Title: Time of occurence and spacetime localization of events as observables in quantum theory

Date: Jun 06, 2007 11:30 AM

URL: http://pirsa.org/07060045

Abstract:

Pirsa: 07060045

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Time of occurence and spacetime localization of events as observables in quantum physics

Klaus Fredenhagen

II. Institut für Theoretische Physik, Hamburg

Pirsa: 07060045 Page 2/106

No Signal VGA-1

Pirsa: 07060045 Page 3/106

No Signal VGA-1

Pirsa: 07060045 Page 4/10

No Signal VGA-1

Pirsa: 07060045 Page 5/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Time of occurence and spacetime localization of events as observables in quantum physics

Klaus Fredenhagen

II. Institut für Theoretische Physik, Hamburg

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Time of occurence and spacetime localization of events as observables in quantum physics

Klaus Fredenhagen

II. Institut für Theoretische Physik, Hamburg

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

- Introduction
- Time of occurence observable of a given event
 - 3 Event localization on Minkowski space
 - Event localization on NC Minkowski space
 - 6 Conclusions and Outlook

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Introduction

Main conceptual problem for the quantization of gravity:

Pirsa: 07060045

· 마 · 네 · 네 프 · 네 프 · 이 및 전

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Introduction

Main conceptual problem for the quantization of gravity:

Spacetime should be observable in the sense of quantum physics, but

Pirsa: 07060045 Page 10/106

10 10 15 15 E 2 900

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Introduction

Main conceptual problem for the quantization of gravity:

Spacetime should be observable in the sense of quantum physics, but

spacetime in quantum field theory is merely a tool for the parametrization of observables (local fields)

Page 11/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Introduction

Main conceptual problem for the quantization of gravity:

Spacetime should be observable in the sense of quantum physics, but

spacetime in quantum field theory is merely a tool for the parametrization of observables (local fields) (a priori structure)

Analogous problem in quantum mechanics:

Page 12/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Introduction

Main conceptual problem for the quantization of gravity:

Spacetime should be observable in the sense of quantum physics, but

spacetime in quantum field theory is merely a tool for the parametrization of observables (local fields) (a priori structure)

Analogous problem in quantum mechanics:

Time as a quantum mechanical observable

Page 13/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Time of occurence observable of a given event

Time of an event in classical mechanics:

F function on phase space representing the event.

Times of occurence

$$\{t \in \mathbb{R}, F(q(t), p(t)) = 0\}$$

Tage 14, 100

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Time of occurence observable of a given event

Time of an event in classical mechanics:

F function on phase space representing the event.

Times of occurence

$$\{t \in \mathbb{R}, F(q(t), p(t)) = 0\}$$

Example: 1d free motion, with the event "passing through the origin"

$$x(t) = x + \frac{p}{m}t$$

i.e. associated classical time observable

$$T=-m\frac{x}{p}$$
.

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Quantum mechanics: Aharanov's time operator

$$T = -\frac{m}{2}(p^{-1}x + xp^{-1})$$

Problem: T is not selfadjoint.

・ロ・・ボ・・ミ・・ミ・ き りへの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Quantum mechanics: Aharanov's time operator

$$T = -\frac{m}{2}(p^{-1}x + xp^{-1})$$

Problem: T is not selfadjoint.

Reason: On momentum space T is given by

$$T = \frac{mi}{2} (p^{-1} \frac{d}{dp} + \frac{d}{dp} p^{-1})$$

with domain $\{\phi \in \mathcal{D}(\mathbb{R}), 0 \not\in \operatorname{supp} \phi\}$.

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Quantum mechanics: Aharanov's time operator

$$T = -\frac{m}{2}(p^{-1}x + xp^{-1})$$

Problem: T is not selfadjoint.

Reason: On momentum space T is given by

$$T = \frac{mi}{2} (p^{-1} \frac{d}{dp} + \frac{d}{dp} p^{-1})$$

with domain $\{\phi \in \mathcal{D}(\mathbb{R}), 0 \notin \text{supp}\phi\}$. The adjoint of T has eigenfunctions

$$\psi(p) = |p|^{-\frac{1}{2}} e^{\mu|p|} (a\Theta(p) + b\Theta(-p))$$

with eigenvalues $\lambda=\frac{im}{2}\mu$. ψ is normalizable iff $\Re\mu<0$, hence T^{**} is maximally symmetric with deficiency indices (2,0), and T has

no selfadjoint extension.

Page 18/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Theorem: There is no selfadjoint time operator if the spectrum of the Hamiltonian is not the full real axis.

Pirsa: 07060045

10 10 10 10 10 E 10 E 10 00

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Theorem: There is no selfadjoint time operator if the spectrum of the Hamiltonian is not the full real axis.

Proof:

Let P(I) be a spectral projection of T for a finite interval I. Then $P(I)e^{iHt}P(I)=0$ for large |t|. The Fouriertransform is analytic and vanishes outside of the spectrum of H. Thus P(I)=0 or $\operatorname{sp} H=\mathbb{R}$.

Page 20/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Theorem: There is no selfadjoint time operator if the spectrum of the Hamiltonian is not the full real axis.

Proof:

Let P(I) be a spectral projection of T for a finite interval I. Then $P(I)e^{iHt}P(I)=0$ for large |t|. The Fouriertransform is analytic and vanishes outside of the spectrum of H. Thus P(I)=0 or $\operatorname{sp} H=\mathbb{R}$.

Therefore: Time observables must be POVM's with $supp\{t \mapsto P(I)P(I+t)\}$ noncompact.

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Theorem: There is no selfadjoint time operator if the spectrum of the Hamiltonian is not the full real axis.

Proof:

Let P(I) be a spectral projection of T for a finite interval I. Then $P(I)e^{iHt}P(I)=0$ for large |t|. The Fouriertransform is analytic and vanishes outside of the spectrum of H. Thus P(I)=0 or $\operatorname{sp} H=\mathbb{R}$.

Therefore: Time observables must be POVM's with $supp\{t \mapsto P(I)P(I+t)\}$ noncompact.

Examples: "Time of arrival observables" (Busch et al and references therein)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Theorem: There is no selfadjoint time operator if the spectrum of the Hamiltonian is not the full real axis.

Proof:

Let P(I) be a spectral projection of T for a finite interval I. Then $P(I)e^{iHt}P(I)=0$ for large |t|. The Fouriertransform is analytic and vanishes outside of the spectrum of H. Thus P(I)=0 or $\operatorname{sp} H=\mathbb{R}$.

Therefore: Time observables must be POVM's with $supp\{t \mapsto P(I)P(I+t)\}$ noncompact.

Examples: "Time of arrival observables" (Busch et al and references therein)

New construction: "Time of occurence" (Brunetti-Fredenhagen 2002):

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

System described by a Hilbert space ${\cal H}$ and a selfadjoint Hamiltonian ${\cal H}$

Pirsa: 07060045 Page 24/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

System described by a Hilbert space ${\cal H}$ and a selfadjoint Hamiltonian ${\cal H}$

A > 0 quantum observable describing a given event

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

System described by a Hilbert space ${\cal H}$ and a selfadjoint Hamiltonian ${\cal H}$

A > 0 quantum observable describing a given event

$$B(I) = \int_{I} dt e^{iHt} A e^{-iHt}$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

System described by a Hilbert space ${\cal H}$ and a selfadjoint Hamiltonian ${\cal H}$

A > 0 quantum observable describing a given event

$$B(I) = \int_{I} dt e^{iHt} A e^{-iHt}$$

(measures the time, the event lasts, within the interval I)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

System described by a Hilbert space ${\cal H}$ and a selfadjoint Hamiltonian ${\cal H}$

A > 0 quantum observable describing a given event

$$B(I) = \int_{I} dt e^{iHt} A e^{-iHt}$$

(measures the time, the event lasts, within the interval I)

Limit
$$I \to \mathbb{R}$$
?

$$C = \inf_{I \subset \mathbb{R}} ((B(I) + 1)^{-1})$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

System described by a Hilbert space ${\cal H}$ and a selfadjoint Hamiltonian ${\cal H}$

A > 0 quantum observable describing a given event

$$B(I) = \int_{I} dt e^{iHt} A e^{-iHt}$$

(measures the time, the event lasts, within the interval I)

Limit
$$I \to \mathbb{R}$$
?

$$C = \inf_{I \subset \mathbb{R}} ((B(I) + 1)^{-1})$$

$$0 \le C \le 1$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Decomposition of \mathcal{H} :

Pirsa: 07060045

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Decomposition of \mathcal{H} :

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_f \oplus \mathcal{H}_{\infty}$$

 \mathcal{H}_0 eigenspace of C with eigenvalue 1 (i.e. $B(\mathbb{R})=0$) (event does never happen)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Decomposition of \mathcal{H} :

$$\mathcal{H}=\mathcal{H}_0\oplus\mathcal{H}_f\oplus\mathcal{H}_\infty$$

 \mathcal{H}_0 eigenspace of C with eigenvalue 1 (i.e. $B(\mathbb{R})=0$)

(event does never happen)

 \mathcal{H}_{∞} eigenspace of C with eigenvalue 0 (i.e. $B(\mathbb{R}) = \infty$)

(event lasts infinitely long)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Decomposition of \mathcal{H} :

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_f \oplus \mathcal{H}_\infty$$

 \mathcal{H}_0 eigenspace of C with eigenvalue 1 (i.e. $B(\mathbb{R})=0$)

(event does never happen)

 \mathcal{H}_{∞} eigenspace of C with eigenvalue 0 (i.e. $B(\mathbb{R})=\infty$)

(event lasts infinitely long)

On \mathcal{H}_f

 $B(\mathbb{R}) := C^{-1} - 1$ exists as a positive selfadjoint operator with the densely defined inverse $C(1-C)^{-1}$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Decomposition of \mathcal{H} :

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_f \oplus \mathcal{H}_\infty$$

 \mathcal{H}_0 eigenspace of C with eigenvalue 1 (i.e. $B(\mathbb{R})=0$)

(event does never happen)

 \mathcal{H}_{∞} eigenspace of C with eigenvalue 0 (i.e. $B(\mathbb{R})=\infty$)

(event lasts infinitely long)

On \mathcal{H}_f

 $B(\mathbb{R}) := C^{-1} - 1$ exists as a positive selfadjoint operator with the densely defined inverse $C(1-C)^{-1}$

Pirsa: 070600 15 Interpretation: $B(\mathbb{R})$ measures the duration of the event

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Construction of a positive operator valued measure by operator normalization:

Pirsa: 07060045 Page 35/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Construction of a positive operator valued measure by operator normalization:

Associate to every interval I of the real line an operator P(I) with

$$0 \leq P(I) \leq 1$$

Page 36/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Construction of a positive operator valued measure by operator normalization:

Associate to every interval I of the real line an operator P(I) with

$$0 \leq P(I) \leq 1$$

The expectation value of P(I) is interpreted as the probability that the measured value lies in the interval I.

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Construction of a positive operator valued measure by operator normalization:

Associate to every interval I of the real line an operator P(I) with

$$0 \leq P(I) \leq 1$$

The expectation value of P(I) is interpreted as the probability that the measured value lies in the interval I.

$$P(I) = B(\mathbb{R})^{-\frac{1}{2}}B(I)B(\mathbb{R})^{-\frac{1}{2}}$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$$
:

Pirsa: 07060045 Page 39/106

・ロ・・即・・ミ・・き・ 産 めのの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$$
:

Explicit form of the density P(t) of P

・ロ・・御・・さ・・き・ を めのの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$$
:

Explicit form of the density P(t) of P in terms of the integral kernel a of A,

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$:

Explicit form of the density P(t) of P in terms of the integral kernel a of A,

$$P(t)(E, E') = (2\pi)^{-1} a(E, E)^{-\frac{1}{2}} a(E, E') a(E', E')^{-\frac{1}{2}} e^{it(E-E')}$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$:

Explicit form of the density P(t) of P in terms of the integral kernel a of A,

$$P(t)(E, E') = (2\pi)^{-1}a(E, E)^{-\frac{1}{2}}a(E, E')a(E', E')^{-\frac{1}{2}}e^{it(E-E')}$$

"Time operator:"

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$:

Explicit form of the density P(t) of P in terms of the integral kernel a of A,

$$P(t)(E, E') = (2\pi)^{-1} a(E, E)^{-\frac{1}{2}} a(E, E') a(E', E')^{-\frac{1}{2}} e^{it(E-E')}$$

"Time operator:"

$$T = \int dt \ tP(t) = \frac{1}{i} \frac{d}{dE} + g_A(E)$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$:

Explicit form of the density P(t) of P in terms of the integral kernel a of A,

$$P(t)(E, E') = (2\pi)^{-1} a(E, E)^{-\frac{1}{2}} a(E, E') a(E', E')^{-\frac{1}{2}} e^{it(E-E')}$$

"Time operator:"

$$T = \int dt \ tP(t) = \frac{1}{i} \frac{d}{dE} + g_A(E)$$

 g_A function on $\operatorname{spec}(H)$ with values in the hermitean operators on the multiplicity space K

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

$\mathcal{H} = L^2(\operatorname{spec}(H), \mathcal{K})$:

Explicit form of the density P(t) of P in terms of the integral kernel a of A,

$$P(t)(E, E') = (2\pi)^{-1} a(E, E)^{-\frac{1}{2}} a(E, E') a(E', E')^{-\frac{1}{2}} e^{it(E-E')}$$

"Time operator:"

$$T = \int dt \ tP(t) = \frac{1}{i} \frac{d}{dE} + g_A(E)$$

 g_A function on spec(H) with values in the hermitean operators on the multiplicity space K

 $\frac{d}{dE}$ derivative operator with Dirichlet boundary conditions on $\partial \operatorname{spec}(H)$.

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Particle moving freely in 1 dimension.

Event: Particle stays in a neighbourhood of the origin.

Event represented by the projection

$$A_a \Phi(x) = \begin{cases} \Phi(x) &, |x| \le a/2 \\ 0 &, \text{else} \end{cases}$$
 (1)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Particle moving freely in 1 dimension.

Event: Particle stays in a neighbourhood of the origin.

Event represented by the projection

$$A_a \Phi(x) = \begin{cases} \Phi(x) &, |x| \le a/2 \\ 0 &, \text{else} \end{cases}$$
 (1)

Time, the particle spends inside the interval [-a/2, a/2]:

$$B_a = \frac{ma}{|p|} (1 + \frac{\sin pa}{pa} \Pi)$$

with the parity operator Π .

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Particle moving freely in 1 dimension.

Event: Particle stays in a neighbourhood of the origin.

Event represented by the projection

$$A_a \Phi(x) = \begin{cases} \Phi(x) &, |x| \le a/2 \\ 0 &, \text{else} \end{cases}$$
 (1)

Time, the particle spends inside the interval [-a/2, a/2]:

$$B_a = \frac{ma}{|p|} (1 + \frac{\sin pa}{pa} \Pi)$$

with the parity operator Π .

POVM in the limit $a \rightarrow 0$:

$$P(t)(p,q) = \begin{cases} \frac{\sqrt{pq}}{2\pi m} e^{it\frac{p^2 - q^2}{2m}} &, pq > 0\\ 0 &, \text{else} \end{cases}$$

Pirsa: 07060045 irst moment yields Aharanov's time operator.

No Signal VGA-1

Pirsa: 07060045 Page 50/106

No Signal VGA-1

Pirsa: 07060045 Page 51/106

No Signal VGA-1

Piage 52/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Particle moving freely in 1 dimension.

Event: Particle stays in a neighbourhood of the origin.

Event represented by the projection

$$A_a \Phi(x) = \begin{cases} \Phi(x) &, |x| \le a/2 \\ 0 &, \text{else} \end{cases}$$
 (1)

Time, the particle spends inside the interval [-a/2, a/2]:

$$B_a = \frac{ma}{|p|} (1 + \frac{\sin pa}{pa} \Pi)$$

with the parity operator Π .

POVM in the limit $a \rightarrow 0$:

$$P(t)(p,q) = \begin{cases} \frac{\sqrt{pq}}{2\pi m} e^{it\frac{p^2 - q^2}{2m}} &, pq > 0\\ 0 &, \text{else} \end{cases}$$

Pirsa: 07060045 irst moment yields Aharanov's time operator.

Page 53/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on Minkowski space

 $x \mapsto U(x)$ unitary strongly continuous representation of the translation group of Minkowski space,

・ロ・・何・・三・・三・ 至 りへの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on Minkowski space

 $x \mapsto U(x)$ unitary strongly continuous representation of the translation group of Minkowski space,

A > 0 "event"

→ analogous decomposition of the Hilbert space

Event localization on Minkowski space

 $x \mapsto U(x)$ unitary strongly continuous representation of the translation group of Minkowski space,

A > 0 "event"

⇒ analogous decomposition of the Hilbert space

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_f \oplus \mathcal{H}_{\infty}$$

Construction of a positive operator valued measure on Minkowski space

Event localization on Minkowski space

 $x \mapsto U(x)$ unitary strongly continuous representation of the translation group of Minkowski space,

A > 0 "event"

⇒ analogous decomposition of the Hilbert space

$$\mathcal{H}=\mathcal{H}_0\oplus\mathcal{H}_f\oplus\mathcal{H}_\infty$$

Construction of a positive operator valued measure on Minkowski space

$$P(G) = \int_G d^4x \, P(x)$$

with values in the positive contractions on \mathcal{H}_f .

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

$$U(x)AU(-x) = a^*(x)^2a(x)^2$$

・ロ・・ロ・・ミト・ミト を かんの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

$$U(x)AU(-x) = a^*(x)^2a(x)^2$$

a, a* annihilation and creation operators

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

$$U(x)AU(-x) = a^*(x)^2a(x)^2$$

a, a* annihilation and creation operators

Interpretation: 2 particles collide at the spacetime point x

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

$$U(x)AU(-x) = a^*(x)^2a(x)^2$$

a, a* annihilation and creation operators

Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: \mathcal{H}_f is the space of s waves

・ロト・カ・・ミ・・ミン 草 りゅく

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

$$U(x)AU(-x) = a^*(x)^2a(x)^2$$

a, a* annihilation and creation operators

Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: \mathcal{H}_f is the space of s waves (collisions occur only if the relative angular momentum vanishes)

・ロト・ロ・・ミト・ミト 草 りゅつ

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

$$U(x)AU(-x) = a^*(x)^2a(x)^2$$

a, a* annihilation and creation operators

Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: \mathcal{H}_f is the space of s waves (collisions occur only if the relative angular momentum vanishes)

$$\mathcal{H}_f \simeq L^2(H^+_{>2m})$$

(as representations of the translation group)

*ロ・・面・・ミト・手ト 温 かなの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Example: Free scalar field on Fock space with mass m

$$U(x)AU(-x) = a^*(x)^2a(x)^2$$

a, a* annihilation and creation operators

Interpretation: 2 particles collide at the spacetime point x

Restriction to the 2 particle subspace: \mathcal{H}_f is the space of s waves (collisions occur only if the relative angular momentum vanishes)

$$\mathcal{H}_f \simeq L^2(H^+_{>2m})$$

(as representations of the translation group)

 $\dot{H}^+_{>2m}=\{p\in\mathbb{M}^*,p^2>4m^2,p_0>0\}$ 2 particle momentum spectrum

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Density P(x) of the corresponding positive operator valued measure

Pirsa: 07060045 Page 66/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Density P(x) of the corresponding positive operator valued measure

$$P(x)\Phi(p) = (2\pi)^{-4} \int_{H_{>2m}^+} d^4k \, e^{i(p-k)x} \Phi(k)$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Density P(x) of the corresponding positive operator valued measure

$$P(x)\Phi(p) = (2\pi)^{-4} \int_{H_{>2m}^+} d^4k \, e^{i(p-k)x} \Phi(k)$$

"Coordinate operators":

$$\hat{x}^{\mu} = \frac{1}{i} \frac{\partial}{\partial p_{\mu}}$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Density P(x) of the corresponding positive operator valued measure

$$P(x)\Phi(p) = (2\pi)^{-4} \int_{H_{>2m}^+} d^4k \, e^{i(p-k)x} \Phi(k)$$

"Coordinate operators":

$$\hat{x}^{\mu} = \frac{1}{i} \frac{\partial}{\partial p_{\mu}}$$

(with Dirichlet boundary conditions on the boundary of $H_{\geq 2m}^+$)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Density P(x) of the corresponding positive operator valued measure

$$P(x)\Phi(p) = (2\pi)^{-4} \int_{H_{>2m}^+} d^4k \, e^{i(p-k)x} \Phi(k)$$

"Coordinate operators":

$$\hat{x}^{\mu} = \frac{1}{i} \frac{\partial}{\partial p_{\mu}}$$

(with Dirichlet boundary conditions on the boundary of $H^+_{>2m}$) ("Töplitz quantization" of Minkowski space)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

$$[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}$$

Pirsa: 07060045 Page 71/106

10 10 10 12 1 12 1 2 900

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

$$[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}$$

 θ constant symplectic form on Minkowski space

"Event"
$$a^*(q)^2 a(q)^2$$

Pirsa: 07060045 Page 72/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

$$[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}$$

 θ constant symplectic form on Minkowski space

"Event"
$$a^*(q)^2 a(q)^2$$

$$a(q) := \int d\mu(k) a(k) e^{ikq}$$

· □ · · □ ·

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

$$[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}$$

 θ constant symplectic form on Minkowski space

"Event"
$$a^*(q)^2 a(q)^2$$

$$a(q) := \int d\mu(k) a(k) e^{ikq}$$

a(k) annihilation operator for a particle with momentum k.

* D + * D + * E + * E + 9 9 0

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

$$[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}$$

 θ constant symplectic form on Minkowski space

"Event"
$$a^*(q)^2 a(q)^2$$

$$a(q) := \int d\mu(k) a(k) e^{ikq}$$

a(k) annihilation operator for a particle with momentum k.

Weyl algebra: $\mathcal{E}_{\theta} \ni W(f) = \int d^4k \, \tilde{f}(k) e^{ikq}$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Event localization on NC Minkowski space

NC Minkowski space: noncommuting coordinates

$$[q^{\mu}, q^{\nu}] = i\theta^{\mu\nu}$$

 θ constant symplectic form on Minkowski space

"Event"
$$a^*(q)^2 a(q)^2$$

$$a(q) := \int d\mu(k) a(k) e^{ikq}$$

a(k) annihilation operator for a particle with momentum k.

Weyl algebra: $\mathcal{E}_{\theta} \ni W(f) = \int d^4k \, \tilde{f}(k) e^{ikq}$ with testfunctions f and Weyl operators e^{ikq} satisfying the Weyl relations

*ロ・・御・・言・・音・ 夏 りへの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

"Measures" on a noncommutative space correspond to positive functionals on the algebra.

Pirsa: 07060045 Page 77/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

"Measures" on a noncommutative space correspond to positive functionals on the algebra.

 $S \subset (\mathcal{E}_{\theta}^*)_+$ set of positive functionals ω such that $\psi_{\omega}(k) = \omega(e^{ikq})$ is a Schwartz function.

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

"Measures" on a noncommutative space correspond to positive functionals on the algebra.

 $S \subset (\mathcal{E}_{\theta}^*)_+$ set of positive functionals ω such that $\psi_{\omega}(k) = \omega(e^{ikq})$ is a Schwartz function.

$$B(\omega) = \int d\mu(k_1) d\mu(k_2) d\mu(k_3) d\mu(k_4)$$

$$a^*(k_1)a^*(k_2)a(k_3)a(k_4)\omega(e^{-ik_1q}e^{-ik_2q}e^{ik_3q}e^{ik_4q})$$

· □ · · □ ·

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

"Measures" on a noncommutative space correspond to positive functionals on the algebra.

 $S \subset (\mathcal{E}_{\theta}^*)_+$ set of positive functionals ω such that $\psi_{\omega}(k) = \omega(e^{ikq})$ is a Schwartz function.

$$B(\omega) = \int d\mu(k_1) d\mu(k_2) d\mu(k_3) d\mu(k_4)$$

$$a^*(k_1)a^*(k_2)a(k_3)a(k_4)\omega(e^{-ik_1q}e^{-ik_2q}e^{ik_3q}e^{ik_4q})$$

Restriction to the 2 particle subspace:

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

"Measures" on a noncommutative space correspond to positive functionals on the algebra.

 $S \subset (\mathcal{E}_{\theta}^*)_+$ set of positive functionals ω such that $\psi_{\omega}(k) = \omega(e^{ikq})$ is a Schwartz function.

$$B(\omega) = \int d\mu(k_1) d\mu(k_2) d\mu(k_3) d\mu(k_4)$$

$$a^*(k_1)a^*(k_2)a(k_3)a(k_4)\omega(e^{-ik_1q}e^{-ik_2q}e^{ik_3q}e^{ik_4q})$$

Restriction to the 2 particle subspace:

$$\Longrightarrow \mathcal{H}_f \simeq L^2(H^+_{>2m})$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

"Measures" on a noncommutative space correspond to positive functionals on the algebra.

 $S \subset (\mathcal{E}_{\theta}^*)_+$ set of positive functionals ω such that $\psi_{\omega}(k) = \omega(e^{ikq})$ is a Schwartz function.

$$B(\omega) = \int d\mu(k_1) d\mu(k_2) d\mu(k_3) d\mu(k_4)$$

$$a^*(k_1)a^*(k_2)a(k_3)a(k_4)\omega(e^{-ik_1q}e^{-ik_2q}e^{ik_3q}e^{ik_4q})$$

Restriction to the 2 particle subspace:

$$\Longrightarrow \mathcal{H}_f \simeq L^2(H^+_{>2m})$$

Integral kernel of $B(\omega)$:

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

"Measures" on a noncommutative space correspond to positive functionals on the algebra.

 $S \subset (\mathcal{E}_{\theta}^*)_+$ set of positive functionals ω such that $\psi_{\omega}(k) = \omega(e^{ikq})$ is a Schwartz function.

$$B(\omega) = \int d\mu(k_1) d\mu(k_2) d\mu(k_3) d\mu(k_4)$$

$$a^*(k_1)a^*(k_2)a(k_3)a(k_4)\omega(e^{-ik_1q}e^{-ik_2q}e^{ik_3q}e^{ik_4q})$$

Restriction to the 2 particle subspace:

$$\Longrightarrow \mathcal{H}_f \simeq L^2(H^+_{>2m})$$

Integral kernel of $B(\omega)$:

$$b_{\omega}(k,p) = c(k)c(p)\omega(e^{-ikq}e^{ipq})$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

$$\operatorname{tr}(\int d^4k\,\tilde{f}(k)e^{ikq})=\tilde{f}(0)$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

$$\operatorname{tr}(\int d^4k\,\tilde{f}(k)e^{ikq})=\tilde{f}(0)$$

induces a map $T \mapsto \omega_T$ from positive operators to positive functionals by

Page 86/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

$$\operatorname{tr}(\int d^4k\,\tilde{f}(k)e^{ikq})=\tilde{f}(0)$$

induces a map $T \mapsto \omega_T$ from positive operators to positive functionals by

$$\omega_T(A) = \operatorname{tr}(TA)$$

Limit $T \rightarrow 1$:

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

$$\operatorname{tr}(\int d^4k\,\tilde{f}(k)e^{ikq})=\tilde{f}(0)$$

induces a map $T \mapsto \omega_T$ from positive operators to positive functionals by

$$\omega_T(A) = \operatorname{tr}(TA)$$

Limit $T \rightarrow 1$:

$$C = \inf_{0 \le T \le 1} (B(\omega_T) + 1)^{-1}$$

Page 88/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

$$\operatorname{tr}(\int d^4k\,\tilde{f}(k)e^{ikq})=\tilde{f}(0)$$

induces a map $T \mapsto \omega_T$ from positive operators to positive functionals by

$$\omega_T(A) = \operatorname{tr}(TA)$$

Limit $T \rightarrow 1$:

$$C = \inf_{0 \le T \le 1} (B(\omega_T) + 1)^{-1}$$

$$B(tr) = C^{-1} - 1$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

$$\operatorname{tr}(\int d^4k\,\tilde{f}(k)e^{ikq})=\tilde{f}(0)$$

induces a map $T \mapsto \omega_T$ from positive operators to positive functionals by

$$\omega_T(A) = \operatorname{tr}(TA)$$

Limit $T \rightarrow 1$:

$$C = \inf_{0 \le T \le 1} (B(\omega_T) + 1)^{-1}$$

$$B(tr) = C^{-1} - 1$$

Construction of a completely positive unit preserving map:

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Trace functional on the Weyl algebra:

$$\operatorname{tr}(\int d^4k\,\tilde{f}(k)e^{ikq})=\tilde{f}(0)$$

induces a map $T \mapsto \omega_T$ from positive operators to positive functionals by

$$\omega_T(A) = \operatorname{tr}(TA)$$

Limit $T \rightarrow 1$:

$$C = \inf_{0 \le T \le 1} (B(\omega_T) + 1)^{-1}$$

$$B(tr) = C^{-1} - 1$$

Construction of a completely positive unit preserving map:

$$P(T) = B(tr)^{-\frac{1}{2}}B(\omega_T)B(tr)^{-\frac{1}{2}}$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

For T = W(f) the integral kernel of P(T) is

・ロ・・西・・ミ・・き・ を わりの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

For T = W(f) the integral kernel of P(T) is

$$P(T)(k,p) = e^{\frac{i}{2}k\theta p}\,\tilde{f}(k-p)$$

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

For T = W(f) the integral kernel of P(T) is

$$P(T)(k,p) = e^{\frac{i}{2}k\theta p}\,\tilde{f}(k-p)$$

The noncommuting coordinates q^{μ} are mapped onto the "noncommutative quantum coordinates"

10110 1011 E 100

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

For T = W(f) the integral kernel of P(T) is

$$P(T)(k,p) = e^{\frac{i}{2}k\theta p} \tilde{f}(k-p)$$

The noncommuting coordinates q^{μ} are mapped onto the "noncommutative quantum coordinates"

$$\hat{q}^{\mu} \equiv P(q^{\mu}) = \frac{1}{i} \frac{\partial}{\partial p_{\mu}} + \frac{1}{2} \theta^{\mu\nu} p_{\nu}$$

Page 95/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

For T = W(f) the integral kernel of P(T) is

$$P(T)(k,p) = e^{\frac{i}{2}k\theta p}\,\tilde{f}(k-p)$$

The noncommuting coordinates q^{μ} are mapped onto the "noncommutative quantum coordinates"

$$\hat{q}^{\mu} \equiv P(q^{\mu}) = \frac{1}{i} \frac{\partial}{\partial p_{\mu}} + \frac{1}{2} \theta^{\mu\nu} p_{\nu}$$

(again with Dirichlet boundary conditions)

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

For T = W(f) the integral kernel of P(T) is

$$P(T)(k,p) = e^{\frac{i}{2}k\theta p}\,\tilde{f}(k-p)$$

The noncommuting coordinates q^{μ} are mapped onto the "noncommutative quantum coordinates"

$$\hat{q}^{\mu} \equiv P(q^{\mu}) = \frac{1}{i} \frac{\partial}{\partial p_{\mu}} + \frac{1}{2} \theta^{\mu\nu} p_{\nu}$$

(again with Dirichlet boundary conditions)

The operators \hat{q}^{μ} satisfy the same commutation relations as the coordinates q^{μ} on a dense domain, but are not selfadjoint and cannot be exponentiated to yield the Weyl relations .

Page 97/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Conclusions and Outlook

Pirsa: 07060045 Page 98/106

・ロ・・西・・ミ・・き・ を かんの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Conclusions and Outlook

 Observables (in the sense of positive operator valued measures) of time of occurrence and of spacetime localization of events can be given.

Pirsa: 07060045 Page 99/10

・ロ・・何・・ミ・・き・ 産 りへの

Conclusions and Outlook

- Observables (in the sense of positive operator valued measures) of time of occurence and of spacetime localization of events can be given.
- They typically yield noncommutative spaces. For instance in the case $sp(H) = \mathbb{R}_+$ one obtains the Töplitz quantization of \mathbb{R} as the quantized time axis. This implies new uncertainty relations for time measurements alone,

$$\Delta T \ge \frac{d}{\langle H \rangle}$$
 with $d = 1.376$.

No Signal VGA-1

Pirsa: 07060045 Page 101/106

No Signal VGA-1

Pirsa: 07060045 Page 102/10

Conclusions and Outlook

- Observables (in the sense of positive operator valued measures) of time of occurence and of spacetime localization of events can be given.
- They typically yield noncommutative spaces. For instance in the case sp(H) = R₊ one obtains the Töplitz quantization of R as the quantized time axis. This implies new uncertainty relations for time measurements alone,

$$\Delta T \ge \frac{d}{\langle H \rangle}$$
 with $d = 1.376$.

Page 103/106

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Conclusions and Outlook

- Observables (in the sense of positive operator valued measures) of time of occurrence and of spacetime localization of events can be given.
- They typically yield noncommutative spaces. For instance in the case sp(H) = R₊ one obtains the Töplitz quantization of R as the quantized time axis. This implies new uncertainty relations for time measurements alone,

 $\Delta T \ge \frac{d}{\langle H \rangle}$ with d = 1.376.

 Starting from a noncommutative spacetime one obtains a deformation of the given spacetime by a completely positive map.

Conclusions and Outlook

- Observables (in the sense of positive operator valued measures) of time of occurence and of spacetime localization of events can be given.
- They typically yield noncommutative spaces. For instance in the case sp(H) = R₊ one obtains the Töplitz quantization of R as the quantized time axis. This implies new uncertainty relations for time measurements alone,

 $\Delta T \ge \frac{d}{\langle H \rangle}$ with d = 1.376.

 Starting from a noncommutative spacetime one obtains a deformation of the given spacetime by a completely positive map.

日本の日本の日本日本 至 ののの

Time of occurence observable of a given event Event localization on Minkowski space Event localization on NC Minkowski space Conclusions and Outlook

Conclusions and Outlook

Pirsa: 07060045

- Observables (in the sense of positive operator valued measures) of time of occurence and of spacetime localization of events can be given.
- They typically yield noncommutative spaces. For instance in the case sp(H) = R₊ one obtains the Töplitz quantization of R as the quantized time axis. This implies new uncertainty relations for time measurements alone,

 $\Delta T \ge \frac{d}{\langle H \rangle}$ with d = 1.376.

- Starting from a noncommutative spacetime one obtains a deformation of the given spacetime by a completely positive map.
- In analogy to renormalization theory one may interpret parametric spacetime as bare spacetime and the observable spacetime as the physical spacetime.