Title: Multiplicativity and Strong Multiplicativity of Norms on Transformations

Date: Jun 02, 2007 05:40 PM

URL: http://pirsa.org/07060016

Abstract: Proving the additivity of the classical capacity of quantum channels is a major open problem in quantum information. This problem is related to the multiplicativity of certain norms with respect to the tensor product. These problems are introduced and some approached to resolving them are discussed. Several special cases that have been solved are also mentioned.

Pirsa: 07060016 Page 1/27

Multiplicativity Conjectures

Siny

Bill Rosgen

Institute for Quantum Computing University of Waterloo

June 2, 2007

Multiplicativity Conjectures

Sun

Bill Rosgen

Institute for Quantum Computing University of Waterloo

June 2, 2007

Alice and Bob

Alice and Bob, More Formally

Alice and Bob do not share entanglement

Does Alice need to send an entangled state through Φ^{⊗n} or have Bob perform a complicated measurement to optimally send classical information?

Schatten p-norm of a State

▶ The p-norm of a density matrix σ is given by

$$\|\sigma\|_{p} = \left(\sum_{i} \lambda_{i}(\sigma)^{p}\right)^{\frac{1}{p}}$$

where $\lambda_i(\sigma)$ is the *i*th eigenvalue of σ .

These norms generalize some popular norms

$$\|\sigma\|_1 = \|\sigma\|_{tr}, \quad \|\sigma\|_2 = \|\sigma\|_F, \quad \|\sigma\|_{\infty} = \|\sigma\|$$

- ▶ Unitary invariance: $\|\sigma\|_p = \|U\sigma\|_p = \|\sigma U\|_p$
- $\|\sigma\|_p \leq 1$
- $||\sigma \otimes \gamma||_p = ||\sigma||_p ||\gamma||_p$
- ▶ These norms measure the purity of a state

$$\begin{aligned} ||\psi\rangle\langle\psi|||_{p} &= 1\\ \frac{1}{2} |||0\rangle\langle0| + |1\rangle\langle1|||_{p} &= \frac{1}{2^{1-1/p}}\\ \frac{1}{d} ||I||_{p} &= \frac{1}{d^{1-1/p}} \end{aligned}$$

Schatten p-norm of a State

▶ The p-norm of a density matrix σ is given by

$$\|\sigma\|_{p} = \left(\sum_{i} \lambda_{i}(\sigma)^{p}\right)^{\frac{1}{p}}$$

where $\lambda_i(\sigma)$ is the *i*th eigenvalue of σ .

These norms generalize some popular norms

$$\|\sigma\|_1 = \|\sigma\|_{tr}, \quad \|\sigma\|_2 = \|\sigma\|_F, \quad \|\sigma\|_{\infty} = \|\sigma\|$$

Properties

- ▶ Unitary invariance: $\|\sigma\|_p = \|U\sigma\|_p = \|\sigma U\|_p$
- $\|\sigma\|_p \leq 1$
- $||\sigma \otimes \gamma||_p = ||\sigma||_p ||\gamma||_p$
- ▶ These norms measure the purity of a state

$$\begin{split} \||\psi\rangle\langle\psi|\|_{p} &= 1\\ \frac{1}{2} \||0\rangle\langle0| + |1\rangle\langle1|\|_{p} &= \frac{1}{2^{1-1/p}}\\ \frac{1}{d} \|I\|_{p} &= \frac{1}{d^{1-1/p}} \end{split}$$

Schatten p-norm of a Transformation

For Φ a CPTP map we define

$$\|\Phi\|_{p} = \max_{\sigma} \|\Phi(\sigma)\|_{p} = \max_{|\psi\rangle} \|\Phi(|\psi\rangle\langle\psi|)\|_{p}$$

Alternately: how pure can Alice make the output of the channel?

Pirsa: 07060016

Page 10/27

The Multiplicativity Conjecture

Conjecture (AHW2000)

For all $1 \le p \le \infty$ and all CPTP maps Φ, Ψ^{\perp}

$$\|\Phi \otimes \Psi\|_{p} = \|\Phi\|_{p} \|\Psi\|_{p}$$

- A channel Φ is multiplicative if this holds for all Ψ.
- If true for $p \in [1, 1 + \varepsilon)$ than Alice gains nothing from entangling her messages. [S2004]

The Easy Direction

$$\|\Phi \otimes \Psi\|_{p} = \max_{\sigma} \|(\Phi \otimes \Psi)(\sigma)\|_{p}$$

$$\geq \max_{\sigma \otimes \gamma} \|\Phi(\sigma) \otimes \Psi(\gamma)\|_{p}$$

$$= \|\Phi\|_{p} \|\Psi\|_{p}$$

Informally: Alice can always restrict her strategy to separable states.

The Werner-Holevo Counterexample

$$S(\sigma) = \frac{1}{d-1} \left((\operatorname{tr} \sigma) I - \sigma^{\top} \right)$$

- ► This channel is a counterexample for p > 4.79 [WH2002]
- On any pure state $|\psi\rangle$

$$||S(|\psi\rangle\langle\psi|)||_{\infty} = \frac{1}{d-1}$$
$$||S||_{\infty}^{2} = \frac{1}{(d-1)^{2}}$$
$$||S\otimes S||_{\infty} = \frac{2}{d(d-1)}$$

Multiplicativity (of the ∞ -norm) is violated for any d>2

5(p)=

je X je

Sp= EisXii - IjiXji

Where the Conjecture is True

$$\|\Phi \otimes \Psi\|_{p} = \|\Phi\|_{p} \|\Psi\|_{p}$$

if Ψ is an arbitrary channel and Φ :

Siny

- is the identity channel
- has a pure output state:

$$\|\Phi \otimes \Psi\|_{p} = \max_{\sigma} \|(\Phi \otimes I)(I \otimes \Psi)(\sigma)\|_{p}$$

$$= \max_{\sigma \in \text{Im } I \otimes \Psi} \|(\Phi \otimes I)(\sigma)\|_{p}$$

$$\leq \|\Phi \otimes I\|_{p}$$

$$= \|\Phi\|_{p} = \|\Phi\|_{p} \|\Psi\|_{p}$$

Where the Conjecture is True

$$\|\Phi \otimes \Psi\|_{p} = \|\Phi\|_{p} \|\Psi\|_{p}$$

if Ψ is an arbitrary channel and Φ :

amy

- is the identity channel
- has a pure output state:

$$\begin{split} \|\Phi \otimes \Psi\|_{p} &= \max_{\sigma} \|(\Phi \otimes I)(I \otimes \Psi)(\sigma)\|_{p} \\ &= \max_{\sigma \in \text{Im } I \otimes \Psi} \|(\Phi \otimes I)(\sigma)\|_{p} \\ &\leq \|\Phi \otimes I\|_{p} \\ &= \|\Phi\|_{p} = \|\Phi\|_{p} \|\Psi\|_{p} \end{split}$$

More Interesting Channels

Multiplicativity holds for

unital qubit channels [K2002]

$$\Phi(I) = I$$

entanglement breaking channels [K2003]

$$\Phi(\sigma) = \sum_{i} Tr(M_{i}\sigma)\xi_{i}$$

diagonal channels [K2004, H2005]

$$\Phi(\sigma) = \sum_{i} A_{i} \sigma A_{i}^{*}, \quad A_{i} \text{ diagonal}$$

entrywise positive channels (for integer p) [KR2004]

Random Unitary Channels

Definition

 Φ is random unitary if there exist unitaries \hat{U}_i and $c_i > 0$ with $\sum_i c_i = 1$ such that

$$\Phi(\sigma) = \sum_{i} c_{i} U_{i} \sigma U_{i}^{*}$$

Unital qubit channels are random unitary.

Strong Multiplicativity

Definition

Φ is strongly multiplicative if

- 1. Φ is multiplicative
- 2. $q\Phi + (1-q)\Psi$ is multiplicative for any multiplicative Ψ
- ▶ The channel $N(\sigma) = I/d$ is strongly multiplicative for $p = \infty$.
- ▶ There is a channel that is multiplicative but not strongly so.

Is the Identity Strongly Multiplicative?

- $\Phi(\sigma) = U\sigma U^*$ is multiplicative.
- ▶ If I were strongly multiplicative, then 🖑

$$\Phi(\sigma) = qV^* U \sigma U^* V + (1 - q)\sigma$$

is multiplicative.

By unitary invariance, we have the multiplicativity of

$$\Phi(\sigma) = qU\sigma U^* + (1-q)V\sigma V^*$$

Consider the Werner-Holevo channel S and related R:

$$S_d(\sigma) = \frac{1}{d-1} \left((\operatorname{tr} \sigma) I_{\chi} - \sigma^{\top} \right)$$

$$R_d(\sigma) = \frac{1}{d+1} \left((\operatorname{tr} \sigma) I + \sigma^{\top} \right)$$

► S₄ is both not multiplicative and random unitary

$$S_4 = \frac{S_2 \otimes R_2}{2} + \frac{R_2 \otimes S_2}{2}$$

Open Problem

Resolve the AHW conjecture for $p \in [1, 1 + \varepsilon)$.

Ť.

Open Problem

Find counterexamples for p < 4.78?

The Multiplicativity Conjecture

Conjecture (AHW2000)

For all $1 \le p \le \infty$ and all CPTP maps Φ, Ψ^{\perp}

$$\|\Phi \otimes \Psi\|_{p} = \|\Phi\|_{p} \|\Psi\|_{p}$$

- A channel Φ is multiplicative if this holds for all Ψ.
- If true for $p \in [1, 1 + \varepsilon)$ than Alice gains nothing from entangling her messages. [S2004]

Properties

- ▶ Unitary invariance: $\|\sigma\|_p = \|U\sigma\|_p = \|\sigma U\|_p$
- ▶ $\|\sigma\|_{p} \le 1$
- $||\sigma \otimes \gamma||_p = ||\sigma||_p ||\gamma||_p$
- ▶ These norms measure the purity of a state

$$\begin{split} |||\psi\rangle\langle\psi|||_{p} &= 1\\ \frac{1}{2} |||0\rangle\langle0| + |1\rangle\langle1|||_{p} &= \frac{1}{2^{1-1/p}}\\ \frac{1}{d} ||I||_{p} &= \frac{1}{d^{1-1/p}} \end{split}$$