Title: Toward a general theory of quantum games

Date: Jun 04, 2007 03:00 PM

URL: http://pirsa.org/07060024

Abstract:

Semidefinite Representations of Quantum Strategies

Gus Gutoski and John Watrous IQC, University of Waterloo quant-ph/0611234

What this talk is about

The Goal:

To develop formalism for quantum strategies suitable for use in *any* interactive quantum protocol. i.e.

- multiple communicating entities, multiple rounds of communication
- competitive and/or co-operative
- e.g. cryptography, communication complexity, computational complexity, distributed computation

What We Do:

- propose a formalism
- use it for coin-flipping, min-max theorem, algorithms and complexity.

Quantum Formalism

d-level physical system.

Complex Euclidean space $\mathcal{X} = \mathbb{C}^d$.

Quantum state.

"Density" operator $\rho \in L(\mathcal{X})$; $\rho \geq 0$, $Tr(\rho) = 1$.

Quantum operation.

"Super"-operator $\Phi : L(\mathcal{X}) \to L(\mathcal{Y})$; completely positive, trace-preserving.

Quantum Strategy

$$\Phi_1: L(\mathcal{X}_1) \to L(\mathcal{Y}_1 \otimes \mathcal{Z}_1),$$

$$\Phi_i: L(\mathcal{X}_i \otimes \mathcal{Z}_{i-1}) \to L(\mathcal{Y}_i \otimes \mathcal{Z}_i),$$

$$\Phi_n: L(\mathcal{X}_n \otimes \mathcal{Z}_{n-1}) \to L(\mathcal{Y}_n)$$

 $\mathcal{X}_1, \dots, \mathcal{X}_n$ are input spaces $\mathcal{Y}_1, \dots, \mathcal{Y}_n$ are output spaces Pirsa: 0705002 $1, \dots, \mathcal{Z}_n$ are memory spaces

Quantum Measurement

"POVM" operators $\{P_{\sigma} : \sigma \in \Sigma\} \subset L(\mathcal{X});$ Σ is a finite set of *outcomes*, each $P_{\sigma} \geq 0$, and

$$\sum_{\sigma \in \Sigma} P_{\sigma} = I_{\mathcal{X}}.$$

For any state $\rho \in L(\mathcal{X})$,

$$\Pr[\text{outcome }\sigma] = \langle P_{\sigma}, \rho \rangle = \text{Tr}(P_{\sigma}\rho).$$

Measuring Strategy

n operations Φ_1, \ldots, Φ_n and one measurement $\{P_\sigma : \sigma \in \Sigma\} \subset L(\mathcal{Z}_n)$.

(Multiple intermediate mesurements can be simulated by one measurement at the end.)

Pirsa: 07060024 Page 7/64

Two Interacting Strategies

 $A = (\Phi_1, \dots, \Phi_n, \{P_\sigma\})$ is a strategy; $B = (\rho_0, \Psi_1, \dots, \Psi_n, \{Q_\tau\})$ is a strategy that is compatible with A.

Measuring Strategy

n operations Φ_1, \ldots, Φ_n and one measurement $\{P_\sigma : \sigma \in \Sigma\} \subset L(\mathcal{Z}_n)$.

(Multiple intermediate mesurements can be simulated by one measurement at the end.)

Two Interacting Strategies

 $A = (\Phi_1, \dots, \Phi_n, \{P_\sigma\})$ is a strategy; $B = (\rho_0, \Psi_1, \dots, \Psi_n, \{Q_\tau\})$ is a strategy that is compatible with A.

Pirsa: 07060024 Page 10/64

The Big Question

Given: A strategy A and an outcome $\sigma \in \Sigma$.

Question: How do we compute the maximum probability p with which A can be forced to output σ by some compatible strategy?

$$p = \max_{B \text{ co-strategy}} \Pr[\text{outcome } \sigma \mid A, B]$$
$$= \max_{B = (\rho_0, \Psi_1, ..., \Psi_{n-1})} \langle P_{\sigma}, \xi_B \rangle$$

where $\xi_B \in L(\mathcal{Z}_n)$ is the final state:

$$\xi_B = (\Phi_n \circ \Psi_{n-1} \circ \cdots \circ \Psi_1 \circ \Phi_1)(\rho_0).$$

Pirsa: 07060024 Page 12/64

The Big Question

Given: A strategy A and an outcome $\sigma \in \Sigma$.

Question: How do we compute the maximum probability p with which A can be forced to output σ by some compatible strategy?

$$p = \max_{B \text{ co-strategy}} \Pr[\text{outcome } \sigma \mid A, B]$$
$$= \max_{B = (\rho_0, \Psi_1, ..., \Psi_{n-1})} \langle P_{\sigma}, \xi_B \rangle$$

where $\xi_B \in L(\mathcal{Z}_n)$ is the final state:

$$\xi_B = (\Phi_n \circ \Psi_{n-1} \circ \cdots \circ \Psi_1 \circ \Phi_1)(\rho_0).$$

Pirsa: 07060024 Page 14/64

$$p = \max_{B \text{ co-strategy}} \Pr[\text{outcome } \sigma \mid A, B]$$
$$= \max_{B = (\rho_0, \Psi_1, \dots, \Psi_{n-1})} \langle P_{\sigma}, \xi_B \rangle$$

where $\xi_B \in L(\mathcal{Z}_n)$ is the final state:

$$\xi_B \neq (\Phi_n \circ \Psi_{n-1} \circ \cdots \circ \Psi_1 \circ \Phi_1)(\rho_0).$$

Multi-linear dependence on Φ_i, Ψ_i, ρ_0 .

$$p = \max_{B \text{ co-strategy}} \Pr[\text{outcome } \sigma \mid A, B]$$
$$= \max_{B = (\rho_0, \Psi_1, \dots, \Psi_{n-1})} \langle P_{\sigma}, \xi_B \rangle$$

where $\xi_B \in L(\mathcal{Z}_n)$ is the final state:

$$\xi_B = (\Phi_n \circ \Psi_{n-1} \circ \cdots \circ \Psi_1 \circ \Phi_1)(\rho_0).$$

Need a better representation for strategies!

Join the Choi-Jamiolkowski Cult!

Choi

Let $\Phi : L(\mathcal{X}) \to L(\mathcal{Y})$. Define $J(\Phi) \in L(\mathcal{Y} \otimes \mathcal{X})$ by

$$J(\Phi) = \sum_{i,j=1}^{\dim(\mathcal{X})} \Phi(|i\rangle \langle j|) \otimes |i\rangle \langle j|.$$

Jamiolkowski

J is an isomorphism.

 Φ is completely positive $\Leftrightarrow J(\Phi) \geq 0$.

 Φ is trace-preserving $\Leftrightarrow \operatorname{Tr}_{\mathcal{Y}}(J(\Phi)) = I_{\mathcal{X}}$.

Semidefinite Representation

Pirsa: 07060024 Page 18/64

This...

... is the same as this:

View it as a big super-operator

$$\Xi: L(X_{1:n}) \to L(\mathcal{Y}_{1:n}).$$

Define the semidefinite representation as $Q = J(\Xi)$.

That is,
$$Q \in L(\mathcal{Y}_{1:n} \otimes \mathcal{X}_{1:n})$$
.

What Were We Thinking?!

- Given Ξ as a black box physical process, we can **not** use Ξ to implement the interaction (unless n=1).
- Physically, Ξ is useless. But mathematically, it is very nice.
- We prove three nice properties of the semidefinite representation.

Pirsa: 07060024 Page 21/64

What Were We Thinking?!

- Given Ξ as a black box physical process, we can **not** use Ξ to implement the interaction (unless n=1).
- Physically, Ξ is useless. But mathematically, it is very nice.
- We prove three nice properties of the semidefinite representation.

Pirsa: 07060024 Page 22/64

If there's a Measurement

Let $\{P_{\sigma} : \sigma \in \Sigma\}$ be a measurement.

View it as a big super-operator

$$\Delta: L(X_{1:n}) \to L(\mathcal{Y}_{1:n} \otimes \mathcal{Z}_n).$$

Measuring Strategies

For each $\sigma \in \Sigma$, write

$$\Xi_{\sigma}: L(\mathcal{X}_{1:n}) \to L(\mathcal{Y}_{1:n})$$
$$: X \mapsto \operatorname{Tr}_{\mathcal{Z}_n}((P_{\sigma} \otimes I_{\mathcal{Y}_{1:n}})\Delta(X)),$$
$$Q_{\sigma} = J(\Xi_{\sigma}).$$

The semidefinite representation is $\{Q_{\sigma} : \sigma \in \Sigma\}$. That is, $\{Q_{\sigma}\} \subset L(\mathcal{Y}_{1:n} \otimes \mathcal{X}_{1:n})$.

Pirsa: 07060024 Page 24/64

If there's a Measurement

Let $\{P_{\sigma} : \sigma \in \Sigma\}$ be a measurement.

View it as a big super-operator

$$\Delta: L(X_{1:n}) \to L(\mathcal{Y}_{1:n} \otimes \mathcal{Z}_n).$$

Measuring Strategies

For each $\sigma \in \Sigma$, write

$$\Xi_{\sigma} : L(\mathcal{X}_{1:n}) \to L(\mathcal{Y}_{1:n})$$
$$: X \mapsto \operatorname{Tr}_{\mathcal{Z}_n}((P_{\sigma} \otimes I_{\mathcal{Y}_{1:n}})\Delta(X)),$$
$$Q_{\sigma} = J(\Xi_{\sigma}).$$

The semidefinite representation is $\{Q_{\sigma} : \sigma \in \Sigma\}$. That is, $\{Q_{\sigma}\} \subset L(\mathcal{Y}_{1:n} \otimes \mathcal{X}_{1:n})$.

Pirsa: 07060024 Page 26/64

Properties of Strategies

If $\{Q_{\sigma} : \sigma \in \Sigma\}$ is a measuring strategy then

$$\sum_{\sigma \in \Sigma} Q_{\sigma}$$

always represents some (non-measuring) strategy.

⇒ similar in flavour to a POVM measurement.

Without further adieu, three nice properties...

Pirsa: 07060024 Page 27/64

#1: Probabilities of Outcomes

Theorem 1. Let $\{Q_{\sigma}\}$ and $\{R_{\tau}\}$ be compatible measuring strategies. Then

$$\Pr[\text{outcome}(\sigma, \tau)] = \operatorname{Tr}(Q_{\sigma}R_{\tau}^{\mathsf{T}}).$$

Pirsa: 07060024 Page 28/64

#2: Linear Characterization

Theorem 2. Let $Q \in L(\mathcal{Y}_{1:n} \otimes \mathcal{X}_{1:n})$. Then Q is a semidefinite representation if and only if:

- 1. $Q \ge 0$ (completely positive)
- 2. $\operatorname{Tr}_{\mathcal{Y}_{1:n}}(Q) = I_{\mathcal{X}_{1:n}}$ (trace preserving)
- 3. For each $j = 2, \ldots, n$ we have

$$\operatorname{Tr}_{\mathcal{Y}_{j:n}}(Q) = Q_{j-1} \otimes I_{\mathcal{X}_{j:n}}$$

for some semidefinite representation Q_{j-1} .

Pirsa: 07060024 Page 29/64

#1: Probabilities of Outcomes

Theorem 1. Let $\{Q_{\sigma}\}$ and $\{R_{\tau}\}$ be compatible measuring strategies. Then

$$\Pr[\text{outcome}(\sigma, \tau)] = \operatorname{Tr}(Q_{\sigma}R_{\tau}^{\mathsf{T}}).$$

Pirsa: 07060024 Page 30/64

#2: Linear Characterization

Theorem 2. Let $Q \in L(\mathcal{Y}_{1:n} \otimes \mathcal{X}_{1:n})$. Then Q is a semidefinite representation if and only if:

- 1. $Q \ge 0$ (completely positive)
- 2. $\operatorname{Tr}_{\mathcal{Y}_{1:n}}(Q) = I_{\mathcal{X}_{1:n}}$ (trace preserving)
- 3. For each $j = 2, \ldots, n$ we have

$$\operatorname{Tr}_{\mathcal{Y}_{j:n}}(Q) = Q_{j-1} \otimes I_{\mathcal{X}_{j:n}}$$

for some semidefinite representation Q_{j-1} .

Pirsa: 07060024 Page 32/64

Discarding the \mathcal{Y}_n leaves a quantum operation that does not depend on \mathcal{X}_n .

Pirsa: 07060024 Page 33/64

Discarding the \mathcal{Y}_n , \mathcal{Y}_{n-1} leaves a quantum operation that does not depend on \mathcal{X}_n , \mathcal{X}_{n-1} , etc.

Pirsa: 07060024 Page 34/64

#2: Linear Characterization

Theorem 2. Let $Q \in L(\mathcal{Y}_{1:n} \otimes \mathcal{X}_{1:n})$. Then Q is a semidefinite representation if and only if:

- 1. $Q \ge 0$ (completely positive)
- 2. $\operatorname{Tr}_{\mathcal{Y}_{1:n}}(Q) = I_{\mathcal{X}_{1:n}}$ (trace preserving)
- 3. For each $j = 2, \ldots, n$ we have

$$\operatorname{Tr}_{\mathcal{Y}_{j:n}}(Q) = Q_{j-1} \otimes I_{\mathcal{X}_{j:n}}$$

for some semidefinite representation Q_{j-1} .

Pirsa: 07060024 Page 35/64

Discarding the \mathcal{Y}_n leaves a quantum operation that does not depend on \mathcal{X}_n .

Pirsa: 07060024 Page 36/64

What Theorem 2 Actually Means

Discarding the \mathcal{Y}_n , \mathcal{Y}_{n-1} leaves a quantum operation that does not depend on \mathcal{X}_n , \mathcal{X}_{n-1} , etc.

Pirsa: 07060024 Page 37/64

#3: Maximum Output Probability

Let S be the set of strategies.

Let $\downarrow S = \{X : 0 \le X \le Y, Y \in S\}$ be the set of *substrategies*.

e.g. any measuring strategy $\{Q_{\sigma}\} \subset \downarrow \mathcal{S}$.

Theorem 3. Let $\{Q_{\sigma}\}\subset \mathcal{S}$ be any measuring strategy. The maximum probability with which $\{Q_{\sigma}\}$ can be made to output σ is the *minimum* $p \in [0,1]$ for which $Q_{\sigma} \in p \downarrow \mathcal{S}$.

Pirsa: 07060024 Page 38/64

#2: Linear Characterization

Theorem 2. Let $Q \in L(\mathcal{Y}_{1:n} \otimes \mathcal{X}_{1:n})$. Then Q is a semidefinite representation if and only if:

- 1. $Q \ge 0$ (completely positive)
- 2. $\operatorname{Tr}_{\mathcal{Y}_{1:n}}(Q) = I_{\mathcal{X}_{1:n}}$ (trace preserving)
- 3. For each $j = 2, \ldots, n$ we have

$$\operatorname{Tr}_{\mathcal{Y}_{j:n}}(Q) = Q_{j-1} \otimes I_{\mathcal{X}_{j:n}}$$

for some semidefinite representation Q_{j-1} .

Pirsa: 07060024 Page 39/64

What Theorem 2 Actually Means

Pirsa: 07060024 Page 40/64

#3: Maximum Output Probability

Let S be the set of strategies.

Let $\downarrow S = \{X : 0 \le X \le Y, Y \in S\}$ be the set of *substrategies*.

e.g. any measuring strategy $\{Q_{\sigma}\} \subset \downarrow \mathcal{S}$.

Theorem 3. Let $\{Q_{\sigma}\}\subset \mathcal{S}$ be any measuring strategy. The maximum probability with which $\{Q_{\sigma}\}$ can be made to output σ is the *minimum* $p \in [0,1]$ for which $Q_{\sigma} \in p \downarrow \mathcal{S}$.

Pirsa: 07060024 Page 41/64

What Theorem 3 Actually Means

$$Q_a, Q_b \in 1 \cdot \downarrow \mathcal{S}$$

Pirsa: 07060024 Page 42/64

What Theorem 3 Actually Means

Let 0 .

 $Q_a \in p \downarrow S$, but $Q_a \notin p' \downarrow S$ for any p' < p. $\implies \max \Pr[\text{outcome } a] = p$.

What Theorem 3 Actually Means

Let 0 < q < p.

 $Q_b \in q \downarrow S$, but $Q_b \notin q' \downarrow S$ for any q' < q. $\implies \max \Pr[\text{outcome } b] = q < p$.

Thm. 3 Measurement Analogy

Let $\{P_{\sigma}: \sigma \in \Sigma\}$ be a measurement. Let p be the maximum probability with which $\{P_{\sigma}\}$ can be made to output σ .

- Clearly, $p = ||P_{\sigma}||$.
- Equivalently, $p = \min\{q : P_{\sigma} \leq qI\}$.

Pirsa: 07060024 Page 45/64

Application 1: Coin-Flipping

Pirsa: 07060024 Page 46/64

Coin-Flipping Interaction

Alice: $(\rho_0, \Psi_1, \dots, \Psi_n, \{Q_{\tau}\}),$

Bob: $(\Phi_1, ..., \Phi_n, \{P_{\sigma}\})$.

(Alice and Bob are compatible.)

Application 1: Coin-Flipping

Pirsa: 07060024 Page 48/64

Coin-Flipping Interaction

Alice: $(\rho_0, \Psi_1, \dots, \Psi_n, \{Q_{\tau}\}),$

Bob: $(\Phi_1, ..., \Phi_n, \{P_{\sigma}\})$.

(Alice and Bob are compatible.)

Coin-Flipping – The Rules

- Alice and Bob want to agree on a random b ∈ {0,1}
- They don't trust each other
- They exchange (quantum) messages, then perform a measurement {0,1,abort}
- If Alice and Bob are both honest then we require $Pr[0] = Pr[1] = \frac{1}{2}$
- If Alice cheats, with what probability can she convince honest Bob to output b ∈ {0,1}?

Pirsa: 07060024 Page 50/64

Kitaev's Bound on One Slide

Known: one cheating party can always force a given outcome on an honest party w/prob at least $\frac{1}{\sqrt{2}}$.

Alternate Proof. Honest Alice = $\{A_0, A_1, A_{abort}\}\$, honest Bob = $\{B_0, B_1, B_{abort}\}.$ Then $\frac{1}{2} = \operatorname{Tr}(A_0 B_0^{\mathsf{T}}) = \operatorname{Tr}(A_1 B_1^{\mathsf{T}})$ (Theorem 1). Suppose honest Alice can be forced to output $b \in$ $\{0,1\}$ w/prob $p \in [\frac{1}{2}, \frac{1}{\sqrt{2}}].$ Then $\frac{1}{n}A_b \in \mathcal{S}$ (Theorem 3), hence there exists cheating Alice $\{A'_0, A'_1, A'_{abort}\}$ with $A'_b = \frac{1}{n}A_b$. Then $Tr(A_b'B_b^{\mathsf{T}}) = \frac{1}{p} Tr(A_bB_b^{\mathsf{T}}) = \frac{1}{2p} \ge \frac{1}{\sqrt{2}}$.

Application 2: Quantum Min-Max

"Horsey to pointy-guy six..."

Pirsa: 07060024 Page 52/64

Several Ways to Model a Game

Classically:

- Games can be formalized in many ways
 - e.g. tree of moves, payoff matrix, etc.
- The formalization that "quantizes" best is the refereed games model

Pirsa: 07060024 Page 53/64

Refereed Game Interaction

Alice: (Ψ_1, \ldots, Ψ_n) ,

 $Bob:(\Phi_1,\ldots,\Phi_n),$

Pirsa: OR Deferee $: (\rho_0, \Delta_1, \ldots, \Delta_n, \{P_\sigma\}).$

Refereed Game Strategies

Semidefinite representations:

Alice: $A \in L(\mathcal{C}_{1:n} \otimes \mathcal{A}_{1:n})$,

 $Bob: B \in L(\mathcal{D}_{1:n} \otimes \mathcal{B}_{1:n}),$

 $Referee: \{R_{Alice}, R_{Bob}\}$

 $\subset L((\mathcal{A}_{1:n} \otimes \mathcal{B}_{1:n}) \otimes (\mathcal{C}_{1:n} \otimes \mathcal{D}_{1:n})).$

 $(A \otimes B \text{ is compatible with } \{R_{\text{Alice}}, R_{\text{Bob}}\}.)$

Pirsa: 07060024 Page 55/64

Refereed Game Interaction

Alice: (Ψ_1, \ldots, Ψ_n) ,

 $Bob:(\Phi_1,\ldots,\Phi_n),$

Pirsa: Of Proceed $Processing (p_0, \Delta_1, \ldots, \Delta_n, \{P_\sigma\})$.

Refereed Game Strategies

Semidefinite representations:

Alice: $A \in L(\mathcal{C}_{1:n} \otimes \mathcal{A}_{1:n}),$

 $Bob: B \in L(\mathcal{D}_{1:n} \otimes \mathcal{B}_{1:n}),$

 $Referee: \{R_{Alice}, R_{Bob}\}$

 $\subset L((\mathcal{A}_{1:n} \otimes \mathcal{B}_{1:n}) \otimes (\mathcal{C}_{1:n} \otimes \mathcal{D}_{1:n})).$

 $(A \otimes B \text{ is compatible with } \{R_{\text{Alice}}, R_{\text{Bob}}\}.)$

Pirsa: 07060024 Page 57/64

Quantum Min-Max Theorem

$$\Pr[\text{Bob wins} \mid A, B] = \operatorname{Tr} (R_{\text{Bob}}(A \otimes B)^{\mathsf{T}})$$

Quantum min-max theorem:

linear in A,B

Application 3: Algorithms and Complexity

The Refereed Games Problem

Problem. Quantum Refereed Games

Input. a referee's measuring strategy $\{R_{\text{Alice}}, R_{\text{Bob}}\}$

Output. Bob's maximum success probability. In other words:

$$\max_{B} \min_{A} \operatorname{Tr} \left(R_{\operatorname{Bob}} (A \otimes B)^{\mathsf{T}} \right)$$

Pirsa: 07060024 Page 60/64

Some Notation

 $\{R_{\text{Alice}}, R_{\text{Bob}}\} \subset \downarrow \mathcal{S}(\text{Referee})$

Set of Alice's strategies: S(Alice)

Set of Bob's strategies: S(Bob)

Strategies can be combined:

e.g. Alice's strategy $A \in \mathcal{S}(\text{Alice})$ can be "hardwired" into the referee to get a new strategy:

$$\{(R|A)_{Alice}, (R|A)_{Bob}\} \subset \downarrow \mathcal{S}(Alice + Referee).$$

 $(R|A)_{Alice}$ is bilinear in R_{Alice} and A, $(R|A)_{Bob}$ is bilinear in R_{Bob} and A.

Semidefinite Optimization

```
minimize p
subject to A \in \mathcal{S}(\text{Alice})
(R|A)_{\text{Bob}} \in p \downarrow \mathcal{S}(\text{Alice} + \text{Referee})
```

- The constraints of this optimization problem are all linear or semidefinite.
- Can be solved deterministically in time polynomial in dimension of matrices (exponential in the number of qubits).

Pirsa: 07060024 Page 62/64

Complexity Theory

QRG: class of languages that have a quantum refered eed game (*i.e.* quantum interactive proof with competing provers).

EXP: class of languages decidable in deterministic exponential time.

 \implies we showed QRG \subseteq EXP.

[Feige-Kilian 1997] showed EXP \subseteq RG.

 \implies QRG = RG = EXP.

(RG = EXP was already known [FK97,KM92])

Fin

