Title: Classical Post-processing for Low-Depth Phase Estimation Circuits
Date: Jun 03, 2007 11:40 AM

URL.: http://pirsa.org/07060018

Abstract: <span>Traditionally, we use the quantum Fourier transform circuit (QFT) in order to perform quantum phase estimation, which has a
number of useful applications. & nbsp;The QFT circuit for a binary field generally consists controlled-rotation gates which, when removed, yields
the lower-depth approximate QFT circuit. &nbsp;lt is known that a logarithmic-depth approximate QFT circuit is sufficient to perform phase
estimation with a degree of accuracy negligibly lower than that of the full QFT. & nbsp;However, when the depth of the AQFT circuit becomes even
lower, the phase estimation procedure no longer produces results that are immediately correlated to the desired phase. &nbsp;in this talk, | will
explore the possibility of retrieving this information with classical analysis and with computer post-processing of the measured results of a
low-depth AQFT circuit in a phase estimation algorithm.</span>
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o Review of Phase Estimation and AQFT
@ Phase Estimation
@ Approximate Quantum Fourier Transform

Q Classical Post-processing
@ Maximum Likelihood Estimation
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Phase Estimation
Approximate Quantum Fourier Transform

RHeview of Phase Estimation and AQFT

Eigenvalue Estimation

@ Given: unitary operator U and eigenstate |u)

@ Find the corresponding eigenvalue \ = ¢-™

@ We have Ulu) = ¢*™|u)

@ We are given copies of an gate that performs controlled-U
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Phase Estimation
Approximate Quantum Fourier Transform

Review of Phase Estimation and AQFT

Eigenvalue Estimation

@ Consider x as a binary (base-2) fraction x = 0.x;x> .. . x,

@ Prepare n qubits in state [0) + ¢2™(2%)|1) for
k—0 1. ... .n—1]

Dri(2X

@ |0} 2R — |0) 2T o))

@ Apply inverse QFT to provide rotational corrections and
measure y;.; (Phase Estimation)
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Phase Estimation
Approximate Quantum Fourier Transform

Heview of Phase Estimation and AQFT

Eigenvalue Estimation

@ Given: unitary operator U and eigenstate u)

@ Find the corresponding eigenvalue A\ = ¢-™

@ We have Ulu) = ¢*™|u)

@ We are given copies of an gate that performs controlled-U

Pirsa: 07060018 Page 6/91



Phase Estimation
Approximate Quantum Fourier Transform

Heview of Phase Estimation and AQFT

Eigenvalue Estimation

@ Consider x as a binary (base-2) fraction x = 0.x;x> .. . x,
@ Prepare n qubits in state [0) + ¢2™(2%)|1) for

)

@ 0 =8 {,_:rf{_?f‘.r}‘ = |O 23 ] E,,Z*rr:'{I_J,_rk+|.u_3,,.]| 1)

@ Apply inverse QFT to provide rotational corrections and
measure x..; (Phase Estimation)
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Eigenvalue Estimation Circuit
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT
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RHeview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Eigenvalue Estimation Circuit
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RHeview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transiorm

Phase Estimation with Inverse QFT
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control.
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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Heview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transiorm

Phase Estimation with Inverse QFT
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Approximate Quantum Fourier Transform

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control,
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control.
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT
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RHeview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control,
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT

0) + 2™ 1)1\ 1 H T % i Xy
0) + e27 2" ) ——R,'— H = ] = 4 Xn_1
: = I
|
0) L 223 |} R R ] H % X,
2mi(2) - i | l
0) + e =11 . R SR peaay R, — Hi— |x
Pirsa: 07060018 Page 19/91



Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control,
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Circuit for sampling individual bit
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u)

@ In general, R estimates and tries to correct the phase shift
t,lrrf{l“‘_]_r—(!]__rﬂ'J
@ We can improve the way we estimate R

@ Example: multiple measurements for each bit x;
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Phase Estimation
Approximate Quantum Fourier Transform

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control,
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transiorm

Eigenvalue Estimation Circuit
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Heview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT
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Heview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transiorm

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control.
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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el

Approximate Quantum Fourier Transform

Circuit for sampling individual bit

0) — H —e—R"'H H — |x)

u)

1) U-

@ In general, R estimates and tries to correct the phase shift
2wi( 25 x—(0x3))

€
@ We can improve the way we estimate R

@ Example: multiple measurements for each bit x;
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT
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Phase Estimation
Approximate Quantum Fourier Transform

Review of Phase Estimation and AQFT

Circuit for sampling individual bit
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@ In general, R estimates and tries to correct the phase shift
27l o=ty 0 1)
@ We can improve the way we estimate R

@ Example: multiple measurements for each bit x;
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Review of Phase Estimation and AQFT R
= P Phase Estimation
: Approximate Quantum Fourier Transform

Approximate QF T

@ We can also relax the way we estimate R
@ AQFT idea introduced by Coppersmith (1994)

@ QFT uses controlled phase rotation gates with some very
small angles

@ Disregarding the smallest ones should not significantly
affect the result

@ AQFT can be parameterized by “depth” m, giving AQFT,,

@ Controlled phase rotations of less than ¢*™") are

removed
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Heview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transiorm

Semi-classical Phase Estimation

@ In the Inverse QFT, qubits are used as quantum control,
then measured

@ We can replace this with measurement, followed by
classical control

@ Prepare the qubits of the output register one at a time
@ Start with x,, and work down to x;

@ Use these results to classically control the phase rotation
corrections
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT
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Heview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Circuit for sampling individual bit
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@ In general, R estimates and tries to correct the phase shift
E,:-.r.—f(:*—‘_r—qrza._m)
@ We can improve the way we estimate R

@ Example: multiple measurements for each bit x;
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Review of Phase Estimation and AQFT S
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: Approximate Quantum Fourier Transform

Approximate QF T

@ We can also relax the way we estimate R
@ AQFT idea introduced by Coppersmith (1994)

@ QFT uses controlled phase rotation gates with some very
small angles

@ Disregarding the smallest ones should not significantly
affect the result

@ AQFT can be parameterized by “depth” m, giving AQFT,,

@ Controlled phase rotations of less than ¢>™") are
removed
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Phase Estimation
Approximate Quantum Fourier Transform

Heview of Phase Estimation and AQFT

Circuit for sampling individual bit
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@ In general, R estimates and tries to correct the phase shift
o2l o=te—tt))
@ We can improve the way we estimate R

@ Example: multiple measurements for each bit x;
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Phase Estimation with Inverse QFT
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Approximate QF T

@ We can also relax the way we estimate R
@ AQFT idea introduced by Coppersmith (1994)

@ QFT uses controlled phase rotation gates with some very
small angles

@ Disregarding the smallest ones should not significantly
affect the result

@ AQFT can be parameterized by “depth” m, giving AQFT,,

@ Controlled phase rotations of less than ¢>™(>") are

removed
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Heview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Approximate QFT Circuit
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Heview of Phase Estimation and AQFT X .
T Phase Estimation

Approximate Quantum Fourier Transform

Generalized Approximate QFT

@ AQFT,, can be generalized to any system of estimating R
of equivalent accuracy

@ Let P be the probability that [x — x| < 2—+D

@ P is the probability that x is the nearest fractional estimate
of x

irsa: 07060018 Page 38/91



RHeview of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Approximate QFT Circuit
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Maximum Likelihood Estimation
Classical Post-processing Algorithm

C.Iaséi-caj F’c:-st—prucess“ing

Outline

9 Classical Post-processing
@ Maximum Likelihood Estimation
@ Classical Post-processing Algorithm
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Approximate QF T

@ We can also relax the way we estimate R
@ AQFT idea introduced by Coppersmith (1994)

@ QFT uses controlled phase rotation gates with some very
small angles

@ Disregarding the smallest ones should not significantly
affect the result

@ AQFT can be parameterized by “depth” m, giving AQFT,,

@ Controlled phase rotations of less than ¢>™") are
removed
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Review of Phase Estimation and AQFT : :
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Approximate Quantum Fourier Transform

Generalized Approximate QFT

@ AQFT,, can be generalized to any system of estimating R
of equivalent accuracy

@ Let P be the probability that [x — x| < 2—#+D

@ P is the probability that x is the nearest fractional estimate

of x
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Circuit for sampling individual bit
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@ In general, R estimates and tries to correct the phase shift
t,:rrf{:‘—‘_r—(tja._m'_:
@ We can improve the way we estimate R

@ Example: multiple measurements for each bit x;

irsa: 07060018 Page 43/91




Review of Phase Estimation and AQFT S
e TR MR Phase Estimation
Approximate Quantum Fourier Transform

Approximate QFT

@ We can also relax the way we estimate R
@ AQFT idea introduced by Coppersmith (1994)

@ QFT uses controlled phase rotation gates with some very
small angles

@ Disregarding the smallest ones should not significantly
affect the result

@ AQFT can be parameterized by “depth” m, giving AQFT,,

@ Controlled phase rotations of less than ¢*™(> ") are

removed
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Phase Estimation
Approximate Quantum Fourier Transform

Review of Phase Estimation and AQFT

Log-depth Approximate QFT

@ Given log-depth AQFT with m > log, n + 2

@ We have a lower bound P > % — L

@ Compare with P > = for full QFT

@ For large n, dlfference between QFT and log-depth AQFT
Is negligible
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Phase Estimation

Approximate Quantum Fourier Transform

Review of Phase Estimation and AQFT

Generalized Approximate QFT

@ AQFT,, can be generalized to any system of estimating R
of equivalent accuracy

@ Let P be the probability that |x — x| < 2=+

@ P is the probability that x is the nearest fractional estimate
of x
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Review of Phase Estimation and AQFT

Log-depth Approximate QFT

@ Given log-depth AQFT with m > log, n + 2

@ We have a lower bound P > % — L

@ Compare with P > = for full QFT

@ For large n, dlfference between QFT and log-depth AQFT
Is negligible

Pirsa: 07060018 Page 47/91



Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Low-depth Approximate AQFT

@ We are interested in the case where m < O(log, n)

@ Measurement results for bits x, no longer give a good
estimate with significant probability

@ Kitaev gives a phase estimation algorithm based on
low-depth AQFT

@ ldea: Sample x; O(logn) times to estimate x;.x; x> ...

@ Combine information from all the sampled bits to
determine phase
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Heview of Phase Estimation and AQFT

Log-depth Approximate QFT

@ Given log-depth AQFT with m > log, n + 2

@ We have a lower bound P > % — L

@ Compare with P > = for full QFT

@ For large n, dlfference between QFT and log-depth AQFT
IS negligible
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Low-depth Approximate AQFT

@ We are interested in the case where m < O(log, n)

@ Measurement results for bits x, no longer give a good
estimate with significant probability

@ Kitaev gives a phase estimation algorithm based on
low-depth AQFT

@ ldea: Sample x; O(logn) times to estimate x;.x; x> ...

@ Combine information from all the sampled bits to
determine phase
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Approximate QF T

@ We can also relax the way we estimate R
@ AQFT idea introduced by Coppersmith (1994)

@ QFT uses controlled phase rotation gates with some very
small angles

@ Disregarding the smallest ones should not significantly
affect the result

@ AQFT can be parameterized by “depth” m, giving AQFT,,

@ Controlled phase rotations of less than ¢>™> ") are

removed
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Review of Phase Estimation and AQFT

Phase Estimation
Approximate Quantum Fourier Transform

Circuit for sampling individual bit
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@ In general, R estimates and tries to correct the phase shift
{T,erfil“‘_].r—l[!]._q}]l
@ We can improve the way we estimate R

@ Example: multiple measurements for each bit x;
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Approximate QF T

@ We can also relax the way we estimate R
@ AQFT idea introduced by Coppersmith (1994)

@ QFT uses controlled phase rotation gates with some very
small angles

@ Disregarding the smallest ones should not significantly
affect the result

@ AQFT can be parameterized by “depth” m, giving AQFT,,

@ Controlled phase rotations of less than ¢>7> ") are

removed
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Log-depth Approximate QFT

@ Given log-depth AQFT with m > log, n + 2

@ We have a lower bound P > % — L

@ Compare with P > = for full QFT

@ For large n, difference between QFT and log-depth AQFT
IS negligible
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Low-depth Approximate AQFT

@ We are interested in the case where m < O(log, n)

@ Measurement results for bits x, no longer give a good
estimate with significant probability

@ Kitaev gives a phase estimation algorithm based on
low-depth AQFT

@ |ldea: Sample x; O(logn) times to estimate x;.x; x> . ..

@ Combine information from all the sampled bits to
determine phase
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Low-depth Approximate AQFT

@ We are interested in the case where m < O(log, n)

@ Measurement results for bits x, no longer give a good
estimate with significant probability

@ Kitaev gives a phase estimation algorithm based on
low-depth AQFT

@ |dea: Sample x; O(logn) times to estimate x;.x; x5 ...

@ Combine information from all the sampled bits to
determine phase
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Phase Estimation
Approximate Quantum Fourier Transform

Kitaev's Phase Estimation Algorithm
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Q Classical Post-processing
@ Maximum Likelihood Estimation
@ Classical Post-processing Algorithm
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Classical Post-processing

Maximum Likelihood Estimation

@ There is a better way of “combining” information from all
measurements

@ Method of Maximum Likelihood gives estimate with optimal
statistical properties

@ Given a fixed set of outcomes

@ The likelihood of a particular input is the probability of
obtaining the fixed outcome given that input

@ Compare with probability: we are given a fixed input, and
consider the distribution of outcomes
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Maximum Likelihood Estimation
Classical Post-processing Algorithm
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Maximum Likelihood Estimation

@ Given fixed outcomes, construct a Likelihood function L(.x)
over the set of possible inputs

@ The Maximum Likelihood Estimate is the input x which
maximizes L

@ The correct input x should be among those with highest
likelihood

@ This depends on the internal consistency of the data

@ Also depends on how well the data distinguishes the
correct input x from other inputs
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Classical Post-processing

Likelihood Function for Phase Estimation

@ Let . be the phase correction applied by R.
R:|0) — |0),and R : |1) +— &*™"%|1)
@ We measure bit x; with result |0) ¢; times, and |1) s; times

@ Probability of obtaining this result from input x (ignoring
constant) is

fe(x) = (cos® (2 x — n))* (sin® 7(25"x — )™

@ Likelihood function for outcomes from all measurements is
L(x) = ] [ )
k—1

@ With at least 2" !'distinct roots, direct analysis is infeasible
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Example Likelihood Function
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Post-processing Strategy

@ Try to find intervals where L(x) can be easily bounded

@ Find regions where we are unlikely to find the largest
maxima globally

@ Use step functions to bound L(x)

@ Focus attention on refining the bound for tall steps in the
step function
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How to Find Bounds for L(x)

@ Split L(x) into subfunctions:

J
Li(x) = | J ()
=

and

Si{x) = H fr(x)

k=j+1

@ A step bound consists of a bound on L;(x) combined with a
bound on Sj(x)
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How to Find Bounds for L(x)

@ Split L(x) into subfunctions:

j
Li(x) = Hﬁ; (x)
k=1

and

f
5i(x) = H Jie(x)

k=1t

@ A step bound consists of a bound on L;(x) combined with a
bound on Sj(x)
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Likelihood Function for Phase Estimation

@ Let . be the phase correction applied by R.
R:|0)— |0),and R : |1) +— &*™"%|1)
@ We measure bit x; with result |0) ¢; times, and | 1) s; times

@ Probability of obtaining this result from input x (ignoring
constant) is

flx) — («:os.:1 a2 n :'J)q (Sinl w2 r—n))

@ Likelihood function for outcomes from all measurements is
L(x) = | [ fctx)
=

@ With at least 2"~ !'distinct roots, direct analysis is infeasible
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How to Find Bounds for L(x)

@ Split L(x) into subfunctions:

j
Lix) =] 4x)
k=1

and

sixy= |1 £
41

k=11

@ A step bound consists of a bound on L;(x) combined with a
bound on Sj(x)
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How to Find Bounds for L(x)

@ Given a bound for L(x) in the form of a step function

@ Find the tallest step and try to replace it with better bounds
@ If it's tight, we've found a maximum

@ We start with L(x) < | on the entire interval
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How to Find Bounds for L(x)

@ Split L(x) into subfunctions:

J
Li(x) = [ [fe(x)
k=1

and

S ) — H fi(x)

k=j+1

@ A step bound consists of a bound on L;(x) combined with a
bound on S(x)
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How to Find Bounds for L(x)

@ Split L(x) into subfunctions:

]
B x) — Hﬁ- (x)
k=1
and )
SAx) — H fr(x)
k=j+1

@ A step bound consists of a bound on L;(x) combined with a
bound on Sj(x)
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Interval Update Procedure

@ Store step functions as a collection of intervals and bounds

@ Also store information about which subfunctions L;(x)S;(x)
the bound was derived from

@ Each step bound derived from bounds on L;(x)S;(x) will
have consecutive roots of L;(x) as endpoints

@ Simplest update procedure: Take tallest step. replace it
with steps derived from L (x)Sj+(x)

@ If j = n we have a bound between consecutive roots of L(x)
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Sample Algorithm Execution

7

@ L(x) = cos?(mx) sin*(27mx) sin”(227x) sin”(23mx) cos?(2*mx)
@ Start with bound L(x) < 1 on interval R
@ Use trivial bounds S;(x) < 1
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A Step Function Bound for L(x
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Improvement on Interval Update

@ We can use the interval update procedure to build bounds
for S;(277x)
@ Fix the number of steps in an estimate as a parameter

@ We can improve the bounds in the estimate by updating
more intervals

@ This procedure can simulate doing several interval updates
at once

@ |f we use too many steps, this can become inaccurate.,
wasting time and memory
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Practical Detalls

@ Instead of using L(x) we use the log likelihood function

tix)] = logl(x)
I
yk— - k— _
—= E cx log cos 7| * ) L5 logsin (2 — ).
k=1

@ Addition is faster than multiplication

@ Convenient derivative, for bounding subfunction on an
interval

H
¢ (x) =2n E gs (—q— tan (25 'x — ) + spcot (25 'x — g )
k=1
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Semi-classical Phase Estimation is interactive

Measurement results are used to determine phase rotation
correction R

Subfunction S;(x) is also likelihood function for
measurements on bits x;,; to x,

Finding rotation corrections can be done while building
bounds for S;(277x)

Start with j = n, and work down to j = 1

We can also potentially “redo” measurements if a rotation
correction does not fit well
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A Step Function Bound for L(x)
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Interactive Post-processing for Phase Estimation

@ Semi-classical Phase Estimation is interactive

@ Measurement results are used to determine phase rotation
correction R

@ Subfunction S;(x) is also likelihood function for
measurements on bits x;;; to x,

@ Finding rotation corrections can be done while building
bounds for S;(27x)

@ Start with j = n, and work down to j = 1

@ We can also potentially “redo” measurements if a rotation
correction does not fit well
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Interactive Post-processing for Phase Estimation

@ Semi-classical Phase Estimation is interactive

@ Measurement results are used to determine phase rotation
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Empirical Results

@ Initial implementation, using only basic interval updating
@ Run-time depends on quality and consistency of data

@ Best case: There exist estimates with likelihood 1

@ Algorithm finds these in linear time
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Hidden Subgroup Problems Postprocessing for Dihedral HSP

Outline

© Hidden Subgroup Problems
@ Definitions
@ Dihedral HSP
@ Postprocessing for Dihedral HSP
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