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Experiments are performed to get information on
the state of an object physical system.
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Experiments are performed to get information on
the state of an object physical system.

Knowledge on such state will allow us to predict
the results of forthcoming experiments on a
(similar) object in a similar situation.

Since necessarily we work with only partial prior
knowledge of both system and experimental
apparatus, the rules for the experiment must be
given in a probabilistic setting.
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An experiment on a object system consists in making it
interact with an apparatus.
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An experiment on a object system consists in making it
interact with an apparatus.

The interaction between object and apparatus produces
one of a set of possible transformations of the object,
each one occurring with some probability.




* Postulate 1 (Independent systems) There exist independent systems.

* Postulate 2 (Symmetric faithful state) For every composite system
made of two identical physical systems there exists a symmetric joint
state that is both dynamically and preparationally faithful.

* Postulate 3 (Local observability principle) For composite systems
local informationally complete observables provide global
informationally complete observables.

® Postulate 4 (Info-complete discriminating observable) For every
system there exists a minimal info-complete observable that can be
achieved using a joint discriminating observable on system+ ancilla.
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* Postulate 1 (Independent systems) There exist independent systems.

* Postulate 2 (Symmetric faithful state) For every composite system
made of two identical physical systems there exists a symmetric joint
state that is both dynamically and preparationally faithful.

® Postulate 3 (Local observability principle) For composite systems
local informationally complete observables provide global
informationally complete observables.

* Postulate 4 (Info-complete discriminating observable) For every
system there exists a minimal info-complete observable that can be
achieved using a joint discriminating observable on system+ ancilla.

= _ _
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Experiment (or “action”): every experiment is described
by aset A = {7} of possible transformations .&7;
having overall unit probability, with the apparatus
signaling the outcome j labeling which transformation
actually occurred.
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State: A state w for a physical system is a rule which
provides the probability for any possible transformation
within an experiment, namely:

w : state, w(</) : probability that the transformation </ occurs
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State: A state w for a physical system is a rule which
provides the probability for any possible transformation
within an experiment, namely:
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Normalization: Z w(;) =1

.dj ceA




State: A state w for a physical system is a rule which
provides the probability for any possible transformation
within an experiment, namely:

w : state, w(</) : probability that the transformation </ occurs

Normalization: Z wlafG)=1
dj eA

Identity transformation: w(ﬂ ) =1
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Convex structure of states

The possible states of a physical system
make a convex set &

w1, W2 any two states: | 5[6

w:)\wl—l-(l—)\)wg, < A<E
corresponding to the probability rule

w(A) = dwi1 () + (1 — Nwa(H)
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Monoid ¥ of transformations

Transformations make a monoid: the composition
A o A of two transformations .of and 44 is itself
a transformation. Consistency of composition of
transformations requires associativity, namely

Co(Bod)=(6€oRB)od

There exists the identical transformation .# which
leaves the physical system invariant, and which for every
transformation 2 satisfies the composition rule

Fof —aofa ¥ —of
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Independent systems and local experiments: two
physical systems are “independent” if on each
system it is possible to perform “local experiments”
for which on every joint state one has the
commutativity of the pertaining transformations

oV o g2 — 2(2) 5 (1)

Pirsa: 07060041




Independent systems and local experiments: two
physical systems are “independent” if on each
system it is possible to perform “local experiments”
for which on every joint state one has the
commutativity of the pertaining transformations

oV o0 832 — (2 o (D)

(A, B,€,..)=dP o BPo¢®o...



Independent systems and local experiments: two
physical systems are “independent” if on each
system it is possible to perform “local experiments”
for which on every joint state one has the
commutativity of the pertaining transformations

oV o g2 — 2(2) 5 ()

(A, B.E,..)=dV o B?o€Po...
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For a multipartite system we define the local state W | n
of the n-th system the state that gives the probability of
any local transformation & on the n-th system with all
other systems untouched, namely

() =UT,.... 7, &, F,..)
nth
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When composing two transformations <7 and 44 the
probability that Zoccurs conditioned that &7 occurred
before is given by the Bayes rule

w(ZBoA)

p(B|A) =

w()

Conditional state: the conditional state W gz gives the probability
that a transformation .2 occurs on the physical system in the
state W after the transformation .2/ occurred, namely
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[Ozawa] The definition of conditional state needs to
assume that

@2 o(B;od)=w(d), VB,V
jGB

This is no-signaling from the future.




When composing two transformations &/ and 24 the
probability that Boccurs conditioned that & occurred
before is given by the Bayes rule

w(B o)

(B ) =

w()

Conditional state: the conditional state W gz gives the probability
that a transformation 2 occurs on the physical system in the
state W after the transformation .2 occurred, namely
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[Ozawa] The definition of conditional state needs to
assume that

; m(Qjod) = (D(ﬂ), VB, Vo .
EB

This is no-signaling from the future.




Weight: un-normalized state

w

w

~a(f)

0 <) < @d(F) <+
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When composing two transformations <7 and 44 the
probability that Zoccurs conditioned that 7 occurred
before is given by the Bayes rule

w(B o)

p(#|) =

w()

Conditional state: the conditional state W gz gives the probability
that a transformation 2 occurs on the physical system in the
state W after the transformation 2/ occurred, namely
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[Ozawa] The definition of conditional state needs to
assume that

w(ﬂjod)zw(.d), VB, Ve .

jEB

This is no-signaling from the future.




Weight: un-normalized state

w

~a(S)

0 <) < d(F) <+
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Weight: un-normalized state

w

w

~a(S)

0 <) < d(F) <+

convex cone of weights: JJ
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w

Weight: un-normalized state o = — %)

0<o()<d(F)<+x

convex cone of weights: JJ

Operation: |Op,w = @y = w(-0.)

Pirsa: 07060041 Page 33/165




. - — _m
Weight: un-normalized state |@ = ()

0<a()<d(F)<+x

convex cone of weights: [

Operation: |Op, ® = @y = w(-0.9/) Dy (B)=w(Bod)

Action of a transformation over a state (“Schrédinger picture”):

|ﬁ’m =0p,, @




Theorems
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Bayes rule
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Evolution as conditioning

| T N SR = g B e e e T i e g Bt e R B R e R
Axioms

Theorems

Bayes rule
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Evolution as conditioning

Axioms

Theorems

Bayes rule
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From the definition of conditional state we have:
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* there are different transformations which
always produce the same state change, but
generally occur with different probabilities




From the definition of conditional state we have:

* there are different transformations which
always produce the same state change, but
generally occur with different probabilities

* there are different transformations which

always occur with the same probability, but
generally affect a different state change




Dynamical equivalence of transformations: two
transformations </ and # are dynamically

equivalent if
Wot =W  Vweb
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Dynamical equivalence of transformations: two
transformations &7 and 4 are dynamically

equivalent if
Wt =W VoeS

Informational equivalence of transformations: two

transformations @/and Aare informationally
equivalent if
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Two transformations @/ and Aare informationally
compatible (or coexistent) if for every state w one has

w()+w(B) <1
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Two transformations .27 and Aare informationally
compatible (or coexistent) if for every state w one has

w()+w(HB) <1
For any two coexistent transformations @/1jand &% we define the

transformation ‘ A + b5 J as the transformation
corresponding to the event e = {1,2} namely the apparatus
signals that either .27 or @5 0ccurred, but doesn’t specify which
one:
VweS  w(d + o) =w(d)+w(ahs) (info-class)

(dyn-class)
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Two transformations .27 and Aare informationally
compatible (or coexistent) if for every state w one has

w()+w(B)<1
For any two coexistent transformations &/1jand .2/ we define the

transformation ‘ A + <t J as the transformation
corresponding to the event e = {1,2} namely the apparatus
signals that either 2% or @ 0ccurred, but doesn’t specify which
one:
Vwe6  w(dh +92)=w(dh)+w(e) (info-class)

_ w(en) w()
(dyn-class)

Page 47/165
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Multiplication by a scalar: for each transformation.g/
the transformation A2/ for 0 < X\ < 1 is defined as the
transformation which is dynamically equivalent to o

but occurs with probability w(Ae/) = Aw ()
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Multiplication by a scalar: for each transformation.g/
the transformation A& for 0 < X\ < 1 is defined as the

transformation which is dynamically equivalent to.gf
but occurs with probability w(AZ) = Aw()

bl

Convex structure for transformations ‘%
and for actions

Pirsa: 07060041



We call effect an informational equivalence class i
of transformations &7
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We call effect an informational equivalence class i
of transformations .2

“Heisenberg picture”: Op,B=RBod =Bod
(from the notion of conditional state)
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We call effect an informational equivalence class 1

of transformations ﬂ

Frd = - .
Heisenberg picture”: | Op, B —Bod — Bod I
(from the notion of conditional state)

duality
e

effects as positive linear [ functionals over states:

log (W) = w(H)




We call effect an informational equivalence class i
of transformations .2

“Heisenberg picture”: I Op, B=Bod =Bod ]

(from the notion of conditional state) L—
duality

effects as positive linear [ functionals over states:
loy (W) = w()
| * Convex structure for effects *J3




The occurrence of the transformation 2 on system 1 generally
affects the local state on system 2, i. e.

Qz sl # 2
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The occurrence of the transformation 4 on system 1 generally
affects the local state on system 2, i. e.

Qz 7|2 # 2

However a local action A = {.o/; } on system 2 does
not affect the local state on system 1, more precisely:




The occurrence of the transformation 4 on system 1 generally
affects the local state on system 2, i. e.

Qaz 7|2 # 22

However a local action A = {.&; } on system 2 does
not affect the local state on system 1, more precisely:

acausality of local actions: any local action on a
system is equivalent to the identity transformation
on another independent system. | , _ FA) = T,
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Theorem 1 (No-signaling) Any local action on a system does not affect another
independent system. More precisely, any local action on a system is equivalent to the
tdentity transformation when viewed from another independent system. In equations one
has

VR e 6™ 2VA, Q4 4| = Q. (1)

Proof. Since the two systems are dynamically independent, for every two local
transformations one has @V o #® = & 0 7'V which implies that Q(&" 0 ) =
Qo o V) = 'V, o'?). By definition, for 2 € T one has Q|,(8) = Q(.F, B).
and using the addition rule for transformations and reminding the identification A =
>_; %, one has

(A, B) = A, B) = UL, B) = Up(B). 2)
On the other hand. we have
Qp 7[2(B) = U(SF, B) o (A, 7)) = QUA, B), (3)
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Theorems
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No-signaling from dynamical independence

-

Axioms

Theorems
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~ No-signaling from dynamical independence

Axioms

Theorems

Bayes rule
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No-signaling from dynamical independence

Axioms
Theorems
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No-signaling from dynamical independence
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No-signaling from dynamical independence
bec.. . .

Axioms

Theorems

Bayes rule
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No-signaling from dynamical independence
s e .
Axioms

Theorems

Bayes rule
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Generalize by taking differences:

‘convex sets/cones = (affine) linear spacesl
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weights )] = gen. weights Wp

fran:
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transformations ‘¢ = gen. transformations (SR
(real algebra)
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Generalized weights,
transformations, and effects

=
L"u-‘;-" i ol N e A LR o N o ST e e, R e i S L, o S P

Generalize by taking differences:

convex sets/cones = (affine) linear spaces

weights QY] =9 gen. weights

transformations S = gen. transformations ‘L
(real algebra)

effects 3 = gen. effects Br
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norms:
gen. effects SPRr : ||| :== Wg (L)
-]
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norms:

gen. effects SPR : || := S“gh”(in
we

gen. weights QJR: ol = sup |@(L)

Pr3ll (<1
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norms:
gen. effects SPR : ]| := sug [ole=)
me
gen. weights Qp: o]l :== sup |@()]
Pr2a|Z|<1
gen. transformations TR : ||| ;= sup |Bo|

Pr3[Z|<1
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norms:

gen. effects PR || = ey ()|
me

gen. weights Y p: o]l :== sup |@()|
Proll (<1

gen. transformationsTR: ||| ;== sup |Bo|

Pr3|Z|<1
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norms:
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weS
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Pr2|2|<1

leg (W) = w(H)
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norms:

gen. effects PR : ||| := sup |o (L)
weS
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Proll (<1

gen. transformations‘:R: |||:= sup |[ZBo|
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norms:

gen. effects PR : ||| := sup | ()|
weS

gen. weights X p: |@]:= sup |@O()]
Pro| (<1

gen. transformations ¥R : |||:= sup |ZBo|
Pr3|2|<1

leg (W) = w(H)
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norms:
gen. effects ‘PR : ||| := sup |w(Z)]

weES
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norms:

gen. effects P : Jof]= sup [o(ef)
weS

gen. weights QW p: |@||:== sup |@()

Pr2alZ|<1
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norms:
gen. effects SPR : =] := S“g (L)
me
gen. weights JR: o] := sup |@(L)]
Pr3| <1

8¢
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norms:

gen. effects SPR : ||| := sup |w()]
weS

gen. weights Y R: o]l :== sup |@()|
Proll (<1

gen. transformations‘IR: |||:= sup |[ZBoA|
Pr3|Z|<1

leg (W) = w(H)
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norms:

gen. effects SPR : ||| := sup |w ()|
weS

gen. weights QW p: |of:= sup |@(L)
PrZ|<1

gen. transformations R : ||| ;= sup |Bo|
Pr3[2l<1

leg (W) = w(H)
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Banach-space structures

h_,'_,_.,._.._._ it e, T . S gl el = = PP - . . P PN S A .
Axioms
Theorems
Informational o
- equivalence Effect

general?zed
effect
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Observable: a complete set of effects . = {l;}

S
J
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Informationally complete observable: an observable

L = {l;} is informationally complete if any effect [ can
be written as linear combination of elements of I,
namely there exist coefficients ¢;(l) such that

L

I=) ()

—

Pirsa: 07060041




Informationally complete observable: an observable

L = {l;} is informationally complete if any effect [ can
be written as linear combination of elements of L,
namely there exist coefficients ¢;(1) such that

Pirsa: 07060041




lo = ) mi(@In; 1y (w) = m() - n(w) + (<)
j_




lr =) _mi(@)n;  ly(w) = m() n(w)+ o)
-

Conditioning;:
fractional affine
transformation () m()

n(w) — n(ww) M,;() =

k(<) M (<)




Informationally complete observable

®. -
m‘-ﬁ.ﬁ_._-—d.r-t-ﬁ-—*wi._...._h _ng.mm _-.H‘..-L-‘_“_"F-_H—' .I_EM "-.'Iiin.

..il'll'-u"-ll-—" %m’

Theorem: there always exists a minimal informationally
complete observable.

Proof. By definition ‘Pr = Spang (‘P). whence there must exists a spanning set for Py that is contained in ‘B. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has
finite cardinality dim(*Bg ). It remains to be shown that it is possible to have a basis with sum of elements equal to %,
and that such basis is obtained operationally starting from the available observables from which we constructed ‘P.

If all observables are uninformative (i. e. with all effects proportional to .¥) , then Pg = Span(.#), .# is a minimal
infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable
E = {I;} with n = 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E; = {x. v} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x € Span(E)
discard it. If x € Span(E), then necessarily also y € Span(E) [since if there exists coefficients A; such that y = ¥, A;/;.
then x = ¥,(1 — A;)/;]. Now. consider the observable

E ={ly. Ll +x).1b.....1,} (1)

(which operationally corresponds to the random choice between the observables £ and E, with probability % and
with the events corresponding to x and /; made indistinguishable). This new observable has now |E'| = n + | linearly
ndent effects (since y is linearly independent on the /; and one has y = ¥/ [ —x =¥/ ,/; Page|97/165t} By
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iterating the above procedure we reach |E'| = dim(*Bg ). and we have so realized an apparatus that measures a minimal
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lr = mi(@IN; 1y (w) = m(al) - nw) + g()
j.
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la = ) mi(@)n; Iy (w) = m(&)-nw)+ ()
J

Conditioning:
fractional affine
transformation q() m ()

n(w) — n(we) M,;() =

k(<) M (<)




Informationally complete observable: an observable
L = {l;} is informationally complete if any effect [ can
be written as linear combination of elements of I,
namely there exist coefficients ¢;(l) such that
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Informationally complete observable: an observable

L = {l;} is informationally complete if any effect [ can
be written as linear combination of elements of L,
namely there exist coefficients ¢;(l) such that
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log = Y mi(d)n;  ly(w)=m() nw)+ )
J

Conditioning;:
fractional affine
transformation 9() m()

n(w) — n(we) M;; (o) =

k(<) M (<)

11111111111




Informationally complete observable

o - =J-=.--."i » ez

= . i i - r ¥ B [ e ’ E i R oL a -
m&mm—*—h—vfﬁr A .-M.ﬁ_,_lﬂ-';_i.’,-_-h_w_-;h-i.ﬁi—thu _L-ﬂl-———i-_.p.-l.ir; R PR S S e

Theorem: there always exists a minimal informationally
complete observable.

Proof. By definition ‘Pr = Spang (‘P), whence there must exists a spanning set for Py that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has
finite cardinality dim(*Bg ). It remains to be shown that it is possible to have a basis with sum of elements equal to .7,
and that such basis is obtained operationally starting from the available observables from which we constructed ‘P.

If all observables are uninformative (i. e. with all effects proportional to .¥) , then Pg = Span(.#), .# is a minimal
infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable
E = {I;} with n = 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E; = {x.v} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x € Span(E)
discard it. If x € Span(E), then necessarily also y € Span(E) [since if there exists coefficients A; such that vy = ¥, A;l;.
then x = ¥,(1 — A;)/;]. Now. consider the observable

E' = {1y} +x).1b.....1,} (n

(which operationally corresponds to the random choice between the observables E and E; with probability % and
with the events corresponding to x and /; made indistinguishable). This new observable has now |E'| = n + | linearly
ndent effects (since y is linearly independent on the /; and one has y = ¥/ [ —x = 3!,/ + . Iy —x). By

itgllfxsmlgoéogille above procedure we reach |E’| = dim(‘Pg ). and we have so realized an apparatus that measures a minimal
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For composite systems local info-complete observables provide
global info-complete observables.
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global info-complete observables.




Postulate 3: Local observablhty principle

A e il ﬂ-w#—f—ﬁ—?‘m

For compasrte systems local mfo—complete Obsemables provide
global info-complete observables.
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Postulate 3: Local observability principle
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For compasrte systems local mfo-complete observables prov:de
global info-complete observables.

identity for the affine dimension of composite systems

0000000000

S o g e T R S P R T TR |



BT T

Postulate 3: Local observability principle

identity for the affine dimension of composite systems

dim(S;2) = dim(G; ) dim(S2) + dim(S;) + dim(S2)

Proof. We first prove that the left side is a lower bound for the right side. Indeed, the
number of outcomes of a minimal informationally complete observable is dim(&) + 1.
since it equals the dimension of the affine space embedding the convex set of states &
plus an additional dimension for normalization. Now, consider a global informationally
complete measurement made of two local minimal informationally complete observ-
ables measured jointly. It has number of outcomes [dim(&;) + 1][dim(&;) + 1]. How-
ever, we are not guaranteed that the joint observable is itself minimal, whence the bound.

The opposite inequality can be easily proved by considering that a global informa-
tionally incomplete measurement made of minimal local informationally complete mea-
surements should belong to the linear span of a minimal global informationally complete
measurement. ll
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Postulate 3: Local observability principle

Postulates
Axioms

Theorems

Local
observabili
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Dynamically faithful state: we say that a state @ of a bipartite
system is dynamically faithful if when acting on it with a local
transformation @ on one system the output conditioned
weight (&7, )@ is in 1-to-1 correspondence with the
transformation .o/




Preparationally faithful state: we say that a state ¢p
of a bipartite system is preparationally faithful if every
joint state {) can be achieved by a suitable local
transformation g on one system occurring with

nonzero probability
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Symmetric bipartite state: we call a joint state @ of a
bipartite system symmetric if

O(of, B) = O(B, A
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Perfectly discriminable observable/states:
an observable L. = {I;} such that there exist states {w;}

satisfyin
fy : li(wj) =—5§j
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Perfectly discriminable observable/states:
an observable L = {I;} such that there exist states {w;}
satisfying

li(wj) = dyj
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For every system there exists a minimal info-complete
observable that can be achieved by means of a
joint discriminating observable on system+ancilla®
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For every system there exists a minimal info-complete
observable that can be achieved by means of a
joint discriminating observable on system+ancilla®

e R I e o e i e e



P4 (infoc. as joint discr.) dim(&) = dim#(&™7) — 1 (D4)
(D2)+(D4) dim(6"%) = dims(67%)* — 1 (D24)
(D24) dim(S) = dims(&)> — 1 (D24b)
(D4+D24b) dimz(&*?) = dimg(S)? (®)
P2 (faith.) dim(T) = dim(&"2) + 1 (T)
(D1)+D24b) dim(Pz) = dims(S)* P

Pirsa: 07060041
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——

state-effect duality dim(Pz) = dim(S) + 1 (D1)
P3 (loc. observability) | dim(&12) =dim(S;)dim(&2) +dim(S)) +dim(S2) | (D2)
P4 (infoc. as joint discr.) dim(&) = dimg(&*%) — 1 (D4)
(D2)+(D4) dim(6*%) = dims(6*%)* — (D24)
(D24) di-n(G) dm,(s)l 1 (D24b)
(D4+D24b)

P2 (faith.)

(D1)+(D24b) | dim(Pz) = dims(S)° (P
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Dlmensmnahty identities

WG i i e, s e P kLT G K Y R S s ot
——-
state-effect duality dim(Pz) =dim(&) + 1 (DI1)
P3 (loc. observability) | dim(&;2) =dim(S))dim(S2) +dim(S;) +dim(S2) | (D2)
P4 (infoc. as joint discr.) dim(S) = dimg (&%) — 1 (D4)
(D2)+(D4) dim(&*?) = dims(&72) — (D24)
(D24) dim(S) = dims(S)* — 1 (D24b)
(D4+D24b) dimy (&%) = dimg(S)* ()
P2 (faith.) i i
(D1)+(D24b)
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Positive form over generalized effects: from D real
symmetric form over effects obtain the positive form
(for finite dimensions)

|(I)‘ — (I)_l_ — P _

|P|(L,B) =P(L.c(2)), (&)=(P+— ?—)(_i-ff;)
=5
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The complex Hilbert space formulation

For finite dimensions the real Hilbert space By is
isomorphic to the real Hilbert space of Hermitian complex
matrices representing seltadjoint operators over a complex
Hilbert space H of dimensions dim(H) = dim4 (&) .

This is the Hilbert space formulation
= of Quantum Mechanics



If the state is also preparationally faithful then one can
make every state correspond to an effect




If the state is also preparationally faithful then one can
make every state correspond to an effect

—~

Then one can write the probability rule in terms of a
real scalar product pairing between states and effects,
with the convex cones of effects and states corresponding
to the convex cone of positive matrices.




L

The complex Hilbert space formulation

Since ® is preparationally faithful, then for every state @
there exists a suitable transformation .7, such that

) = (Dﬂ-.-ﬂu

| with probability &(.#,.7,) >0

Then we can write the probability rule in terms of the

pairing between states and effects:

Pirsa:

0000000

™

(%) =Py 7,1(€) =|P|(E. Z,).

™

T =

S ol

T ®(L,T,)

eeeeeeee




The complex Hilbert space formulation

= i ; ¥ 3 . - § » - i I a - P i » S . r
Lh:--'—.ﬁ..i.l-..tﬂﬂ-ﬁ e I el e P e A i g, o B T e gl e it e ol g i i it e i R e g el (gl e By it e §E il K nTi e i i+

Llocal
observabi
m Info-complete from join
: = discriminating
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Rest of the construction:

construct complex operators by complex linear
combination of effects

Pirsa: 07060041 Page 126/165




Rest of the construction:

» construct complex operators by complex linear
combination of effects
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Rest of the construction:

» construct complex operators by complex linear
combination of effects

» physical transformations are described by CP
trace-decreasing maps
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Existence of symmetric faithful states

T

“transposition” over the real algebra A of (generalized)

i
—

® (o, J)tb (I .d‘)tb— (o, 5)D




Existence of symmetric faithful states

e

“transposition” over the real algebra A of (generalized)

et |

D (o, 7)® @ (F.A"P= (A, 5D

5 %
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The involution S corresponds to a generalized transformation
()= oZ

Correspondingly the involution over transformations reads
clAf =L ool 0

which is composition preserving, namely

G(Bod)=¢c(B)os()

TS a0 0600 e S e ™ T v T e T P of o) P L ol ol B =P L T g ol W SR e e L el = s P Bl it = o S P A (E+1.32/1'65



Scalar product over ‘P :
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Scalar product over ‘P :

G works as a complex-conjugation in the sense that
2" := ¢c(a") works as an adjoint, namely




Representations 7T of transformations &/ € A over effects.A /J
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Representations T of transformations &/ € A over effects.A /J

The Born rule rewrites in the form of pairing:

with representation of states given by

o =Z,/]¥%Z,,F)
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GNS construction for representing
L B

Representations 7T of transformations &/ € A over effects. A /J
me(d)|B)e = |H o B)e

The Born rule rewrites in the form of pairing:

() = o(L|0)s
with representation of states given by

= i:_,/ P (iw 4 )
The representation of transformations is given by
w(Bod) = o(Bl|p)e =
- R




GNS construction for representing
R 3

k.'...'.l I - S

PRI SR, WL M, e DA T Sl R

Representations 7T of transformations &/ € A over effects. A /J
mo(d)|B)e = |H o B)e

The Born rule rewrites in the form of pairing:

() = o(L|0)s
with representation of states given by

&= z:u/ d (iw 4 )
The representation of transformations is given by
w(Bod) = (Bl p)e =
il 00000 B
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state-effect duality dim() = dim(S) + 1 ®1)

P2 (prep. faith.) dim(%) = dim(&"%) +1 &3]
(T)+GNS dim(&"*) + 1 = (dim(&) +1)* (T4)=(D2)
P3 (loc. observability) dim(&12) = dim(&;)dim(S2) +dim(&;) +dim(S;) | (D2)
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state-effect duality

P2 (prep. faith.)

(TH+GNS

P3 (loc. observability)

dim(&12) = dim(&;) dim(&3) +dim(&)) +dim(&,) | (D2)
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state-effect duality | ﬁmm) ﬁm(6}+l | (D1)
P2 (prep. faith.) |

(T)+GNS |
P3 (loc. observability) | dim(S12) = ‘ﬁm{el)dm(ez)'i'm(ﬁl)‘Fm(SZ) | (D)
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Theorems
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Axioms

Theorems
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Axioms

Theorems
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Postulates
Axioms

Theorems

quant-ph 0611094, 0612162,
rsa: 07080041 0701217, 07044245

[] -
LAV SBEE ,url' s IF




irsa: 07060041

quant-ph 0611094, 0612162,
0701217, 0704248

[] ]
pr T IT T lurl' s F




Axioms

Theorems
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i Postulates-
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Axioms

Theorems
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discriminating observable
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Existence of § (i.e. existence of the decomposition
of the Banach space Br into positive and negative parts for the
symmetric real form ¢p

quant-ph 0611094, 0612162,
pisa 07060041 0701217, 0704248
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Existence of § (i.e. existence of the decomposition
of the Banach space ‘Pr into positive and negative parts for the
symmetric real form ¢

dim(%) <= Extrapolation:

dim(&?) =dimy(6"%)* -1 —> dim(&) = dimg(S)* — 1

Find a simple postulate discriminating the quantum from the
classical C*-algebras

quant-ph 0611094, 0612162,
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Existence of § (i.e. existence of the decomposition

of the Banach space Pr into positive and negative parts for the
symmetric real form ¢

- Extrapolation:

dim(&?) =dimy(6"%)’ -1 =—> dim(&) = dimg(S)* — 1

Find a simple postulate discriminating the quantum from the
classical C*-algebras

Exploit purity of ¢p quant-ph 0611094, 0612162,
Pirsa: 07060041 0701217, 070h&Ab8
| pFrerreTr ] ﬂllEl." : F




* Postulate 1 (Independent systems) There exist independent systems.

* Postulate 2 (Symmetric faithful state) For every composite system
made of two identical physical systems there exists a symmetric joint
state that is both dynamically and preparationally faithful.

* Postulate 3 (Pure symmetric faithful state) If there exists a pure
symmetric faithful state then we have Quantum Mechanics
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The involution S corresponds to a generalized transformation

S(H)=doZ
Correspondingly the involution over transformations reads

gl =T ol o

which is composition preserving, namely

G(Bod)=¢c(B)os()
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Take complex linear combinations of generalized transformations
and defineg(co/) = c*g(& )forc € C

complex
Banach spaces

-

complex C*-algebra
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state-effect duality dim(P) = dim(S) + 1 (D1)
P2 (prep. faith.) dim(T) = dim(&*?) + 1 (&3]
(T)+GNS dim(&"%) + 1 = (dim(S) +1)? (T4)=(D2)
P3 (loc. observability) dim(S12) = dim(&;)dim(S;z) +dim(&) +dim(S;) | (D2)
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Existence of § (i.e. existence of the decomposition

of the Banach space ‘B into positive and negative parts for the
symmetric real form ¢

dim(%) < ® Extrapolation:

dim(&?) =dimy(6"%)’ 1 —> dim(&) = dimg(S)* — 1

Find a simple postulate discriminating the quantum from the
classical C*-algebras

Exploit purity of quant-ph 0611094, 0612162,
Pirsa: 07060041 070121 7, 070442458
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