Title: Quantum Darwinism: Classicality via Objectivity

Date: Jun 05, 2007 09:30 AM

URL: http://pirsa.org/07060039

Abstract:

Pirsa: 07060039

Quantum Darwinism: Classicality via Objectivity

Robin Blume-Kohout (Cal Tech-IQI) Wojciech H. Zurek (LANL)

- 1. Reality as emergent phenomenon.
- 2. The "environment as a witness" approach.
- 3. Redundancy → Objectivity → "Reality"
- 4. Tools of the trade -- how to analyze models.
- 5. Some results -- exploring models.

RBK & WHZ, quant-ph/0408147 RBK & WHZ, quant-ph/05050331 RBK & WHZ, arxiv/0705.4282

Framework & Foundations

- * Operational Classicality & Decoherence.

 Suppose we take quantum mechanics seriously. How much of classical behavior emerges from the dynamics?
- * Reality is in the eye of the beholder (1)

 (a) Old approach: Why a decohering system is always "found" in a pointer basis state.
- * Environment as a Witness. We observe indirectly -- through the environment. What does it make accessible to us?
- * Reality is in the eye of the beholder (2)

 (b) New approach: Why some of a system's properties are objective* -- and the rest effectively don't exist.
- * Quantum Darwinism. The selection and propagation of certain properties of a system (by the environment), at the expense of incompatible observables.

Page 3/33

Operational Classicality

* Problem: quantum theory \neq classical theory.

- epistemic & ontic states are different
- measurements disturb the system
- we can't duplicate information
- etc, etc., etc... quantum is not realistic.

* This really bothers some people.

- → hidden variable theories...
 - *goal*: show that quantum behavior could emerge from an underlying realistic substrate.

* Or, we could try it the other way...

- can reality emerge from a quantum substrate?
- goal: show that operational classicality can exist.

Decoherence

* A two-headed beast:

- helps explain why the world looks classical
- the major obstacle to QIP.
- * System interacts with its environment.

- Instead of $\rho_{\mathcal{S}} \to e^{-iHt} \rho_{\mathcal{S}} e^{iHt}$, we get $\rho_{\mathcal{S}} \to \text{Tr}_{\mathcal{E}} \left[e^{-iHt} (\rho_{\mathcal{S}} \otimes \rho_{\mathcal{E}}) e^{iHt} \right]$.

* System's evolution is nonunitary

* Typically, there is a pointer basis.

* Sometimes, there isn't.

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

Zurek, Phys. Rev. D 24, 1516 (1981)

* Reaction: What's to stop me from measuring another basis?

- * Measurement happens on ~ the same timescale as decoherence.
- * No matter what outcome I get, I've observed a superposition of pointer states! Right?
- * ...something more subtle is going on here...

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

Zurek, Phys. Rev. D 24, 1516 (1981)

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.

(2) Make a measurement.

- (3) Analyze the results,
 - correlation verifies observation.

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

* How to [operationally] verify an "observation"

Zurek, Phys. Rev. D 24, 1516 (1981)

(1) Do a [test] preparation.

(1.5) The environment decoheres my system.

(2) Make a measurement.

correlation verifies observation.

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.
 - (1.5) The environment decoheres my system.
 - (2) Make a measurement.
 - (3) Analyze the results,
 - correlation verifies observation.
 indistinguishable from a coin flip!

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.
 - (1.5) The environment decoheres my system.
 - (2) Make a measurement.
 - (3) Analyze the results,
 - correlation verifies observation. indistinguishable from a coin flip!

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.
 - (1.5) The environment decoheres my system.
 - (2) Make a measurement.
 - (3) Analyze the results,
 - correlation verifies observation. indistinguishable from a coin flip!
 - Occam's Razor implies no observation

Emergent "Reality"

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed." Zurek, Phys. Rev. D 24, 1516 (1981)

- * Conclusion: It's only a measurement if I can prove that it's measuring something.
 if it looks like noise, then it is.
- * Implication 1: A decohering system is never "observed" in a non-pointer state.
- * Implication 2: Non-pointer observables effectively don't exist (to a scientist).
- * Dynamics constrain reality.

Environment as a Witness

* Limitations of the decoherence approach.

- Measurement is still a magical process.
- Classical reality is what is *left* after quantum stuff is stripped away... where did it come from, anyway?
- Information/disturbance -- multiple observers interfere with each other!

* Resolution: measurements aren't direct.

- We observe indirectly, through the environment.
- We generally capture a tiny part of the environment.
- Similar fragments are available to other observers.

* How does information about 5 flow through E?

Pirsa: 07060039 Page 13/33

Emergent "Reality"

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed." Zurek, Phys. Rev. D 24, 1516 (1981)

- * Conclusion: It's only a measurement if I can prove that it's measuring something.
 if it looks like noise, then it is.
- * Implication 1: A decohering system is never "observed" in a non-pointer state.
- * Implication 2: Non-pointer observables effectively don't exist (to a scientist).
- * Dynamics constrain reality.

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.
 - (2) Make a measurement.
 - (3) Analyze the results,

 correlation verifies observation.

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

Zurek, Phys. Rev. D 24, 1516 (1981)

* Reaction: What's to stop me from measuring another basis?

- * Measurement happens on ~ the same timescale as decoherence.
- * No matter what outcome I get, I've observed a superposition of pointer states! Right?
- * ...something more subtle is going on here...

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

Zurek, Phys. Rev. D 24, 1516 (1981)

* How to [operationally] verify an "observation"

(1) Do a [test] preparation.

(2) Make a measurement.

(3) Analyze the results,

(1.5)

Pirsa: 07060039

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.
 - (1.5) The environment decoheres my system.
 - (2) Make a measurement.
 - (3) Analyze the results,
 - correlation verifies observation.

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.
 - (1.5) The environment decoheres my system.
 - (2) Make a measurement.
 - (3) Analyze the results,
 - correlation verifies observation. indistinguishable from a coin flip!

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed."

- * How to [operationally] verify an "observation"
 - (1) Do a [test] preparation.
 - (1.5) The environment decoheres my system.
 - (2) Make a measurement.
 - (3) Analyze the results,
 - correlation verifies observation. indistinguishable from a coin flip!
 - Occam's Razor implies no observation

Emergent "Reality"

"We argue that the apparatus cannot be observed in a superposition of the pointer-basis states because its state vector is being continuously collapsed." Zurek, Phys. Rev. D 24, 1516 (1981)

- * Conclusion: It's only a measurement if I can prove that it's measuring something.
 if it looks like noise, then it is.
- * Implication 1: A decohering system is never "observed" in a non-pointer state.
- * Implication 2: Non-pointer observables effectively don't exist (to a scientist).
- * Dynamics constrain reality.

Environment as a Witness

* Limitations of the decoherence approach.

- Measurement is still a magical process.
- Classical reality is what is *left* after quantum stuff is stripped away... where did it come from, anyway?
- Information/disturbance -- multiple observers interfere with each other!

* Resolution: measurements aren't direct.

- We observe indirectly, through the environment.
- We generally capture a tiny part of the environment.
- Similar fragments are available to other observers.

* How does information about 5 flow through E?

Pirsa: 07060039 Page 22/33

Objectivity & Reality

* What can I observe?

- I can only capture a small fragment of \mathcal{E} .
- I can reliably observe *only* properties that are recorded *redundantly* throughout the environment.

* Sufficiently redundant records are objective.

- (1) The same information is available to many observers.
- (2) One measurement does not disturb other copies (no-signaling).

* Redundant = Objective = Real

- Decoherence *creates* objectivity (a closed system is invisible... e.g., doesn't exist!)

Pirsa: 07060039

Quantum Darwinism

- * Need a name for the spreading of information
 - * Some properties (the only ones that can be observed!) get spammed all over \mathcal{E} .
 - * No-cloning implies not all properties can be redundant.
 - * Environment selects at most one observable to be propagated all over the place.
- * Complementary observables are kaput!
 - Measuring them requires capturing all of \mathcal{E} .
- * Quantum Darwinism: the process by which *one* property is propagated throughout £, and becomes objective, at the expense of complementary observables?99e 24/33

The Environment-as-a-witness Toolkit

- * Observers learn about systems by measuring the environment (\mathcal{E}) .
- * Information lost to \mathcal{E} implies decoherence unless it is recaptured.
- * Measurements we can make on \mathcal{E} are limited by its *locality structure*.
- * A measure of "What information does \mathcal{E}_{ϵ} provide about \mathcal{S} ?" is the Quantum Mutual Information:

$$I_{SE} = H_S + H_E - H_{SE}$$

where $H \equiv -\text{Tr}(\rho \ln \rho)$

Quantum MI can rise to $I_{SE} = 2H_{S}$ (whereas $I_{classical} < H_{S}$).

Page 25/33

Partial Information Plots

(a visual approach to information storage)

* Plot how much of E is captured

VS.

how much information can be inferred.

- * Three distinct profiles:
 - redundant information
 - distributed information
 - encoded information

* For pure states of SE, PIPS

have reflection symmetry

Page 26/33

Random vs. Singly-branching States

- Randomly selected states for S⊗E display encoding:
 - No redundant information
 - Not representative of the universe we live in.
- Singly-branching states* of S⊗E display redundancy:
 - Simple model of decoherence
 - Results agree with ubiquitous observations of real universe.

*Singly-branching Each pointer state of ${m s}$ is correlated w/a random product state of ${m s}$

states:

$$|\Psi\rangle = \sum s_n \left(|n\rangle_{\mathcal{S}} \otimes |\mathcal{E}_n^{(1)}\rangle \otimes |\mathcal{E}_n^{(2)}\rangle \otimes \dots |\mathcal{E}_n^{(N_{\mathrm{env}})}\rangle_{\mathsf{Page}}$$
27/33

Dynamical evolution of PIPs (Spin bath models of decoherence)

Interaction-only model Is:E_(m)-H_S 96 64 32 0.9 Each part of \$\mathcal{E}\$ interacts with ("measures")

Each part of \mathcal{E} evolves on its own, while it measures \mathcal{S} . The system has no dynamics.

These models yield singly-branching states

s independently. No other dynamics.

Dynamical-system & Multiple-measurement

D-S: S evolves, mediating \mathcal{E}_{ℓ} - \mathcal{E}_{j} interaction.

Pirsa: M290239 Multiple noncommuting interactions between S and each \mathcal{E}_{ℓ} ⇒ same effect.

Dissipative models (assorted)

Starting with the D-S or M-M model, we add independent dynamics for each part of \mathcal{E} .

More general models explore a much wider range of states... ... eventually, states appear randomly distributed.

Quantifying Redundancy

- * Goal 1: Quantify how many independent observers could obtain "nearly all" the information available about *S*.
- * Goal 2: Distill out the most important features of a PIP, for easier analysis.
- ***** Basic Idea: Compute $\mathcal{N}_{\delta} = \{ \# \text{ of random fragments that provide "all but δ" of the classical information \}; <math>R_{\delta} \approx \mathcal{N}_{\delta}$.
- ***** Caveats: Presence of entanglement yields extra information; large values of δ cause overestimation of R_{δ} .

$$R_{\delta} \ge (1 - \delta)N_{\delta} - 1$$

Dynamics of Redundancy Quantum Brownian motion

- * Most important parameters:
 - Central system's frequency,
 ω_S. Determines how much of
 ε actually interacts with S.
 - Squeezing of S's initial state, Δx. Determines how "classical" the system's state is.
- * R increases sharply as ω_s and Δx are increased.
- * Dissipation eventually destroys redundancy (& all information).

enhancing redundancy in ORM

* Dissipation is also

Pirsa: 07060039

Crucial for

Summary & Conclusions

- * Classical reality emerges from quantum theory.
 - * Operationally, the unobservable doesn't exist.
 - * So, we can construct self-consistent, objective "reality" as the set of properties selected & broadcast by the environment (this is Q.D.)
- * Environment-as-a-witness is a useful paradigm & toolset for tracing information flow from system to observer.
 - * Models show that Q.D. really *does* happen.
 - * ...but there's more complex behavior, too.

Summary & Conclusions

- * Classical reality emerges from quantum theory.
 - * Operationally, the unobservable doesn't exist.
 - * So, we can construct self-consistent, objective "reality" as the set of properties selected & broadcast by the environment (this is Q.D.)
- * Environment-as-a-witness is a useful paradigm & toolset for tracing information flow from system to observer.
 - * Models show that Q.D. really *does* happen.
 - * ...but there's more complex behavior, too.

pointer obs.