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Environment-induced decoherence plays an important role in the
solution of the measurement problem of quantum mechanics. It allows
us to understand how the interaction with the environment induces a
local suppression of interference between a set of preferred states,
associated with the "“pointer basis".

More precisely, a) decoherence induces a fast suppression of the interference
terms of the reduced matrix describing the system coupled to the measurement
device, and D) it selects a preferred set of states that are robust in spite of their
Interaction with the environment.

These facts are a direct consequence of the standard unitary time evolution of
the total system-environment composition and therefore the global phase
coherence is not destroyed but simply transferred from the system to the
environment.

We have recently noticed that quantum mechanics also leads to other
kinds of loss of coherence due to the quantum effects of real clocks

R. G, R. Porto, J. Pullin, New J. Phys. 6, 45 (2004) and Phys. Rev. Lett.
93, 240401 (2004)

As ordinarily formulated, quantum mechanics involves an idealization.
Trat Is, the use of a perfect classical clock to measure times.



The equations of guantum mechanics, when cast in terms of the
variable that is really measured by a clock in the laboratory, differ
from the traditional Schroedinger description and induce a loss of
coherence.

Contrary to what happens with the environment-induced
decoherence this new type of decoherence is associated to a
non-unitary evolution in the physical time. The origin of the lack of
unitarity is the fact that in quantum mechanics the determination of
the state of a system is only possible by repeating an experiment

If one uses a real clock, which has thermal and quantum fluctuations,
each experimental run will correspond to a different value of the
evolution parameter.

Due to the extreme accuracy that real clocks can reach this effect is
very small, as we shall see.

The aim of this talk is to present a discussion of the interplay between
these two types of decoherence and their conseqguences for the problem
of measurements in quantum mechanics. We will also discuss the
consequences of the use of real measuring rods in the determination of
positions on the same problem.



OUTLINE

1) The evolution equation in terms of a real clock variable

2) Limitations to how good a clock or a measuring rod can be

3) Loss of unitarity and loss of entanglement

4) Consequences for the problem of measurement in
Quantum Mechanics



The evolution equation in terms of a real clock variable

Given a physical situation of interest described by a (multi-dimensional)
phase space g p we start by choosing a ""clock”. By this we mean a

physical quantity (more precisely a set of quantities, like when one chooses a
clock and a calendar to monitor periods of more than a day) that we

will use to keep track of the passage of time.

An example of such a variable could be the angular position of the hand

of an analog watch. Let us denote it by T(q p). We then identify some physical
variables that we wish to study as a function of time. We shall call

them generically O(g,p).

We then quantize the system and work in the Heisenberg picture

Notice that we are not in any way modifying quantum mechanics. We
assume that the system has a Hamiltonian evolution in terms of an external
parameter {, which is a classical variable.
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What is the probability that the observable O take a given value

given that the clock indicates a certain time
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The reason for the integrals is that we do not know for what value of the
external ideal time t the clock will take the value

P = Pel ®pﬁys

Up to now we have considered the quantum states as described by a
density matrix at a time £. Since the latter is unobservable, we
widld like to shift to a description where we have density matrices

T T o T e T o T o O o I T e T I



Recall:
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Now we may define the probability density that the resulting measurement of
the clock variable takes the value T when the ideal time takes the value f
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We have therefore ended with the standard probability expression with an
“effective” density matrix in the Schrodinger picture given by

Unitarity is lost since one ends up with a density matrix that is a
superposition of density matrices associated with different values of {

Now that we have identified what will play the role of a density matrix in
terms of a “real clock™ evolution, we would like to see what happens if we
assume the “real clock” is behaving semi-classically.

To do this we assume that

where f Is a function that decays very rapidly for values of T far from
the maximum of the probability distribution

fIT—t)=46(T —t)+ aT)§'(T —1t)+ b(T)0" (T —1t)+ ...



dp(T)

O = ilp(T), H] + o(T)[H, [H, o(T)])| o(T) = Db(T)/aT

there would be terms involving further commutators if we had kept more
terms in the expansion of f

Conserved quantities are automatically preserved by the modified evolution.
This equation was first obtained in a different context by:
G. J. Milburn, Phys. Rev A44, 5401 (1991).

The extra term induces loss of coherence. In fact, if WM} IS a constant.

p( T) nm — Pnm ( 0) e wnmT g—owpy T

We therefore see that the off-diagonal elements of the density matrix go to zero
exponentially at a rate governed by o i.e. by how badly the clock's wavefunction
spreads.



Limitations to how good a clock or a rod can be

We have established that when we study quantum mechanics with a
physical clock, unitarity is lost, and pure states evolve into mixed states.
The effects are more pronounced the worse the clock is.

Which raises the question: is there a fundamental limitation to how good a
clock can be?

This is a contentious point: | will give three independent arguments |leading to
an estimate of such a limitation:

A) Salecker and Wigner (1957) and Ng and van Dam (19995)

They consider a clock consisting of two mirrors between
which a light ray bounces back and forth. Every bounce
Is a “tick” of the clock.

They note that by the time the light bounced off a mirror
and returns, the original mirror's wave-function would

have spread. The width of the spread limits the accuracy
of the clock




So this tells us that one can build an arbitrarily accurate clock just
by increasing its mass.

However, Ng and van Dam pointed out that there is a limit to this. Basically, if
one piles up enough mass in a concentrated region of space one ends up with a
black hole.

There is also a corresponding uncertainty for the measurements of lengths.

B) S.Lloyd and J. Ng Scientific American 291 52 (2004)
Giovannettl, Lloyd and Maccone Science 306 1330 (2004)

In order to map out the geometry of spacetime they fill space with clocks exchanging
signals with the other clocks and measuring their time of arrival, like the GPS. We
can think of this procedure as a special kind of computation. The total number of
elementary measurement events of the clocks is bounded by the Margolus-Levitin

theorem.



To perform an elementary logical operation in time
requires an average amount of energy E = =h/2At
= s "

Therefore the maximum number of measurements is

Again, to prevent black hole formation the total mass is bounded: within a volume
of radius /

Thus, the total number of operations or cells of space-time is

And therefore the cells are separated by an average distance



Notice that this limitation for the measurement of length and times is also related
with the holographic bound if one assumes an entropy per cell of order one.

This limits were obtained from heuristic considerations. Is there a derivation from
first principles of these bounds? We don't have a complete theory of quantum

Gravity but. ..

We have recently established that the kinematical structure of loop quantum gravit
In spherical symmetry implies the holographic principle irrespective of the details ol
the dynamics. It stems from the fact that the elementary volume that any dynamica

operator may involve goes as
F



Loss of unitarity and loss of entanglement

If the best accuracy one can get with a clock is given by ST = T”3ff3

2 4/3 'T.'!"'IS

p(T)-nm = pnm((}) E_iw”"‘!‘rf-wﬁm I planck




So we conclude that any physical system that we study in the lab will suffer
loss of quantum coherence at least at the rate given by the formula above.
This is a fundamental inescapable limit. A pure state inevitably will become a
mixed state due to the impossibility of having a perfect classical clock in nature.

The prospects for detecting the fundamental decoherence we propose are quite
weak. Bose-Einstein condensates, which can have 1 million atoms in coherent
states can have energy differences for which the fundamental decoherence
exponents become of order unity only in times larger than the age of the
universe. However LISA would be able to detect these length uncertainties.

A point that could be raised is that atomic clocks currently have an accuracy
that is less than ten orders of magnitude worse than the absolute limit we
derived in the previous section. Couldn't improvements in atomic clock
technology actually get better than our supposed absolute [imit?

This seems unlikely. When one studies in detail the most recent proposals
to iImprove atomic clocks, they require the use of entangled states that have
to remain coherent. Our effect would actually prevent the improvement

of atomic clocks beyond the absolute limitl

&ee for instance A. Andre, A. Sarensen, M. Lukin, Phys. Rev. Lett. 92, 2302801 {2004)



Real rods and entanglement loss:

In field theory both time and spatial coordinates are ideal elements. Let us
consider non relativistic electrons

o (1) = [y (), (u)Tdu

Quantum rods:
Assign Euclidean coordinates identifying the position of the detector

Measures the spin in the volume
F centered in a point with
fiducial coordinates Tj

1

We may define conditional probabilities as in the case of real clocks:
For instance:

P(g)=|dulu,e ><u.¢,

P(s,| X’)= [ TId3 (X" )TH(P:(¢,) p

:
.

T3, (X) =1

Where @ Is the probability density that the measurement occurs at

Due to the limitations in the measurements of lengths ¢ is not a Dirac delta.



One may consider that € is a Gaussian whose spread grows with the distance
between the origin of the rods and the detector.

with D(X)=1"I(X)

XY =P(e | X' +d)

In order to study the effects on entangled systems we compare Bell's
Inequality violations for a given position of the detectors as measured from O and O
L et us consider a two particle entangled state

One can check that for any set of Bell
operators PSS SUch that
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There exists O’ sufficiently far from O such that:
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This immediately suggests that many entangled systems will present
entanglement loss for any set of local observers.




Implications for the measurement problem of quantum
mechanics.

The measurement problem in quantum mechanics is related to the fact that in
ordinary quantum mechanics the measurement apparatus is assumed to be
always In an eigenstate after a measurement has been performed.

The usual explanation for this is that there exists interaction with the environment.
This selects a preferred basis, i.e., a particular set of quasi-classical states often
referred to as "pointer states" that are robust, in the sense of retaining correlations
over time in spite of their immersion in the environment.

Decoherence then quickly damps superpositions between the localized
preferred states when only the system is considered. This is taken as an
explanation of the appearance to a local observer of a "“classical” world of
determinate, ~ objective” (robust) properties.



The main problem with such a point of view is how is one to interpret the local
suppression of interference in spite of the fact that the total state describing the
system-environment combination retains full coherence. One may raise the question
whether retention of the full coherence could ever lead to empirical conflicts with

the ascription of definite values to macroscopic systems.

The usual point of view Is that it would be very difficult to reconstruct the off
diagonal elements of the density matrix in practical circumstances. However, at
least as a matter of principle, one could indeed reconstruct such terms

The evolution of the whole system remains unitary and the coherence of the
measurement device will eventually reappear (revivals) .

The fundamental decoherence induced by real clocks suppresses
exponentially the off diagonal terms.

Revivals of these terms cannot occur no matter how long one waits.
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W. Zurek, Phys. Rev. D26, 1862 (1982).
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Taking the trace of over the environment degrees of freedom
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If z(1) vanishes the reduced density matrix is a “proper mixture” representing several
outcomes with its corresponding probabilities.

But z(?) is a multiperiodic function that will retake the initial value for sufficiently large
times. (Poincare Recurrence)

Although this time is usually large, perhaps exceeding the age of the universe,
at least in principle it implies that the measurement process does not correspond to a
change from a pure to a mixed state in a fundamental way.

If one redoes the derivation using the effective equation we derived for
quantum mechanics with real clocks one gets:

2'(t) = ()T Texp(—(2g,)'1;°1™)

If one includes real clocks in quantum mechanics revivals are avoided and the pure
states resulting from environment decoherence appear to be experimentally




Are there other kinds of correlations that allow us to distinguish between the reduced
matrix and a “proper mixture” after the measurement?

D’'Espagnat has proposed certain observables that are preserved by the unitary
evolution that involve the system and the environment. Such

observables would change drastically in value if the reduced density
matrix were to turn into an proper mixture. In the model we are considering:

Conserved quantities are preserved by the evolution with real clocks but if positions
are taken into account, the measurement of these kinds of operators will probably be

iImpossible because of the previously mentioned fundamental limitations in the
rrieasurement of positions.
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Summarizing, when real rods and clocks are taken into account the transition from
the pure states resulting from environment decoherence to mixed states seem to be
totally unobservable, not only “for all practical purposes” as is usually claimed but
because of reasons of principle related with the fundamental structure of spacetime.

Of course, even Iif the measuring device is after the measurement in a “proper mixture” |
problems still persist with the interpretation of quantum mechanics.

The fact that the reduced density matrix at the end is in a diagonal form is not
necessarily a completely satisfactory solution to the measurement problem.

This is known as the “and-or" problem. As Bell put it

“If one were not actually on the lookout for probabilities, ...
the obvious interpretation of even p' (the diagonal density matrix)
would be that the system is in a state in which various states”

|‘i’1 >< ‘I’;I and |lI’3 - 'I’g| and

coexist.
This is not at all a probability interpretation, in which the different terms are seen not as

coexisting but as alternatives

It is not obvious how our contribution to the problem changes anything in the
discussion of this point.



Conclusions and final remarks.

1) Local observers will probably see loss of unitarity and
entanglement due to the use of real clocks and rods.

2) It could be strictly impossible to distinguish between the
reduced density matrix resulting from enviromental decoherence

and proper mixtures.

3) If this is the case, Everett's relative state ("“many worlds")
interpretation, loses its compelling nature.

4) We need to study more realistic models. ..
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