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What this talk 1s about

* The Goal:
To develop formalism for quantum strategies
suitable for use 1n any mmteractive quantum
protocol. 1.e.

— multiple communicating entities.
multiple rounds of communication

— competitive and or co-operative
— e.g. crvptographv. communication complexity.
computational complexity. distributed computation

* What We Do:

— propose a formalism

— use 1t for coin-tlipping. mmn-max theorem. algorithms
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Quantum Formalism

d-level physical system.
Complex Euclidean space X = C¢.

Quantum state.
“Density” operator p € L(X):
p=>0.Tr(p)—1.

Quantum operation.
“Super”-operator ® : L(X) — L());
completely positive, trace-preserving.
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Quantum Strategy

Zl ZQ il ZS Zn—l
cp1 *cp: (1::3 T —— .
X, N X
Y, J/l\ RN Y Vn\

®, : L(X,) — L(Oh ® Z),

QLR ZL 3) LG 5)

D, : L(Xn; X Zn—l) I L(yn)
Xi....,AX, are input spaces

V1, ...,YVn are output spaces
o] 5 -+« Dy AT€ MEMOTY Spaces



Quantum Measurement

“POVM” operators { P, : 0 € X} C L(X);
Y. 1s a finite set of outcomes.
each P, > 0, and

ZPJ —

oc]

For any state p € L(X),

Pr{outcome | = (P,, p) = Tr(FP,p).
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Measuring Strategy

Z1 Zo Zm—1
®, — @, —
-’Yl// x\ 29 i Xn / \

/ V1 . / 3/:2',-. :)/n\‘

n operations ¢, ..., P, and

one measurement { P, : 0 € X} C L(Z,).

(Multiple intermediate mesurements can be simu-
lated by one measurement at the end.)



Two Interacting Strategies

Zl ZQ Z-n—l Zn _
@, — @, - —— i (P}

Fl

X1 /‘ \‘ . Ao _' A3 | /" X, /’* \
.

/ Y1\ _ Yo\ / Vn' |
— —»ﬁ’\ SO
2 W, ) W, ¥y - Ws W, 4 . W, 108

A=—(9,....9,. 1% }) is astrategy;
B = (po,¥1,...,¥,,{Q,}) is a strategy that is

g
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Measuring Strategy

Z1 Zo  Zp

©, ®,

X B x5
Y T me ., VAR

n operations P4, ..., ®,, and

s

one measurement { P, : 0 € X} C L(Z,).

(Multiple intermediate mesurements can be simu-
lated by one measurement at the end.)



Two Interacting Strategies
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The Big Question

Z
X/ N\ XS
A W /B
2 Wo p: £ Wi

Wn—?

Zn—l

F1

S L A
:)/In - 1\“-. i/

A

b -4

-1

Given: A strategy A and an outcome o € ..

Question: How do we compute the maximum
probability p with which A can be forced to output
o by some compatible strategy?

Pirsa: 07060024



A Difticult Computation

p= max Prloutcome o | A, B]
B co-strategy
— Imnax <PCT? €B>

B=(po,¥1,....¥n_1)

where £ € L(Z,,) is the final state:

g = (Pno¥p_10---0T; 0Py)(po).
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The Big Question

2

F1

Z Z> Zn—1
(Dl . r (D: : r
- - X 3
Wo IbH W Wn_2 lP"'I

Given: A strategy A and an outcome o € ..

Question: How do we compute the maximum
probability p with which A can be forced to output
o by some compatible strategy?
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A Difticult Computation

p= max Prloutcomeo | A, B]
B co-strategy
== Imax <PCT? £B>

B=(po,¥1,---;¥n_1)

where £ € L(Z,,) is the final state:

EB = ((I)n oW, 10---0W¥,y o(bl)(po)_
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A Difticult Computation

p= max Prfoutcomeo | A, B]
B co-strategy

—- max .55
B=(po,\111_,...,\1fn_1)< 788B)

where £ € L(Z,,) is the final state:

£ 7@%10...@@10@@

/

Multi-linear dependence on ®;, W;, po.
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A Diftticult Computation

p= max Prloutcomeo | A, B]
B co-strategy
= miax <-PCT': £B>

B=(po,¥1,---;¥n_1)

where £ € L(Z,,) is the final state:

S — ((I)n GMEy, 3 —~—0y g (]:’1)(;00)-

Need a better representation for strategies!
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Join the Choi-Jamiolkowski Cult!

Let® : L(X) — L()).
Define J(®) c L(Y® X) b

dim(AX)

= % |8 R |7) (4]

T — |

J 1s an 1somorphism.
® is completely positive < J(®) > 0.
® is trace-preserving < Try (J(®)) = I».




Semidefinite Representation
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_..1s the same as this:

X, ;
E Zn—1,| Pu Vn

A3 J 23,
Xo 22 . V3
A Z, | 9 Vo
D, 8%

View it as a big super-operator

=2 L( X)) — L{Vin)

Define the semidefinite representation as Q = J(Z).
Thatis, QQ € L(Vi:n & Xi:n).



What Were We Thinking?!

e (Given = as a black box physical process, we can

not use = to implement the interaction (unless
=1}

e Physically, = 1s useless. But mathematically, it
1S VEry nice.

e We prove three nice properties of the semidefi-
nite representation.
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What Were We Thinking?!

e (Given = as a black box physical process, we can

not use = to implement the interaction (unless
E—1)

e Physically, = 1s useless. But mathematically, 1t
1S VEry nice.

e We prove three nice properties of the semidefi-
nite representation.



It there’s a Measurement

Let { P, : 0 € ¥} be a measurement.

)C-’-n ._—' Z-n PG-}

: —..Zn—l , (I)" yn._
Ao 22, | f
& | | Zy, @ Vo

D, V1,

View it as a big super-operator
A L(Xln) — L(.}In 03¢ Zn)
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Measuring Strategies

For each o € }., write

EG‘ . L(Xln) — L(ylzn)
X = Trz, (P ® Iy, ) A(X)),

o= =)

The semidefinite representation is {Q, : 0 € X}.
That iS, {Qg} C L(yln X XI:R)-
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It there’s a Measurement

Let { P, : 0 € ¥} be a measurement.

o {12 8
: Zn=1,) Pu Vn,
X 22, | f
A5 | Z | 9 Y
D, M,

View it as a big super-operator
A . L(Xln) — 2 L(yl‘n 03¢ Zn)
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Measuring Strategies

For each o € X, write

E<::r . L(Xlzn) e L(ylzn)
: X = Trz, (Fo @ Iy,.,, )A(X)),

o =P )

The semidefinite representation is {Q, : o € Y.}.
That iS, {QJ} - L(yln X XI:R)-
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Properties of Strategies

If {Q, : 0 € X} is a measuring strategy then

3 Q.

k=D

always represents some (non-measuring) strategy.
— similar in flavour to a POVM measurement.

Without further adieu, three nice
properties...
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#1: Probabilities of Outcomes

Theorem 1. Let {Q),} and { R} be compatible
measuring strategies. Then

Prloutcome (o, 7)] = Tr (Q,R.) .
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#2 - Linear Characterization

Theorem 2. Let (Q € L()1., ® X1.,,). Then Q is
a semidefinite representation if and only 1f:

1. @ > 0 (completely positive)

2. Try,. (Q) = Ix,., (trace preserving)

3. Foreach 73 = 2.....n we have

Try, . (Q) =Qj-1 ® Ix;.,

for some semidefinite representation ) ;_1.
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#1: Probabilities of Outcomes

Theorem 1. Let {Q),} and { R} be compatible
measuring strategies. Then

Prloutcome (o, 7)] = Tr (Q,R.) .
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#2: Linear Characterization

Theorem 2. Let Q) € L()1., ® X1.,,). Then Q is
a semidefinite representation if and only if:

1. @ > 0 (completely positive)

2. Try,. (Q) = Ix,., (trace preserving)

3. Foreach 3 =2, ..., n we have

Try_j:n (Q) = Qj—l oY IXJ';-”

for some semidefinite representation (Q_1.
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What Theorem 2 Actually Means

Xn_1 | z | @, }%

5 Zn1 | By Va1
A1 Z, b Yo
j D, V1 .

Discarding the ), leaves a quantum operation that
does not depend on A&, .
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What Theorem 2 Actually Means

: 21 |1 }N
X, R ' =)
X Zl_& YV

Discarding the )V,,, V,_1 leaves a quantum opera-
tion that does not depend on A&, , &}, 1, etc.
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#2 - Linear Characterization

Theorem 2. Let () € L()1., ® X1.,,). Then Q is
a semidefinite representation if and only 1f:

1. @ > 0 (completely positive)

2. Try,. (Q) = Ix,., (trace preserving)

3. Foreach 3 = 2.....n we have

Try . (Q) =Qj1 R 1Ix,,

for some semidefinite representation _.
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What Theorem 2 Actually Means

Ky 20 O] DX

: Zn1 | Vn—1
a1 ] Z1 iS5 Yo
D, Vi F

Discarding the ), leaves a quantum operation that
does not depend on &, .
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What Theorem 2 Actually Means

G AL
: Zn—1 | B }M
5 — _ Fa
ASHIN Z, | D Yo

i D, Vi,

Discarding the ),,, V), —1 leaves a quantum opera-
tion that does not depend on &, , &), 1, etc.
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#3. Maximum Output Probability

Let S be the set of strategies.

Let | S={X:0< X <Y,Y € S} be the set of
substrategies.

e.g. any measuring strategy {Q),} C |S.

Theorem 3. Let {),} C |S be any mea-
suring strategy. The maximum probability with

which {(),} can be made to output o is the
minimum p < |0, 1] for which Q, € p|S.
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#2 - Linear Characterization

Theorem 2. Let Q € L()1., ® X1.,,). Then Q is
a semidefinite representation if and only 1f:

1. @ > 0 (completely positive)

2. Try,. (Q) = Ix,., (trace preserving)

3. Foreach 3 = 2.....n we have

Try_j:n (Q) — Qj—l X IXJ:H

for some semidefinite representation () _1.
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#3. Maximum Output Probability

Let S be the set of strategies.

Let |S={X :0< X <Y,Y € S} be the set of
substrategies.

e.g. any measuring strategy {Q),} C |S.

Theorem 3. Let {),} C |S be any mea-
suring strategy. The maximum probability with

which {(Q),} can be made to output o is the
minimum p < |0, 1] for which Q, € p|S.
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What Theorem 3 Actually Means
1S

Qp
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What Theorem 3 Actually Means

Ict0< p<l.

_plS Qs

Qa

Qo € plS,butQ, & p’|S forany p’ < p.
—> max Pr|outcome a| = p.

Pirsa: 07060024



What Theorem 3 Actually Means

Lt g< p

q‘LS j//f//Qb

T
{ ) &

Qp € qlS,but Qp £ ¢'|S forany ¢’ < q.
—> max Pr|outcome b| = q < p.
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Thm. 3 Measurement Analogy

Let {P, : 0 € X} be a measurement.
Let p be the maximum probability with which
{ P, } can be made to output .

e Clearly, p = || P, ||.

e Equivalently, p = min{q : P, < ql}.

Pirsa: 07060024



Application 1: Coin-Flipping
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Comn-Flipping Interaction

2% oy L
!@1 S d it R e (I)" —.t{P pl?pm}]

S N B X, i

R S )

Alice: (p() \Dl ..... le {QT})
Bob: (®1,. .-, D, {P })

(Alice and Bob are compatible.)
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Application 1: Coin-Flipping
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Com-Flipping Interaction

Zl Z‘H 1

_ Ze i
. —%{P&, B, PM}J
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W, Q7))

Bob: (@1,...@ {P,)).

(Alice and Bob are compatible.)

00000000

v




Com-Flipping — The Rules

» Alice and Bob want to agree on a random b &€
10,1}
t }

* Thev don't trust each other

* Thev exchange (quantum) messages. then perform
a measurement {0.1.abort}

» If Alice and Bob are both honest then we require

Pr[0] =Pr[1] =%

o If Alice cheats. with what probabilitv can she
convince honest Bob to output b € {0.1}?
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Kitaev’'s Bound on One Shide

Known: one cheating party can always force a given
outcome on an honest party w/prob at least %

Alternate Proof. Honest Alice = { Ao, A1, Aabort }»
honest Bob = { By, B1, Babort }-

Then 1 = Tr(A49B)) = Tr(A;B]) (Theorem 1).
Suppose honest Alice can be forced to output b €
{0,1} w/prob p € |3, %]

Then l—Ab c |S (Theorem 3), hence there exists cheat-
ing Allce {Af, A}, AL} with A, = = Ay,

p
Then Tr(A4,B)) = 1 > Tr(As B)= -2-1—- =

Pirsa: 07060024
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Application 2: Quantum Min-Max

“Horsey to pointv-guy six...
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Several Ways to Model a Game

Classicallyv:

« Games can be formalized in many ways
— e.g. tree of moves. pavotf matrix. etc.

« The formalization that “quantizes  best 1s
the refereed games model
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Retereed Game Interaction

||(Dl "R © " " ————— >

BN BN B/ B./
2 T | A, —' s z Lo
A;\\ /1 AQ \ 2 ./4.3 \* Aﬂ\ /
i
Alice = (W ... W, ),



Refereed Game Strategies

Semidefinite representations:

Alice - A L(Cl;n X Al;n),
Bob : B & L(Dl:ﬂ, 0 B1;n),

Referee : { Ralice, RBob }
C L((Al‘n, 02 Bl’n,) X (Cl'n X Dln))

(A ® B is compatible with { R Ajice, BBob }-)
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Retereed Game Interaction

—
. N D
Bl r.fi N Bj - 1 B‘% i Bn « \
/,» D]_ ._._‘ D2 ff.._/ - / D'H \
pﬂ P A1 AZ An Zﬂ {Pﬁ'— }
A 1 Aa 2 A:;\ An\ /
W
Abce = (¥, ... W, )
Bob ((I)l ..... (I)n)
~Jteferee = (pg, LNy - - s By P}



Refereed Game Strategies

Semidefinite representations:

Alice : A € L(Cl;n 03 Al;n),
Bob : B € L(Dlzn X B1;n),

Referee : { Ralice; RBob }
C L((Aln & Bln) X (Clﬂ oY Dln))

(A ® B is compatible with { R Ajice, BBob }-)
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Quantum Min-Max Theorem

Pr[Bob wins | A, B]@ (RBob(A® B)T)>

T

linear m 4.5

Quantum min-max theorem:

min max Pr(Bob wins | A, B|
A B ' '

= max mln Pr(Bob wins | A, B]

y 7

convex sets
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Application 3: Algorithms and
Complexity




The Retereed Games Problem

Problem. Quantum Refereed Games

Input. a referee’s measuring strategy

{ RAlice ; RBOb }

Output. Bob’s maximum success probability.
In other words:

nax min Tr (RBOb(A X B)T)
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Some Notation

{RAlice; RBob } C |S(Referee)

Set of Alice’s strategies: S(Alice)

Set of Bob’s strategies: S(Bob)

Strategies can be combined:

e.g. Alice’s strategy A € S(Alice) can be “hard-
wired” into the referee to get a new strategy:

{(R|A)Alice, (R|A)Bob} C |S(Alice + Referee).

(R|A) Alice 18 bilinear in Rajjce and A,
(R|A)Bob 1s bilinear in R,p, and A.
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Semidetinite Optimization

minimize p
subjectto A € S(Alice)
(R|A)Bob € plS(Alice + Referee)

e The constraints of this optimization prob-
lem are all linear or semidefinite.

e Can be solved deterministically in time
polynomial in dimension of matrices
(exponential in the number of qubits).
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Complexity Theory

QRG: class of languages that have a quantum refer-
ced game (i.e. quantum interactive proof with
competing provers).

EXP: class of languages decidable in deterministic
exponential time.

—> we showed QRG C EXP.

[Feige-Kilian 1997] showed EXP C RG.
—= Ots— RtG— EXL
(RG = EXP was already known [FK97,KM92])
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