ef“q) — 7(0)

induces a map [/ — wr from positive operators to positive
functionals by

wT(A) = tr( TA)
Limit T — 1:
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Event localization on NC Minkowsk: space

Trace functional on the Weyl algebra:
tr(/ d*k f(k)e™ @) = £(0)

induces a map [/ — wr from positive operators to positive
functionals by

T (A) = tr( TA)

Limit T — 1:
C= inf (B(w 1)1
oé'?rgl( (wr) + 1)
B(tr)=C ' -1

Construction of a completely positive unit preserving map:
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Trace functional on the Weyl algebra:

tr(/d‘*k?(k)e“‘q) — 7(0)

induces a map [ — wr from positive operators to positive
functionals by

T (A) = tr( TA)

Limit T — 1:
C= inf (B(w 1)1
Uii!l}il( (wr) +1)
B(tr)=C 1 -1

Construction of a completely positive unit preserving map:

P(T) = B(tr)"2B(wr)B(tr) "3
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For T = W(f) the integral kernel of P(T) is
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“‘noncommutative quantum coordinates’
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For T = W(f) the integral kernel of P(T) is
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The noncommuting coordinates g/ are mapped onto the
“‘noncommutative quantum coordinates’
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Event localization on NC Minkowsk: space

For T = W(f) the integral kernel of P(T) is
P(T)(k.p) = ez F(k — p)

The noncommuting coordinates g/ are mapped onto the
“noncommutative quantum coordinates’
1 0O 1

7 = P(¢¥) = T + 20,
i dpy 2

(again with Dirichlet boundary conditions)
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Event localization on NC Minkowsk: space

For T = W(f) the integral kernel of P(T) is
P(T)(k.p) = ez F(k — p)

The noncommuting coordinates g/ are mapped onto the
“noncommutative quantum coordinates’

1
F=Rq')=——+-0p

(again with Dirichlet boundary conditions)

The operators g satisfy the same commutation relations as the
coordinates g on a dense domain, but are not selfadjoint and
cannot be exponentiated to yield the Weyl relations .
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measures) of time of occurence and of spacetime localization
of events can be given.
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@ Observables (in the sense of positive operator valued
measures) of time of occurence and of spacetime localization
of events can be given.

@ They typically yield noncommutative spaces. For instance in
the case sp(H) = R one obtains the Toplitz quantization of
R as the quantized time axis. This implies new uncertainty

relations for time measurements alone,
AT > & with d = 1.376.
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e Starting from a noncommutative spacetime one obtains a
deformation of the given spacetime by a completely positive
map.
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@ Observables (in the sense of positive operator valued

measures) of time of occurence and of spacetime localization
of events can be given.

They typically yield noncommutative spaces. For instance in
the case sp(H) = R one obtains the Toplitz quantization of
R as the quantized time axis. This implies new uncertainty
relations for time measurements alone,

AT > & with d = 1.376.

Starting from a noncommutative spacetime one obtains a
deformation of the given spacetime by a completely positive
map.

In analogy to renormalization theory one may interpret
parametric spacetime as bare spacetime and the observable
spacetime as the physical spacetime.
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