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introduction

Why Study Info. Processing in GPTs?

@ Axiomatics for Quantum Theory.

@ What Is responsible for enhanced info processing power of
Quantum Theory?

@ Security paranoia.

@ Understand logical structure of information processing
tasks.
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introduction

Examples

@ Security of QKD can be proved based on...

¢ Monogamy of entanglement.
e The "uncertainty principle".
e Violation of Bell inequalities.
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introduction

Examples

@ Security of QKD can be proved based on...

e Monogamy of entanglement.
e The "uncertainty principle".
e Violation of Bell inequalities.

@ Informal arguments in QI literature:

o Cloneability < Distinguishability.
o Monogamy of entanglement < No-broadcasting.

These ideas do not seems to require the full machinery of
Hilbert space QM.
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introduction

rameworks for Probabilistic

Types of Separation

Types of Separation

Generic Theories

@ Classical vs. Nonclassical, e.g. cloning and broadcasting.

Pirsa: 07060033 Page 16/93




introduction

Frameworks for Probakb

Types of Separation

Types of Separation

{ a = l" L] - - . L]
' Generic Theories ' Quannom v Classical R
- "
L]

@ All Theories, e.g. de Finetti theorem.
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introduction

norks for Probabilistic

Separation

i

Generic Theories

@ Nontrivial, e.g. teleportation.
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Framework

Review of the Convex Sets Framework

@ A ftraditional operational framework.

ooo

O

Preparation Transformation Measurement

@ Goal: Predict Prob(outcome|Choice of P, T and M)
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States

Framework

State Space

Definition
The set V of unnormalized states is a compact, closed, convex
cone.

@ Convex: lfu.veVanda.3 >0then au+ 3v € V.
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Definition
The set V of unnormalized states is a compact, closed, convex
cone.

@ Convex: fu.veVanda.3 >0then au + 3v e V.
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Framework ?ta!es

I FTOGUCS

State Space

Definition
The set V of unnormalized states is a compact, closed, convex
cone.

@ Convex: Ifu.veVanda.? >0then au+ v e V.

@ Finite dim = Can be embedded in R".

@ Define a (closed, convex) section of normalized states (.

@ Every v € V can be written uniquely as v = aw for some
wea>0.

@ Extreme points of Q/Extremal rays of V are pure states.
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States

Framework

Examples

7 @ Classical: Q = Probability simplex. V = conv{Q.0}.

@ Quantum:
V = {Semi- + ve matrices}. Q = {Denisty matrices }.

@ Polyhedral:
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Framework

Effects

The dual cone V* is the set of positive affine functionalson V.
V*={f:V SRV eV, f(v)> 0}

.32 0. f{au-+ iv) = af(u) + AH(Y)
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Effects

The dual cone V* is the set of positive affine functionals on V.
V*=1{f: VSRV eV, f(v)> 0}

Va3 > 0, f(au + 5v) = af(u) + 5t(v)

@ Partialorderon V*: f < giff v'v € V. f(v) < g(v).
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Effects

The dual cone V* is the set of positive affine functionalson V.
V*={f:V =RV eV, f(v)> 0}

Ya. 3 > 0, f(au + 4v) = af(u) + Bf(v)

@ Partialorderon V*: f < giff v'v € V. f(v) < g(v).
@ Unit: Vw € Q, 1(w) =1. Zero: v €V, 0(v) =0.
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Framework

Effects

The dual cone V* is the set of positive affine functionalson V.
V*={f:V SRV eV, f(v)> 0}

Va.3 > 0, f(au + 8v) = af(u) + 5f(v)

@ Partialorderon V*: f < giff ¥'v € V. f(v) < g(v)
e Unit: Vvw e Q, 1(w) =1 Zero: v €V, 0(v) =0.
@ Normalized effects: [0, 1] = {f e V*[0 < f < 1}
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Framework

Examples

@ Classical: [0.1] = {Fuzzy indicator functions}.

e Quantum: [0. 1] = {POVM elements} via f(p) = Tr(E;p).

@ Polyhedral: -
e V* 0. 1]

Q 1

irsa: 07060033 Page 30/93



Framework

Effects

Observables

An observable is a finite collection (fy.fo, . ... fy) of elements of
[0. 1] that satisfies 3", f; = u.
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Observables

An observable is a finite collection (fi.fo, . . . fy ) of elements of
[0. 1] that satisfies 3" ; f; = u.

@ Note: Analogous to a POVM in Quantum Theory.
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Framework

Observables

An observable is a finite collection (fy.fo, . ... fy) of elements of
[0. 1] that satisfies 3° ; f; = u.

@ Note: Analogous to a POVM in Quantum Theory.

@ Can give more sophisticated measure-theoretic definition.
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Framework

i;mrrﬁannnajly Complete Observables

I Products

Informationally Complete Observables
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Framework

i}lhﬁﬁhnunauy Complete Observables

I Product

Informationally Complete Observables

An observable (f;.f>..... fx) Is informationally complete if

Vw, € Q, Yp(w) # Ye(p)-
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Framework

info

I'I'i'lél]ﬂl'lﬂll’f Complete Observables

I Product

Informationally Complete Observables

An observable (f;.f>..... fx) Is informationally complete if

Vw,pu € Q, ¥s(w) # Yg(p).

Lemma

Every state space has an informationally complete observable.
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Framework

morma ' ompiete Observables
Tensor

Products

Tensor Products

Separable TP: V) ®sep VB = CONV {va @ vB|va € V5, VB € Vg }
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Framework

—— R -

Tensor Products

Tensor Products

Separable TP: V) ®sep VB = CONV {vp @ vg|va € V), v € Vp}

Maximal TP: VA ®max VB = (V} ®sep V3)"
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Framework

Tensor Products

Definition
Separable TP: V) ®sep VB = CONV {va @ vB|va € V, VB € Vg }

Definition
Maximal TP: Vs @max Vg = (V} ®sep V2)"

Definition
A tensor product V5 @ Vg Is a convex cone that satisfies

VA @sep VB € VA @ VB C Vs @max VB.
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Framework

Dynamics

The dynamical maps Dp|4 are a convex subset of the affine
maps o : Vp — Vg.

Va, 3 > 0, ¢(aus + Bva) = ag(ua) + 36(va)
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Dynamics

The dynamical maps Dg|5 are a convex subset of the affine
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@ Dual map: o* : ‘VEF — V:.: [{__it(fB)] (VA) = fp ("-_’(VA))

irsa: 07060033 Page 41/93




Framework

Dynamics

The dynamical maps Dp|y are a convex subset of the affine
maps o : Va — Vp.

Va, 3 > 0, ¢(aus + Bva) = ag(ua) + 36(va)

@ Dual map: o* : ‘Vﬁ i) V; [r_‘J*(fB)l (VA) = fp (r_':('\':\))

e Normalization preserving affine (NPA) maps: ¢*(1g) = 1a.
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Famework

Dynamics

The dynamical maps Dp|y are a convex subset of the affine
maps o : Va — Vp.

Va.3 > 0, ¢(aup + Bva) = ad(uy) + Bo(va)
@ Dual map. o : \‘ré — \I:{ [f_'i*(fB)] (\."A) — fB (r_':r(\":\))
e Normalization preserving affine (NPA) maps: ¢*(1g) = 1a.
@ Require: ¥f € V{.vg € Vg, &(va) = f(va)vp isin Dp,.
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Cloning and Broadcasting Di?f’ﬂgﬂﬂamm;

jcasting

Distinguishability

A set of states {wq,ws..... wy }, wj € €2, Is jointly distinguishable
If 3 an observable (f;.fo.. ... fn) s.t.
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Cloning and Broadcasting Di&_ﬂfnngfnsnammy

Distinguishability

A set of states {wq,ws..... wy }, wy € €2, Is jointly distinguishable
If 3 an observable (f;.fo.. ... fn) s.t_

The set of pure states of Q is jointly distinguishable iff 2 is a
simplex.
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Distinguishability
Cioning

Cloning and Broadcasting

ting

Cloning

AnNPAmapo:V —=V @V clonesastatew € Q if

d(w) =w® w.
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Distinguishability
Cloning

Cloning and Broadcasting

Cloning

;
AnNPAmapo:V —=V @V clonesastatew € Q if
r_}(._,u) = W & W.
@ Every state has a cloning map: o(x) = 1(p)w @ w = w @ w.



Distinguishability
Cloning
= P e em Fmg AR R T |
414 LA (SR BLW |

Cloning and Broadcasting

Cloning

AnNPAmapo:V —V @V clonesastate w € Q if

!’_fl(q_.’) — W W W.

@ Every state has a cloning map: o(x) = 1(p)w ® w = w @ w.

A set of states {wq,ws..... wy } IS co-cloneable if 3 an affine
map in © that clones all of them.
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Distin JUISNZDITyY
Cloning

Cloning and Broadcasting

TN
iy

The No-Cloning Theorem

A set of states is co-cloneable iff they are jointly distinguishable.
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Cloning and Broadcasting

unag

The No-Cloning Theorem

A set of states is co-cloneable iff they are jointly distinguishable.

@ If J.D. then ¢(w) = YL ; fi(w)w; ® wj is cloning.
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istinguishability
Cloning

Cloning and Broadcasting

The No-Cloning Theorem

A set of states is co-cloneable iff they are jointly distinguishable.

@ IfJ.D. then o(w) = 21—1 fj(w)w; @ wj IS cloning.
@ If co-cloneable then iterate cloning map and use IC
observable to distinguish the states.
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Distinguishability
Cloning

Cloning and Broadcasting

ling

The No-Cloning Theorem

@ Universal cloning of pure states is only possible in classical
theory.

Generic Theories
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- : Distinguishability
Cloning and Broadcasting - '

Broadcasting

Reduced States and Maps

Given a state vyg € V5 @ Vg, the marginal state on V, is
defined by

vfa € Vi, fa(va) = fa @ 1g(wan).
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Cloning and Broadcasting s g

Broadcasting

Reduced States and Maps

Given a state vag € V5 @ Vg, the marginal state on V, is
defined by

Via € Vi, fa(va) =1fa ¢ ﬁB(""J‘B)

Given an affine map ¢gcja : Va — Vg @ V¢, the reduced map
o : Va — Vp Is defined by

vfg € Vg.va € Va, fB(dBja(va)) =8 @ 1c (dBCja(Va)) -
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Cloning and Broadcasting

Broadcasting

?
Definition
A state w € Q is broadcast by a NPA map
Oarara - Va — Var @ Var T oy p(w) = dprja(w) = w.



Cloning and Broadcasting

Broadcasting
?
A state w € Q is broadcast by a NPA map
r-—r};il":?\”hit : V_\ — ‘V‘_\: '::_:.- \/rAH If L—j;jk’l.‘!i(“""‘) — L_)AHI‘Q&(.,L.') = ).
@ Cloning is a special case where outputs must be
uncorrelated.



Cloning and Broadcasting

Broadcasting

A state w € Q is broadcast by a NPA map
Q.'—"&’A”H . V‘-:\ — V_jg V‘-_\H lf (-_’.3'&'|.’3i(“"‘) — L}AHIA(.L.') = W.

@ Cloning is a special case where outputs must be
uncorrelated.

A set of states Is co-broadcastable if there exists an NPA map
that broadcasts all of them.
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Cloning and Broadcasting

Broadcasting

Broadcasting

A state w € Q is broadcast by a NPA map
':”;—\’:\”H . VA — V‘y VAH If (‘_)A’I.’-'\(“""‘) — QA”L‘—'&("“') = W.

@ Cloning is a special case where outputs must be
uncorrelated.

A set of states Is co-broadcastable if there exists an NPA map
that broadcasts all of them.
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Cloning and Broadcasting :

Broadcasting

The No-Broadcasting Theorem

A set of states is co-broadcastable ift it is contained in a
simplex that has jointly distinguishable vertices.
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Cloning and Broadcasting e
Broadcasting

The No-Broadcasting Theorem

1

co-Droadcastab!
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Cloning and Broadcasting

Broadcasting

The No-Broadcasting Theorem

A set of states is co-broadcastable iftf it is contained in a
simplex that has jointly distinguishable vertices.

@ Quantum theory: states must commute.
@ Universal broadcasting only possible in classical theories.

The set of states broadcast by any affine map is a simplex that
has jointly distinguishable vertices.
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Cloning and Broadcasting i

Broadcasting

The No-Broadcasting Theorem

-Droadcastabl
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Cloning and Broadcasting SE———

Broadcasting

The No-Broadcasting Theorem

A set of states is co-broadcastable iff it is contained in a
simplex that has jointly distinguishable vertices.

@ Quantum theory: states must commute.
@ Universal broadcasting only possible in classical theories.

The set of states broadcast by any affine map is a simplex that
has jointly distinguishable vertices.
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Cloning and Broadcasting AN
Broadcasting

The No-Broadcasting Theorem
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The de Fneth Theorem

The de Finetti Theorem

@ A structure theorem for symmetric classical probability
distributions.
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The de Finetti Theorem

@ A structure theorem for symmetric classical probability
distributions.

@ In Bayesian Theory:

e Enables an interpretation of “unknown probability”.
o Justifies use of relative frequencies in updating prob.
assignments.
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The de Fnetli Theorem

The de Finetti Theorem

@ A structure theorem for symmetric classical probability
distributions.

@ In Bayesian Theory:

e Enables an interpretation of “unknown probability”.
o Justifies use of relative frequencies in updating prob.
assignments.

@ Other applications, e.g. cryptography.
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The de Finetli Theorem

Exchangeability

marginalize
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The de Fneth Theorem

Exchangeability

marginalize
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The de Fneth Theorem

Exchangeability
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The de Fneth Theorem

Exchangeability
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The de Fneth Theorem T T

The de Finetti Theorem

All exchangeable states can be written as

O = [ p(p)u®*dy (1)
J A

where p(p) is a prob. density and the measure du can be any
induced by an embedding in R".
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. Exchangeability
The de Fnetli Theorem

The Theorem

The de Finetti Theorem

? Proof.
@ Consider an IC observable (f1.1s.. ... fn) for Q4.
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The de Fneth Theorem

The de Finetti Theorem

@ Consider an IC observable (f1.1s.. . .. fn) for Q4.

o {f ®f, ®...f }isIC for QF.

@ The prob. distn. it generates is exchangeable - use
classical de Finetti theorem.

?

Prob(ji.jo. - - - . jk) :/ P(9)q;9s - - - 4 dq

Ay
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The de Finetti Theorem cxchangeability

The Theorem

The de Finetti Theorem

@ Consider an IC observable (f1.1s.. . .. fn) for Q4.

o {f ®f, ®...f }isIC for QFF.

@ The prob. distn. it generates is exchangeable - use
classical de Finetti theorem.

?

Pmb(J1-J’2~~-J’k):/ P(9)q;; 9 - - - 4 dq

Ay

@ Verify that all g’s are of the form q = «x(x) for some
i e Q.
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il Ea = 8L Exchangeability
The de Fnetti Theorem T T

The de Finetti Theorem

@ Have to go outside framework to break de Finetti, e.g. Real
Hilbert space QM.

- - - - L1
Generic Theories v+ Ouantum v Classical 1}
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«changeability

The de Fneti Theorem I

The de Finettli Theorem

@ Consider an IC observable (f1.1.. . .. fn) for Q4.

o {f ®f, ®...0f }isIC for Q.

@ The prob. distn. it generates is exchangeable - use
classical de Finetti theorem.

’

Prob(ji.jo. - - - jk):/ P(q)q;q; - - - 93 dq

Ay

@ Verify that all g’s are of the form q = «x(x) for some
i€ Q.
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- = e Exchangeability
The de FHnetli Theorem The Theorem

The de Finettli Theorem

@ Have to go outside framework to break de Finetti, e.g. Real
Hilbert space QM.

- - - - L1
Generic Theories v+ Ouantum v Classical } ]
- - - - "‘ ‘ﬁ - - "‘ ' )
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Quantum Teleportation

Teleportation

Teleportation
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Teleportation

Conclusive lTeleportation
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Generalized Teleportation
Teleportation

Generalized Conclusive leleportation

? " § T T
VA @ Var @ Vpr YES NO
fan? }
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Generalized Teleportation
Teleportation

Generalized Conclusive leleportation

If generalized conclusive teleportation is possible then V, is
affinely isomorphic to V.
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Teleportation

Generalized Conclusive leleportation

If generalized conclusive teleportation is possible then V, is
affinely isomorphic to V.

@ Not known to be sufficient.
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Generalized Teleportation
Teleportation

Generalized Conclusive leleportation

If generalized conclusive teleportation is possible then V, is
affinely isomorphic to V.

@ Not known to be sufficient.
@ Weaker than self-dual.
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Generalized Teleportation
Teleportation

Generalized Conclusive leleportation

If generalized conclusive teleportation is possible then V, is
affinely isomorphic to V.

@ Not known to be sufficient.
@ Weaker than self-dual.
@ Implies ® = 9.
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. antum Telepartation

Generalized Teleportation

Teleportation

Examples

@ Classical: [0.1] = {Fuzzy indicator functions}.
@ Quantum: [0.1] = {POVM elements} via f(p) = Tr(E;p).
@ Polyhedral:

Q I
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Generalized Teleportaiion

Teleportation

Generalized Conclusive leleportation

@ Teleportation exists in all C*-algebraic theories.

Generic Theories |
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Conclusions

Summary

@ Many features of QI thought to be “genuinely quantum
mechanical” are generically nonclassical.

@ Can generalize much of QI/QP beyond the C* framework.

@ Nontrivial separations exist, but have yet to be fully
characterized.
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Open Questions

Conclusions

Open Questions

irsa: 07060033

@ Finite de Finetti theorem?

@ Necessary and sufficient conditions for teleportation.

@ Other Protocols

e Full security proof for Key Distribution?
e Bit Commitment?

@ Which primitives uniquely characterize quantum
Information?
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