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Abstract: <span>The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum
information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding
guantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the traditional quantum error
correcting subspace codes. These new quantum error correcting subsystem codes differ from subspace codes in that their quantum correcting
routines can be considerably simpler than related subspace codes. Here we present a class of quantum error correcting subsystem codes constructed
from two classical linear codes. These codes are the subsystem versions of the quantum error correcting subspace codes which are generalizations of
Shor&€™s original quantum error correcting subspace codes. For every Shor-type code, the codes we present give a considerable savings in the
number of stabilizer measurements needed in their error recovery routines.</span>
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Quantum Computing Problems

« Schroedinger equation describes closed
systems evolution.

* Real systems cannot be considered closed
because of the environment interaction.

e The , IS” 3
toolset to describe quantum noise and
open systems behaviour.

« Quantum computers need a full control of
the quantum interactions to be reliable.
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Environment

Open system analysis describes the environment and the system as a
unique object.
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Open system anal}fsis describes the environment and the system as a
unique object.
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Environment

Open system analj;?sis describes the environment and the system as a
unique object.

E(p)=1., | U(p®p.,)U" |
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Environment

Open system anal}fsis describes the environment and the system as a

unique object.
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The partial
trace operator
gives back the
state of the
— : system after -
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‘Noise Linearisation
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‘Noise Linearization

Take an orthonormal basis for the environment H and

the initial state. Then is possible to write the environment interaction as

S(P ) == Z E, p |:(P ® ‘EEI ':::e[j] HUT ‘ € = ZE P E I
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‘Noise Linearization

Take an orthonormal basis for the environment H and

the initial state. Then is possible to write the environment interaction as

O<k<d?
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Noise operators on qu bit

1-p
Channel

Maodel P p

1p
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Noise operators on qubit

1-p
Channel 0 1

Model p p
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‘Notse operators on qubrt
1-p
Channel =9 :
Model p p
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Frror correction

* The kev idea of error correction is that we need
to add redundancy bits to protect Information
from noise. In this wayv it is possible (under
certain conditions) te rebuild the information
content.

« Linear error correcting codes are the simplest
ones.

* A linear code is defined as a
on
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Frror correction

* The kev idea of error correction is that we need
to add redundancy bits to protect Information
from neoise. In this way it is possible (under
certain conditions) te rebuild the information
content.

« Linear error correcting codes are the simplest
ones.

* A linear code is defined as a
on

o B G is a linear code on GF(2).
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Lanear Error correcting codes

« An bit information coding with a  bit C -

-

is defined bv a generator matl ix G wW ho_se
elements belonfr to GFE(2).
* An message , 1s encoded In a message

of k bit by the following operation
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Lanear Error correcting codes

An bit information coding with a bit CODE
whose

@

is defined bv a generator matl ix G

elements belonfr to GE(2).
An message , 1s encoded In a message

of k bit by the following operation

bit of Information

a k bit coding used to encode
notation

is denoted by the
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Classical error correcting Codes(2)

To define classical linear codes it is often used the

In this way a encoding is defined as the complete vector set
of elementson GF(Z) with the property:
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(lassical error correcting Codes(2)

« To define classical linear codes it is often used the

« In this way a encoding is defined as the complete vector set
of elementson GF(2Z) with the property:

where His a matrix .
« Moreover suppose that and are twe words: the
between and is defined as the number of bits (in the
same position) the two words differ from each other. For emmple:

d((1,1,0,0),(0,1,0,1))=2

I Camadian Quantum Information
SRR Student's Conference



Classical error correcting Codes(2)

e

« To define classical linear codes it is often used the

« In this way a encoding is defined as the complete vector set
of elementson GF(Z) with the property:

P
Hﬁl = ﬁi
—
{9 s

where His a matrix .
« Moreover suppose that and aretwe words: the

between and is defined as the number of bits (in the
same position} the two words differ from each other. For example:

d((1,1,0,0),(0,1,0,1))=2

« In particoular the is defined as :
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An example:
Tire
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An example:
Tire

« The sitmplest way te protect one bit 1s to copy 1t three
times...

0 — 000

=
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An example:
Tlre

« The sitmplest way to protect one bit 1s to copy 1t three
times...

0 — 000
L—>111]
1-p
0 1
o P
0 1
1-p

Suppose to have a 001 string for the channel output, the decoding circuit, “chooses”
that the most likely event has been the and it will decode the output as a
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codes

* We have te deal with three major problems when we

want to build a guantum code :

3 . 1t s Impeossible to duplicate
an unknow quantum state.

E 1t Lo
be a non trivial operation to recognize which kind of
error has occurred

-
-
l-.
€l
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codes

* We have te deal with three major problems when we
want to build a quantum code :
F . 1t s Impossible to duplicate
an unknow quantum state.

= 1t Lo
be a non trivial operation to recognize which kind of
error has occurred

E > we
have to extract the output of the channel with a
measure to know if the message transmitted 1s
correct and thus correctly decoded .
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3 um codes

We have to deal with three major problems when we

want to build a quantum code :

F - 1t s Impeossible to duplicate
an unknow quantum state.

= 1t Lo
be a nen trivial operation to recognize which kind of
error has occurred

1 > we
have te extract the output of the channel with a
measure to know if the message transmitted 1s
correct and thus correctly decoded .
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* Quantum error correcting rules are similar to classical ones and are

denoted bj.—f the notation where is the number of qubit of
the encoding, k is the number of encoded qubit while < is the code
distance.
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* Quantum error correcting rules are similar to classical ones and are

denoted bj.—f the notation where is the number of qubit of
the encoding, k is the number of encoded qubi‘r while ! is the code
distance.

* We will make the assumption that quantum noise is described by a
quantum operation and error recovery is made by a quantum
operation
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* Quantum error correcting rules are similar to classical ones and are

denoted bj.—f the notation where is the number of qubit of
the encoding. is the number of encoded qubi‘r while ! is the code
distance.

« We will make the assumption that quantum noise is described by a
quantum operation and error recovery is made by a quantum
operation

« With this h}.-?po‘rhesis we require that for every quantum state the
follou-*ing equation holds

(Ro&)(p)=p

e
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* Quantum error correcting rules are similar to classical ones and are

denoted bj.—f the notation where is the number of qubit of
the encoding_, is the number of encoded qubit while < is the code
distance.

« We will make the assumption that quantum noise is described by a
quantum operation and error recovery is made by a quantum
operation |

« With this h}?po‘rhesis we require that for every quantum state the
follou-*ing equation holds

(Ro&)(p)=p
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et be a Code orthontormal basis. such that

Suppese. = a guantwm eperation with operation elements
¢ of an

recessary and sufficient condition for the existence

operation L correcting [~ on C s thal

t this case 5 Satd
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!-_\_m F '@ ¥ L - v
> BNHET be a Cede erthonormal basis.such that s the code space
* Suppese > a guantunt eperation with eperation clements . inena
recessary and suftictent condition for the existence of an error-correction
OPEF@LLOTE L COFFECEIg ort C s that
Int this case is satd
* Inaddition fora code ts true the following equation

u—-.-ll-.,-u-u-_;—\-.- O
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E.et be a Cede orthonormal basts such that ' ts the code space.

Suppese = a guantv eperation with operation elements fThen a
recessary arnd sutffictent conditton for the extstence of an errer-correction

operation L correcting [~ on C s thal

It this case {5 Said

In addttion fora code ts true the following equation

where t ts the number of correctable errors

o o e et e
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We encode the single qubit
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We encode the single qubit state

w)=al0)+b|1) > |w)=a|000)+5/111)
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Jirme 07 Student's Conference 15




We encode the single qubit state

)= al0)+5|1) > |w)=a|000)+5[111)

With the following encoding
0) [0, ) =|000)

1) —>[L;)=[111)
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We encode the single qubit state

w)=al0)+5|1) > |y)=a|000)+5[111)

With the following encoding
0) [0, ) =|000)

1) —>[L;)=[111)

Where the quantum superposition is taken in the encoded qubit supert
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We encode the single qubit state

)= al0)+5|1) > |w)=a|000)+5|111)

With the following encoding
0) =0, ) =|000)

1) —>[L;)=[111)

Where the quantum superposition is taken in the encoded qubit superposition
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We encode the single qubit state

w)=a|0)+b|1) > |y)=al000)+ 5111

With the following encoding
0) [0, ) =|000)

1) —>[L;)=[111)

Where the quantum superposition is taken in the encoded qubit superposition
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Error

* Errors are detected by a decoding-recovery circuit .
The are obtained by 4 projective

measlurements

@
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Error

* Errors are detected by a decoding-recovery circuit .
The are obtained by 4 projective

measirements
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Error

* Errors are detected by a decoding-recovery circuit .
The are obtained by 4 projective

measiurements
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Error

* Errors are detected by a decoding-recovery circuit .
The are obtained by 4 projective

measurements
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Error a

* Errors are detected by a decoding-recovery circuit .
The are obtained by 4 projective

mea Suyements

-
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Pauli matrixes form an algebric group called

, (6@ with the tensor product of Pauli operators
each of them acting on one of the qubit. For example
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Pauli matrixes form an algebric group called

, (6@ with the tensor product of Pauli operators
each of them acting on one ot the qubit. For example

ZZ,=ZQZQI

The Stabilizer is defined as the set ot Pauli

operators that “ ” the code subspace (+1
eigenvalue). For example for the repetition code
ve have

y
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Error detection

Stabiliz
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Error detection

Stabilizer Codes help to simplif}f error detection proced
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Error detection

Stabilizer Codes help to simplif}f error detection procedures.
In fact the +1.-1 eigenvalues of the gener

I Camadian Quantum Information

Jurne 07 Student's Conference




Error detection

« Stabilizer Codes help to simplif}f error detection procedures.
* Infact the+1.-1 eigenvalues of the generators measurings on the
state and the commuta
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Error detection

Stabilizer Codes help to ﬁmplifv error detection procedures.
In fact the +1,-1 eigenvalues of the generators measurings on the

state and the Lmnnmtahon rules of Tauh group oper ators are the
ingr
‘-._
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Error detection

« Stabilizer Codes help to ‘?il’l*lplifv error detection pmcedure*-:
* Infact the +1.-1 eigenvalues of the generators measurings on the

state and the Lommutatmn rules of Tauh sroup oper ators are the
111t*1*eLI1e11t~, to detect any kind of errors

X |y)=|o)
ZZ, “p =4,Z, (X1 ‘W) =

=X XL lp—X |
~Z.Z;|p)=|@)

I Canmadian Quantum Information
e OF Student's Conference




Error detection

« Stabilizer Codes help to t:implifv error detection procedures.
« Infact the+1.-1 elffem*aluea of the generators measurings on the

state and the Lommutatmn rules of Tauh sroup oper atma are the
111t*1‘€£11€11t% to detect any kind of errors

X |y)=|o)
147 (X1 ‘W) =

=-XZZ,|y)=—X )=o)
~Z.Z,|@)=|®)
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Error detection

« Stabilizer Codes help to %implifv error detection procedures.
« Infact the+1.-1 ewem*aluea of the cenerators measurings on the

state and the u}mmutatmn rules of T{11111 group oper atma are the
111;_;1‘&11&11& to detect any kind of errors

X |y)=|o)

ZZ,|@=22Z X ly)=
=-X\ZZ,|w)=-X |w)=—|o)
27,|9)=|9

Error
detec
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Error detection

« Stabilizer Codes help to *:implifv error detection procedures.
« Infact the+1.-1 elffem*aluea of the generators measurings on the

state and the u}mmutatmn rules of Ta1111 sroup oper aton are the
11131*&111&11‘(*-, to detect any kind of errors

X |y)=|o)

ZZ,|@=2Z,(X |w))=
=-X\ZZ,|w)=-X |w)=—|o)
-27,|9)=|9

ol
—
B e,

4 Error 1
. detection. ;
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No errors

3° Bit flip
1° Bit flip

2° Bit flip
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Examples : Steane Code

Generator Operators

5

0

TN TN T
ARt A A

Logical operations T
A
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Steane code encoding-decoding circuit

[
B

<Hx]
I
il
NHR
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Stabilizer encoding

k.
1 1
i
1

1IHIH
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il
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= =] =] (=] =] (5]

>Syndrome detection
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0) = 5==(1000)+/111))2(]000)-+[111))(1000)+{111)
|1L>_2\/—(|000) [111))®(|000)—[111))®(|000)—|111)
Stabilizer generators:
ZUTI [T 771 ][R [[]][]/ XXXXXJ&H
[[][/71[/MI]]]]]]7, 9.9.9.9.9

Define subspace:










(a|0) + 5|1)) ® |0) ® |0)




4

(a|0) + 5|1)) ® |0) ® |O]




1000) + B|111) = «|100) + B|011) — (a|1) + B|0)) |11) — (a|0) + B|1)) |11
IXT

|000) + B|111) = |010) + B|101) — (a|0) + B|1)) |10) — (a|0) + B|1)) |10
IIX

1000) + 3|111) = «|001) + B|110) — («|0) + B|1)) |01) — (a|0) + B|1)) |01




|000) + 5|111) = |100) + 8011} — (a|1) + B|0)) |11) — (a|0) + B|1)) |11)
IXT

|000) + 8]111) = «|010) + B|101) — («|0) + B|1)) |10) — («|0) + B|1)) |10)
X

¥|000) + B[111) = |001) + 3|110) — («|0) + 8|1)) |01} — («|0) + B[1)) |01
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€ITOr decode
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1000) + B|111) = a|100) + 3|011) — (a|1) + 5]|0)) |11) — (|0} + B[1)) |11)
IXT

|000) + B|111) = |010) + B|101) — (a|0) + 8|1)) |10) — («|0) + B|1)) |10)
IIX

¥|000) + B[111) = |001) + 5|110) — («|0) + B8|1)) |01} — (a|0) + B[1)) [01)




1000) + 8|111)=>«|100) + B|011) — (a|1) 4+ B8]|0)) |11) = (a|0) + B|1)) |11)
IXT

|000) + 8]111) = a|010) + B|101) — («|0) + B|1)) |10) — («|0) + B|1)) |10)
X

¥|000) + 8|111) = |001) + B|110) — (a|0) 4 B|1)) |01) — (a|0) + B|1)) |01)

error decode




b

€ITOI decode fix

{{i;a

~|000) + 8|111) = a|100) + 8]011) — (1) + B|0)) |11) — (a]0) + 8|1)) |11
IXT

|000) + B|111) = |010) + B|101) — (a|0) + B|1)) |10) — (a|0) + B|1)) |10
X

1000) + B|111) = «|001) + B|110) — (a|0) + B|1)) |01) — (a|0) + B|1)) |01)

error decode fix

1. encoded into subspace:

|0) — |000), 1) — |111)

(no-clonino evaded ! ) 73




~|000) + J|111}""—"~"a|100} + Bl011) — (a|1) + B|0)) |11) — (a|0) + B|1)) |11)

IX1
|000) 4 8|111) = «|010) + B|101) — («|0) + 5|1)) |10) — (|0) + B|1)) |10)
IIX
000) + 3]111) =3 @l001) 4 B|110) — (a|0) + 8]1)) [01) — (a|0) + B|1)) [01)
SITOr ¥ =, decode fix
1. encoded mto subspace: 2. errors take to orthogonal

|0) — |000), 1) — |111) subspaces + mamtain orthogonality
e ls s eI XITI000Y = |1100) XITI1111V = 1011




é.

~|000) + 3|111) ™ a|100) + B[011) — (a|1) 4 B|0)Y) |11) — (a|0) + B[1)) |11)
~|000) + ;3|111}£}»':r£a\010> + B|101) — (a|0) + B[1)) |10) — (|0} + B|1)) |10
v|/000) + 5|111)’I'£Ea|001} + 3/110) — («|0) + 3|1)) |01) — («|0) + 3|1)) |01)
error v~ decode fix /
1. encoded into subspace: 2. errors take to orthogonal 3. syndrome

|0) — ]000), 1) — [111) subspaces + maintain orthogonality
el eI X ITI000Y = |1100) XITl111V = 1011
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encode error decode fix
H

i*h
H

|+ ++)+ 8| — ——)=a| - ++)+ 8|+ ——) = (a|]1) + 5|0)) |11) — («|0) + 3|1)) |11)
IZ1

al +++) + 8| — —) =~ al+—+) + 8| — +—) — («|0) + 5|1)) |10) — («|0) + B|1)) |10
| § V4

ol +++)+ 8| ——) T a|++-)+ 38— —+) = («]/0) + 5]1)) |01) — («|0) + 5/1)) |01

decode X




encode erTor decode fix
H

ik

H

2| +-+HH) +H8l ———) =T el —FF 8l +——) = (afl) +6|0)) |11) —+ (al@) +B|1}) |12
[Z]

| +-FH) +8] ——)~Fal +—+t)+ 0] —+—) = (|0 +6|1}) |10} — (|0} +L|1)) |10
[1Z

ol +++H)+ 8| ———) = o ++—) + 8| — —4) — (a]|0) + 5]1)) |01) — (a]|0) + 5]|1)) |01)
error 2 /
1. encoded into subspace: 2 errors tal(e to orthogonal

[ k-, B [ ——— Subsnaces + maintain orthogonality 3. syndrome

(no-clonino evaded ! )
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3 qubat bit flip code 3 qubit phase flip code |

0) — |000 Ty
AR
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3 qubat bit flip code
0) — |000

1) — [111

3 qubit phase flip code
0) — [+++)

==

phase errors YAINBVARRIV/ act as ¥4 on bit flip code qubits:
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3 qubat bit flip code 3 qubit phase flip code

0) — |000) s — )

LA e —

phase errors YAVBRVARRIV/ act as V4 on bit flip code qubits:

mg =
111 1) = —|1)5
define: |z —(|0)B—I-|1 B)—\/_(|OOD 1111))

= EUO)B m = 750000} —[111))

Shor Code: (Peter Shor, 1993)

0) — |ppp) = \1@ (]000) + |111)) (J00O) + |111)) (|00} + [111))
1

1) — |[mmm) = S (/000) —|111)) (|000) — |111)) (|O00) — |111)
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Fault Tolerant Quantum Computation
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Fault Dolerant
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Fault Dolerant

* Fault Tolerance computation requires that if the probability of
introducing error in the circuitis  the probability that the circuit
brings twe or more errors grows like 9§31 This means that a fault
’rolﬂan’r procedure comes to end Hucceafulh‘ with

depends only on the circuit
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Fault Dolerant

Fault Tolerance computation requires that if the probability of
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Fault Dolerant

Fault Tolerance computation requires that if the probability of
introducing error in the circuit is  the prebability that the circuit
brings twe or more errors grows like [#¢®! This means that a fault
tolman’r procedure comes to end auue'afulh’ with

depends enly on the circuit

Concatenation methods brm% a square benefﬂ in reducing error
pmbabﬂm* decre asing the faL tor from to

Moreover if the pmbabﬂﬂ}? maintain its Yalue umiel this

Arbitrarv accuracy could be reached with a dimensional growth
that scales as |
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A Fault tolerant rules requires not to
——— Introduce more than one error for
every encoded block
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Recently it was realized that., since the most general
method for encoding quantum information is to encode it
into a subsvstem. there exists a novel form of quantum
error correction bevond the traditional quantum error
correcting subspace codes

These new quantum error correcting subsyvstem codes
differ from subspace codes In that their quantum
correcting routines can be considerably simpler than
related subspace codes
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We onlly neen to protect subsystem,

not the full subspaces.
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« Fora redundancy code the stabilizers are all pairs of
ont everv pair of qubits among the  qubits in the code block.
Similarly for the redundance code in the Hadamard rotated
basis, the stabilizers are all possible pairs of X acting on n qubits.

acting

I Canadian Quantum Informaton
Student's Conference

-

e



« An encoded X operator in a sub-block should take ' to 1. and

viceversa and this could be accomplished by an X operator acting
ont all qubits of the sub-block.
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(2)

Placing Qubits in different sub-blocks to lie on different rows, the stabilizer includes X operators acting on
all qubits in every pair of rows. Furthermore within each sub-block (each row) the stabilizer includes Z
operators acting on all pairs of qubits in the corresponding row. Same comments on X basis

More formally Shor’s code is generated by

k) oc|+)+ (1)) k) oc|0)+ (1) 1)
V:s|++. 40+ D =) V; —|00..0)+(-D[11...1)
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Codes

« [t eliminates the asvmmetry inside Shor Code 1in the treatment
of Z errors and X errors.

« This code 1s able to correct n/2 X and Z errors and it's generated
;
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Codes
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« (Generalized construction of the Bacon Shor codes from
two classieal linear codes (Bacon- Casaecino. 2006)-->

« Fault telerant properties and considerable ancilla bit
savings In the stabilizers measures (Aliferis-Cross.
2007)
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two elassieal linear codes (Bacon- Casaceino. 2006)-->

« Fault telerant properties and considerable ancilla bit
savings 1n the stabilizers measures (Aliferis-Cross.
2007)

« Generalization of the construection and remarkable

properties about Singleton and Quantum Hamming

Bound (Ixlappenecker. Sarvepalli. 2007)
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Fault Dolerant

* Fault Tolerance computation requires that if the probability of
introducing error in the circuit is  the probability that the circuit
brings twe or more errors grows like [9§%] This means that a fault
tolerant procedure comes to end succesfully with

depends only on the circuit
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