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Much recent foundations work suggests (to me at least) the following
foundational principle for quantum theory:

Maximal information about reality is incomplete information

Caves and Fuchs, quant-ph/9601025
Rovelli, quant-ph/9609002

Hardy, quant-ph/9906123

Brukner and Zeilinger, quant-ph/0005084
Hardy, quant-ph/0101012

Kirkpatrick, quant-ph/0106072

Collins and Popescu, quant-ph/0107082
Fuchs, quant-ph/0205039

Emerson, quant-ph/0211035

Spekkens, quant-ph/0401052
Grinbaum, quant-ph/0509106
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Rovelli, quant-ph/9609002

Hardy, quant-ph/9906123

Brukner and Zeilinger, quant-ph/0005084
Hardy, quant-ph/0101012
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Emerson, quant-ph/0211035
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Grinbaum, quant-ph/0509106

But this does not seem to be enough to derive quantum theory within
a classical framework
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Example: toy theory of quant-ph/0401052

Ontic states

Epistemic states

__HN 0)
1 1)
M @ .,
CHL +9 jgmosm
HEE & ¥
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Phenomena that can be explained (qualitatively at least)
as the result of an epistemic restriction

« Coherent superposition + Noncommutativity

« Bi-partite entanglement * Interference

« tri-partite entanglement + No-cloning

» The monogamy of entanglement * Teleportation

« The ambiguity of mixtures * Key distribution

« No universal state inverter * Dense coding

+ Mutually unbiased bases + No bit commitment

« Neumark and Stinespring extension * Interaction-free measurement
» Choi-Jamiolkowski isomorphism * Quantum eraser

See: Spekkens quant-ph/0401052
Also Bartlett, Rudolph, and Spekkens, in preparation
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What the toy theories fail to capture

« They are noncontextual (no Bell-Kochen-Specker theorem)
« They are local (no violations of Bell inequalities)

« They do not reproduce the full set of quantum states,
measurements, and transformations

« Twao levels of a toy qutrit do not yield a toy qubit

« There is no exponential speed-up relative to classical
computation

irsa: 07060037 Page 8/103




What the toy theories fail to capture

« They are noncontextual (no Bell-Kochen-Specker theorem)
« They are local (no violations of Bell inequalities)

* They do not reproduce the full set of quantum states,
measurements, and transformations

« Two levels of a toy qutrit do not yield a toy qubit

« There is no exponential speed-up relative to classical
computation

We can categorize nonclassical phenomena in this way

The failures help to identify the conceptual elements of quantum
theory that are missing from these toy theories
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Despite having no axiomatization to offer, | argue that a
research program seeking a particular kind of realist
axiomatization appears to be promising

The approach is:

Be very conservative. Keep almost all classical notions of
reality, except:

Axiom 1. There is a restriction to how much an observer
(or any system) can know about the real state of the
systems with which she interacts

Axiom 2. 777 (some change to our classical notion of

reality)

Contextuality is an umbrella for many missing phenomena and
e 005037 1y therefore be our best clue for how to proceed R




Phenomena that are a form of contextuality

- all variants of the Bell-Kochen-Specker theorem
(algebraic, state-specific, statistical, continuous, discrete)

- all variants of Bell's theorem
- novel theorems that apply even in 2d Hilbert spaces

- The necessity of having negativity in quasiprobability
representations of quantum theory

- Aspects of pre- and post-selected “paradoxes”
- Better-than-classical performance of oblivious transfer
- all variants of von Neumann's no-go theorem

- Quantized spectra? Fermionic statistics?

irsa: 07060037 Page 11/103




Qutline

» Generalizing the notion of nhoncontextuality to arbitrary
procedures and operational theories

« Why von Neumann's no-go theorem is a proof of contextuality

« Conclusions
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It was shown by Bell (1966) and Kochen and Specker (1967)
that a noncontextual hidden variable model of quantum
theory for Hilbert spaces of dimensionality 3 or greater is
iImpossible. That is, quantum theor

This is the
Bell-Kochen-Specker
theorem
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The traditional definition of contextuality does not apply to:
(1) arbitrary operational theories

(2) preparations or unsharp measurements
(3) indeterministic hidden variable models
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The traditional definition of contextuality does not apply to:

(1) arbitrary operational theories
(2) preparations or unsharp measurements
(3) indeterministic hidden variable models

Proposed new definition:
A noncontextual HV model of an operational theory is one
wherein if two experimental procedures are operationally

equivalent, then they have equivalent representations in
the HV model.
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Operational theories
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Operational theories

Preparation Measurement
P M

These are defined as lists of instructions
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Operational theories

L
e

Preparation Measurement
P M

These are defined as lists of instructions

An operational theory specifies

p(k|P, M) = The probability of outcome k of M
| N given P.
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Defining operational equivalence of procedures

For preparations

P~ P if
p(k|P,M) = p(k|P’, M) for all M.
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Defining operational equivalence of procedures

For preparations

P~ P if
p(k|P,M) = p(k|P’, M) for all M.

irsa: 07060037 Page 20/103




Defining operational equivalence of procedures
For measurements

M~ M’ if

p(k|P, M) = p(k|P,M") for all P.
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Defining operational equivalence of procedures

For measurements
M~ M if
p(k|P, M) = p(k|P, M) for all P.

Pi




A hidden variable model of an operational theory
assumes primitives of systems and properties

Preparation _
Jrp(N)dr =1

<:> #F’(/\)/\ 3
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A hidden variable model of an operational theory
assumes primitives of systems and properties

Preparation

Measurement
M

- I

irsa: 07060037
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[up(\)dA =1
pp ()
SN,
0<é&mp<1
S ré€mpr(A) =1 for all A
Em.1(A) N -
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irsa:

A hidden variable model of an operational theory
assumes primitives of systems and properties

Preparation
P

L—
_ _.] —

=

Measurement
M

- g,
@@

—

-

Jup(N)dA =1
pp ()
//\ .
0<éme<1
Y r€mir(A) =1 for all A
Em.1(N) s -
Em.2(A) sl oy
Em3(A) ] I

p(k|P,M) = [dX & k(A) pp(N)




Defining noncontextuality in operational theories

Preparation Noncontextuality
if P~P’ then up(\) = pupr(N)
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Defining noncontextuality in operational theories

Preparation Noncontextuality
if P~P’ then up(\) = pupr(N)

mp ()

=
ppr(A)
‘_' <:> ] /\ ek
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Defining noncontextuality in operational theories

Preparation Noncontextuality
if P~P’ then up(\) = pupr(N)

- <::> #F’()\)/-\ }

rac oo [y ffarences between P and P’ are differences of conte)xt =~




Defining noncontextuality in operational theories

Measurement Noncontextuality
if M~M’ then gl\/ljk(’\) — é'Mf?k(A)
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Defining noncontextuality in operational theories

Measurement Noncontextuality
if M~M’ then ‘gl\/l,k()\) — §Mf’k(/\)

Em.1(A)
Em2(A)

Em.3(A)

Emr.1(A)
Emr2(A)
Emr 3(A)
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Defining noncontextuality in operational theories

Measurement Noncontextuality
if M~M’ then gl\/l,k(’\) — §Mf’k(/\)

Em,1(A) N -
D v i, S
Em.3(A) £ o2l
Emr,1(A) AV=S - X
<:> Emr2(A) £ B E e X
§Mf,3(}t) /—"—L 2\

e oo My iffarences between M and M’ are differences of conteyet >




Quantum theory
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Defining noncontextuality in quantum theory

Preparation Noncontextuality in QT
if P, P'— p then up(A) = ppr(A) = pp(A)

pp(A)

pp(A)
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Defining noncontextuality in quantum theory

{Ex} M

Pirsa: 07060037

Measurement Noncontextuality in QT

if M,M’ — {E;} then &y (A) = & (V) = EB, (M)

Eg,(A)
EE,(A)
EE3(A)

§E, (A)
EE,(A)
55'3(‘*)
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The traditional notion of noncontextuality

v,

lw,)
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How to formulate the traditional notion of noncontextuality:

lp
1 lw, x1 (M) .
lp,) /;> x2(A) -3

lw, -
" - x1(\) -
x5(A) -
lw’y) Xs(A) -

Page 36/103
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This is equivalent to assuming:

M x1(\) i

X—rl(k) -\

w  coarse-grain

measure

x1(A)

X—rl(’x) - A

coarse-grain
', and |y's)

measure /
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But recall that the most general representation was

fFy M

—

Therefore:

traditional notion of
noncontextuality

irsa: 07060037

£ 00 - -
ng()\) il L
51‘:’3 (A) - ’_L X

revised notion of
noncontextuality for sharp
measurements

and

outcome determinism for
sharp measurements
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So, the proposed definition of noncontextuality is not
simply a generalization of the traditional notion

For sharp measurements, it is a revision of the
traditional notion
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Local determinism:
We ask: Does the outcome depend on space-like separated events
(in addition to local settings and 7.)?

Bell's local causality:
We ask: Does the probability of the outcome depend on space-like
separated events (in addition to local settings and 7.)?
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Local determinism:
We ask: Does the outcome depend on space-like separated events
(in addition to local settings and 7.)?

Bell's local causality:
We ask: Does the probability of the outcome depend on space-like
separated events (in addition to local settings and 7.)?

Traditional notion of measurement noncontextuality:
We ask: Does the outcome depend on the measurement context
(in addition to the observable and 7.)?

The proposed revised notion of measurement noncontextuality:
We ask: Does the probability of the outcome depend on the
measurement context (in addition to the observable and 7.)7

irsa: 07060037 Page 41/103




Local determinism:
We ask: Does the outcome depend on space-like separated events
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Bell's local causality:
We ask: Does the probability of the outcome depend on space-like
separated events (in addition to local settings and 7.)?

Traditional notion of measurement noncontextuality:
We ask: Does the outcome depend on the measurement context
(in addition to the observable and 7.)?

The proposed revised notion of measurement noncontextuality:
We ask: Does the probability of the outcome depend on the
measurement context (in addition to the observable and 7.)7
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revised notion of
= noncontextuality for sharp
measurements

traditional notion of
noncontextuality

and

outcome determinism for
sharp measurements

No-go theorems for previous notion are not necessarily
no-go theorems for the new notion!

In face of contradiction, could give up ODSM
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However, one can prove that

preparation outcome determinism for
noncontextuality sharp measurements
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However, one can prove that

preparation outcome determinism for
noncontextuality sharp measurements

Proof

lw,
|, Xapp (A) ‘ . -
lw,) Xopp (A) A -
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However, one can prove that

preparation outcome determinism for
noncontextuality sharp measurements

Proof
oy, (N)

o (A)

lp,

Illjg X’wl(}‘) ‘ =

[/\x (A
lws) Xy5(A) P N~ A
Xapz (A) / \ .
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However, one can prove that

preparation outcome determinism for
noncontextuality sharp measurements

Proof
oy, (N)

oo (A)

lp,

a (M)
) xyp(N) /H A A
Xapz (A) / \ x

pr3(A) = Sy (V) + S, () + Fp, (V)

pr/3(A) = puy(X) + ...
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We've established that

preparation outcome determinism for
—_—i

noncontextuality sharp measurements
Therefore:
measurement measuremen_t
noncontextuality noncontextuality
and == —
preparation outcome determinism for

noncontextuality sharp measurements
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We've established that

preparation outcome determinism for
noncontextuality sharp measurements

Therefore:

measurement

noncontextuality Traditional notion of

and noncontextuality
preparation

noncontextuality
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We've established that

preparation outcome determinism for
—_—i

noncontextuality sharp measurements
Therefore:
measurement
noncontextuality Traditional notion of
and noncontextuality
preparation

noncontextuality

no-go theorems for the traditional notion of noncontextuality can
be salvaged as no-go theorems for the generalized notion
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Phenomena that are a form of contextuality

- all variants of the Bell-Kochen-Specker theorem
(algebraic, state-specific, statistical, continuous, discrete)

- all variants of Bell's theorem

- novel no-go theorems, including many in 2d Hilbert spaces
(see PRA 71, 052108)

-The necessity of having negativity in quasiprobability
representations of quantum theory

- Aspects of pre- and post-selected “paradoxes” (joint work with
M. Leifer, PRL 95, 200405)

- Better-than-classical performance of oblivious transfer
(Joint work with B. Toner)
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VVon Neumann’s no-go theorem
for hidden variables is a proof of
contextuality
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von Neumann’'s assumptions about HV models of QT

o A — fa(A)

® fa()) € spec(A)
fp(\) =0 or 1 “Dipersion-free ensemble”
( frix) =1 )

¢ if A= B+ C then fa(A\) = fgp(A) + fc(A)

even if A, B, and C do not commute
The latter goes beyond traditional noncontextuality

Theorem: Such a HV model of quantum theory does not exist.
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Von Neumann's proof

if A= B+ C then fy(A) = fg(A) + fe(N)
or equivalently, fg1rc(X) = fB(A) + fc(N)

Lemma: Any function g that is a linear func-
tion over the Hermitian operators has the form

9(A) =Tr(wA)

for some Hermitian operator w.

— fa(A) = Tr(w(A)A)

fp(A) >0 forall P — w(A) >0
fiNN=1 — Trw))=1

w(\) is a density operator

irsa:o7oeoo37But f‘P(A) — 0 Or. 1 for. a” .P CONTRAD!CTIOI‘»ﬁgesmos




A simpler proof (Belifante, Ballentine)

T = &Ly
! V2
— 1 |
Sn = 255z + 755y .
fn()\) i AJC:I:(/\) i . fy(/\)
‘ V2 V2
C {_%1 %} {_L 0 \/_}

CONTRADICTION
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A simpler proof (Belifante, Ballentine)

fn(A) = %fa:(/\) | . fy(/\)
2 V2
M
N
= {_5’7} € {_%101%}
CONTRADICTION

Note: The solution of Horn's problem constrains the spectra of
A, B, C when A=B+C. This may yield insights into such no-go
ez ospjagrems (joint work with J. Emerson and M. Christandl) Page 56/103




We argue that

Noncontextuality for
preparations and .,
measurements

von Neumann’'s
assumptions

Therefore, no-go theorems based on vN's assumptions can be
salvaged as no-go theorems for the generalized notion of NC
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von Neumann’'s assumptions about HV models of QT

o A — fa(A)

® fa()) € spec(A)
fp(A\) =0 or 1 “Dispersion-free ensemble”
( frd) =1 )

2 if A= B+ C then fa(A\) = fB(A) + fe(N)

even if A, B, and C do not commute
The latter goes beyond traditional noncontextuality
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von Neumann’'s assumptions about HV models of QT

o A — fj(\) |justified by noncontextuality for sharp mmts

@ fa(\) € spec(A)
fp(A) =0 or 1 “Dispersion-free ensemble”
( frd) =1 )

2 if A= B+ C then fo(\) = fg(\) + fo()

even if A, B, and C do not commute
The latter goes beyond traditional noncontextuality
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von Neumann’'s assumptions about HV models of QT

o A — fjs(\) |justified by noncontextuality for sharp mmts

o fa(X) € spec(A)
fp(\) =0 or 1) “Dispersion-free ensemble”

( (X)) =1 justified by preparation
noncontextuality

2 if A= B+ C then fo(\) = fg(\) + fo(O)

even if A, B, and C do not commute
The latter goes beyond traditional noncontextuality
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von Neumann’'s assumptions about HV models of QT

o A — fja(\) |justified by noncontextuality for sharp mmts

o fa(X) € spec(A)
fp(\) =0 or 1) “Dispersion-free ensemble”

( (X)) =1 justified by preparation
noncontextuality

2 if A= B+ C then fo(\) = fg(\) + fo(\)

even if A, B, and C do not commute
The latter goes beyond traditional noncontextuality

justified by noncontextuality for unsharp mmts
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A=B+C
A—3_ _aly, B—3Y_hi GC—)_ ecf:

ZaPa=Zbe+ZCPc
a b C
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A=B+C
4—3 aly, B—Y_K} C—Y cf;

Zﬂpa =prb+ZCPc
a b C
Sort the terms by the sign of their eigenvalues

Z G+Pa+ =~ - Z b—| By + Z le— | Pe=— Z la—|Pa_ + Z b_|_.Pb+ - - Z C+PC+
ai b C— = b+ C4
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A=B+C
A—Y_ ale, B—3_51 €C—Y ct;

ZH'-P{I:Z'E)PE)_I_ZCPC
a b C

Sort the terms by the sign of their eigenvalues

S arPa, +3 0-|Py + 3 le—|P-=) la—|Pa_+ ) b4 Py +) cyPey
ay b_ C— - b+ C4

This defines a positive operator. Let r = maximum coefficient.
Divide by 3r.

oty o ol ol Zla—| Ly Loty Z\C+I
E 3r bz_: 3r °- QZ_ 3r & 3r W f 3r °F

This defines an effect that can be decomposed in two ways.
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A=B+C
A=—3 al, B—Y_5MI GC—Y_ cf;

Zﬂpa=Zbe+ZC_Pc
a b C

Sort the terms by the sign of their eigenvalues
YorFo FYRIB +Y e P Ya|Pe +Y by Py, + Y ep P,
ay b_ c—

a_

This defines a positive operator. Let r = maximum coefficient.
Divide by 3r.

Z]a+|Pa++Z
a; 3T

b_|

Pb +Z

je| Pc_—Z la_| ey +Z \17'+|‘D +Z ‘C+|PC+
This defines an effect that can be decomposed in two ways.

One can deduce that

Zm' ()+Zlb . (*>+Zi“‘:~:c () = %{a-wi‘ +g““+'

::::: 600 7 + /10 'I'
3o ~ b Bfe










probability of top branch outcome of M given preparation P
Pirsa: 07060037 % X Pr(ﬂ_!_lMA? P) x |l‘.’1+| Page 69/103
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probability of top branch outcome of M given preparation P
e Ly Pr(agpMa, P) x 2 =1 5 Tr(p,, p) x

| (1 + | Page 70/103
T










probability of some upward branch outcome of M given preparation P
Pirsg: eogr b——- —_ e £3/103
b MPV(MIMA’ )5y u|=>r(f;._|iv|B, P+ Y %Pr(c_TMC, P)

A -~




Associated effect Associated indicator function

@E’&l E E lay| E P\c_
Eabn, + T TR TR Y e 0+ 0 00+ D )

e 3r




N :
bl 1 _ lb-H)

r

For the outcome corresponding to some upward branch of M’
Associated effect Associated indicator function

~Jagl, 1] le| a_| by o]
Vlsiok, +§ R, +Y ER, Y w g xb+(h)+§a£e§m+m

3r

la_
a_ 3T c+ a_




By assumption

b_ 3 b
Yot +y iy +z": s —ylp oyl oaled,
ajt b_

Consequently, M and M’ are operationally equivalent
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By assumption

ja | | |c—| la_| b4 | [
— T—p =
M Bp e B s HZ_3TP“‘+% o +Z —_

a4+

Consequently, M and M’ are operationally equivalent

But then, by noncontextuality for unsharp mmts

Fl 0 +Y e 0+ Y e ) =3 S 00+ 52y, 00+ T




|b_ e |

60+ e )= She 004+ 2 200,00+ S, 0
ct

a— r b'f'

>t W+

at
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|b_

a
e W+
{I.i_ r
Multiplying by 3r and rearranging terms, we have

Z axa(A) = Z bxp(A) + Z cxe(A)
a b C

0+ L S 0 =2 e 00+ 5 2, 00+ T e, 0
a_ C_.I_

bt
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ylot a+()«)+z“’—‘ - (A)+z'“—‘xc_(>«) z‘3r

{I.|_ 3T' a_
Multiplying by 3r and rearranging terms, we have

Z axa(A) = Z bxp(A) + Z cxe(A)
(L b C
fa(A) = fp(A) + fe(A)
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Z|Z-:| a+()\)+zlb—_ Xb_ (’\)+ZIC——XC—(}‘) Z|3 Z

a_ r b
Multiplying by 3r and rearranging terms, we have

Z axa(A) = Z bxp(A) + Z cxe(A)
L b [ e
fa(A) = fB(A) + fe(A)

So we have rederived von Neumann’s assumption!

Pirsa: 07060037
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Can we just verify that A=B+C rather than the implementing the
two measurements just described?
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Can we just verify that A=B+C rather than the implementing the
two measurements just described?

Yes.
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The empirical content of M —~ M’ is that

S |‘;J;|Pr(a+|m P)+Y ‘E’—‘[Pr(b_w -l Z E
h

ai
ﬂ:_
= Z‘ “Pr(a_|My,P) + Z‘ +‘Pr(b+|MB,P) +Z '3j'Pr(c+|Mc P)
by S
R 100 for all preparations P>

Pr(c—|M¢, P)




"\{—— 1 -2y

But by noncontextuality, the rolling of the dice cannot be important
Instead, just determine Pr(a|M 4, P), Pr(b|Mpg,P), Pr(c|M-,P) VP

Then numerically verify that

|| |e—|

leﬁlpr(aHM P)—}—Z Pr(b IMp P)—I—Z Pr(c_|M . P)
e
i Z ‘a"Pr(a IM 4 P)+Z‘ +‘Pr(b+|MB=P)+Z| ”Pr(%L Mg P)

by :ﬁ,tll ﬂﬂﬂﬂﬂﬂﬂ O



But this is equivalent to numerically verifying that
Y aPr(a|My,P) =) bPr(b|Mp,P) + ) cPr(c|Mg,P) VP
a b C

which is precisely the empirical content of

A=B+C
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Faster proof:

Lemma: Any function g over positive opera-
tors satisfying

9O _riEp) =) rrg(Ey)
k k

where r. > 0, can be extended uniquely to a
linear function over the Hermitian operators

9(Q_ajA;) =) ajg(Aj)
J J
where the a; are real.

See: Busch, Phys. Rev. Lett. 91, 120403 (2003)
Caves, Fuchs, Manne, and Renes, Found.Phys. 34, 193 (2004)

Noncontextuality for
preparations and .
irsa: 07060037 m eas u re me nts

von Neumann’'s
assumptions S—




Were von Neumann's assumptions “silly"?

Mermin on von Neumann:

"...to require that v(A+B)=v(A)+Vv(B) in each individual system of the
ensemble is to ensure that a relation holds in the mean by imposing it
case by case ---a sufficient, but hardly a necessary condition. Silly!”
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Were von Neumann’'s assumptions “silly™?

Mermin on von Neumann:

"...to require that v(A+B)=v(A)+Vv(B) in each individual system of the
ensemble is to ensure that a relation holds in the mean by imposing it
case by case —a sufficient, but hardly a necessary condition. Silly!"

Mermin on Bell-Kochen-Specker:

"If we do the experiment to measure A with B,C,... on an ensemble of
systems prepared in the state and ignore the results of the other
observables, we get exactly the same statistics for A as we would have
obtained had we instead done the quite different experiment to
measure A with LM, ... on that same ensemble. The obvious way to
account for this, particularly when entertaining the possibility of a
hidden-variables theory, is to propose that both experiments reveal a
set of values for A in the individual systems that is the same, regardless
of which experiment we choose to extract them from.”
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Were von Neumann's assumptions “silly™?

Mermin on von Neumann:

"...to require that v(A+B)=v(A)+v(B) in each individual system of the
ensemble is to ensure that a relation holds in the mean by imposing it
case by case ——a sufficient, but hardly a necessary condition. Silly!”

Mermin on Bell-Kochen-Specker:

"If we do the experiment to measure A with B,C,... on an ensemble of
systems prepared in the state and ignore the results of the other
observables, we get exactly the same statistics for A as we would have
obtained had we instead done the quite different experiment to
measure A with L M, ... on that same ensemble. The obvious way to
account for this, particularly when entertaining the possibility of a
hidden-variables theory, is to propose that both experiments reveal a
set of values for A in the individual systems that is the same, regardless
of which experiment we choose to extract them from.”

The obvious way is not the only way — it is a sufficient but not a
necessary condition.
" ithier both proofs are silly or neither is! Page 901103




More variants of von Neumann's no-go theorem

Schrédinger's example
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More variants of von Neumann's no-go theorem

Schrédinger's example

The tunneling example

V(x)
H=E£4v(x) c £ N

HO\) = 22X + v(x(\) 4 N
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Conclusions

The notion of noncontextuality should be separated from that of
outcome determinism
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Conclusions

The notion of noncontextuality should be separated from that of
outcome determinism

It can be extended to preparations and unsharp measurements.
It can be made operational and thus subject to experimental test
Most notions of nonclassicality can be understood as either:

- The result of an epistemic restriction
- An instance of the generalized notion of contextuality
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