Title: Two concepts of classicality in quantum mechanics Date: Jun 04, 2007 04:30 PM URL: http://pirsa.org/07060038 Abstract:

[•]■plan of the talk

a new concept of classicality
 randomness
 gravity
 discussion

[•]■plan of the talk

a new concept of classicality
 randomness
 gravity
 discussion

a simple example

quantum ising model:

$$\mathcal{H} = (\mathbb{C}^2)^{\otimes N}$$

$$oldsymbol{H} = \sum_{\langle i,j
angle} oldsymbol{\sigma}_i \cdot oldsymbol{\sigma}_j$$

generalized rigidity

ordered phase has new property:

$$\frac{\delta F}{\delta \theta} = f \neq 0 \qquad \xrightarrow{f} \qquad (f) \qquad$$

generalized rigidity

the system pushes back

Interaction of two systems

imagine two systems with order parameters

their interaction is best described by a term

 $\theta_1 \cdot \theta_2$

 θ_1 and θ_2

 $\theta + {\rm generalized\ rigidity}$

= objective property

[•]■more is different, really.

`■ gravity

- you can not have a classical object without disturbing the vacuum: gravity
- inertial mass = gravitational mass?

$$m_i \simeq \int_{\partial C_i} (\nabla \theta) d\sigma$$

`■0th level

groundstate

characterized by

 θ_0

the vacuum

Interaction of two systems

imagine two systems with order parameters

 θ_1 and θ_2

their interaction is best described by a term

 $\theta_1 \cdot \theta_2$

 θ + generalized rigidity

= objective property

Interaction of two systems

imagine two systems with order parameters

 θ_1 and θ_2

their interaction is best described by a term

 $\theta_1 \cdot \theta_2$

 $\theta + {\rm generalized\ rigidity}$

= objective property

Classical property

Def.: (**classical property**) An order parameter θ s.t

$$\frac{\delta F}{\delta \theta} \neq 0$$

is called a classical property.

Classicality becomes a *dynamical* property of a large quantum system.

Ind concept of classicality

usually: classical states are given a priori.

leads immediately to the question:

how does $|\psi
angle$ assume one of the classical states |i
angle? Pirsa: 0706038. it leads to the measurement problem

[•]■a comparison

classical classicality		quantum classicality
YES	classical states a priori?	NO
YES	basis of classical states?	NO
NO	classical states dynamical?	YES
NO	classical states push back (gen. rigidity)?	YES
YES	Quantization a good idea?	NO Page 16/42

discontinuous transition

* sensitivity

add small magnetic field

$$\sum_{i} h \boldsymbol{\sigma}_{z}$$

then

$$\langle m \rangle = \lim_{h \to 0} \lim_{N \to \infty} \langle m(N, T) \rangle$$
view h as a small perturbation

as the system approaches the critical temperature T_c the system becomes arbitrarily sensitive to the environment.

discontinuous transition

* sensitivity

add small magnetic field

$$\sum_i h \boldsymbol{\sigma}_z$$

then

$$\langle m \rangle = \lim_{h \to 0} \lim_{N \to \infty} \langle m(N, T) \rangle$$
view h as a small perturbation

as the system approaches the critical temperature T_c the system becomes arbitrarily sensitive to the environment.

transition very sensitive to the environment.

claim: this is the source of the probabilistic character of quantum mechanics.

what went wrong?

why does

$$\begin{split} |a\rangle|N\rangle &\longrightarrow |a\rangle|A\rangle & |b\rangle|N\rangle &\longrightarrow |b\rangle|B\rangle \\ \vdots \text{ imply} \\ (\alpha|a\rangle + \beta|b\rangle)|N\rangle &\longrightarrow \alpha|a\rangle|A\rangle + \beta|b\rangle|B\rangle \\ ? \end{split}$$

we have not taken into account the environment. the new experiment is a new role of the dice. *linearity does not apply*.

not

Symmetry of environment symmetric?"

yes, but only in an ergodic sense. instead of

$$g \cdot |\text{env}\rangle = |\text{env}\rangle$$

we have

$$g \cdot \frac{1}{\Delta T} \int_{\Delta T} dt \ U(t) |\text{env}\rangle = \frac{1}{\Delta T} \int_{\Delta T} dt \ U(t) |\text{env}\rangle$$

for ΔT large enough.

non-symmetric fluctuations are amplified.

The symmetric state exists but is unlikely Pirsa: 07060038 ---- broken ergodicity.

remark on the born rule

since we assume the structure of hilbert spaces together with its inner product we can derive the born rule, i.e.

$$p_i = |\alpha_i|^2$$

using arguments of d. deutsch, d. wallace, and s. saunders.

see also, od quant-ph/0603202.

three dimensional spin systems on a lattice

examples:

(i) ising model (+ modifications)

(ii) stringnet condensates (a la wen)

`■0th level

groundstate

characterized by

θ_0

the vacuum

`■ I st level

excitations $|k\rangle = \sum \exp\left(2\pi i \frac{nk}{N}\right) |0 \dots 0 1 0 \dots 0\rangle$ nexcitation implies E(k) $\theta \neq \theta_0$ k

elementary particles

[•]■2nd level

classical object = bound state of excitations

• internal relativity

how does the system look like from the inside?

constant speed of light

→ Lorentzian metric

Newtonian gravity in low speed limit

→ metric is curved

* **newton's law**
$$E \simeq \int d^3 x \ (\nabla \theta)^2$$
$$\frac{\delta E}{\delta \theta} = \Delta \theta = 0$$

$$F \simeq \frac{m_1 m_2}{r^2}$$
$$m_i \simeq \int_{\partial C_i} (\nabla \theta) d\sigma$$

• internal relativity

how does the system look like from the inside?

constant speed of light

→ Lorentzian metric

Newtonian gravity in low speed limit

→ metric is curved

classical world \subset quantum kinematics

measurement problem

instead:

Classicality is a *dynamic* property of a large quantum system

environment & decoherence

roles of environment

- dump for energy/entropy
- bring it close to transition
- provide randomness

decoherence to keep it classical

`■ gravity

- you can not have a classical object without disturbing the vacuum: gravity
- inertial mass = gravitational mass?

$$m_i \simeq \int_{\partial C_i} (\nabla \theta) d\sigma$$

generalized rigidity

ordered phase has new property:

$$\frac{\delta F}{\delta \theta} = f \neq 0 \qquad \xrightarrow{f} \qquad (f) \qquad$$

generalized rigidity

the system pushes back