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Abstract: <span>The one-way measurement model is a model of quantum computation which is intriguing for its potential as a means of
implementing quantum computers, but also for theoretical purposes for the different way in which it allows quantum operations to be described.
Instead of a sequence of unitary gates on an array of “wires', operations are described in terms of emph{ patterns}, consisting of a graph of
entanglement relations on a set of qubits, together with a collection of measurement angles for these qubits (except possibly for a subset which will
support afinal quantum state). In this introductory talk, | describe the relationship between patterns in the one-way measurement model to quantum
circuits, and explore patterns which represent unitary operations but which emph{ don't} have direct analogues in the circuit model.</span>
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

E.g.

@ Z,°Z.° X,y ° (measure b)
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

Eg

CQISC 200fa%e 12063317
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

E.g.

CQISC 20aface 12563817
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

=

@ 7, Z: Xy (measureb) NZ,og \Zgec NLp g

v
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

E.g.
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We can assemble more complex operations from sequences of
measurements and conirolled-Z operations —

Eg

QISC 200fa0e 12463317
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

Eg

COISC 200Page 125633
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

Eg

COISC 200Page 126633 7
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

Eqg
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

g
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

E.g.

@ 7, 2" Xz (measureb) N4 N\ g

LT

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections])
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

O

prepare a)

& C

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

COISC 2noPage 131633;
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We can assemble more complex operations from sequences of
measurements and conirolied-Z operations —

g

@ Z,°Z:-° Xy ° (measure b)

®:
#

If we keep doing more operations, and a, ¢, or d are measured:
absorb Pauli operators into measurement basis!

i3 - . — p— 4 1 ] —
(instead of actually performing corrections)
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

Eg

(instead of actually performing corrections)

TS0 2onPage 13376331 —
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

g

prepare d)

$ -

® C

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!

corrections!

(instead of actually performing coi

COISC 20nPage 134633
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

E.g.

® C

If we keep doing more operations, and a, ¢, or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

COISC 200fage 135{63317
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

E.g.

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

=

If we keep doing more operations, and g, ¢, or d are |
absorb Pauli operators into measurement basis!

(instead of actually performing corrections])

CQISC 20a¥F29° 1376337




We can assemble more complex operations from sequences of
measurements and conirolied-Z operations —

=g

£

Ll &
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8 C

If we keep doing more operations, and a. ¢, or d are measured:
absorb Pauli operators into measurement basis!

(instead of actually performing corrections)

CQISC 200Fa0° 13863317
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

Eg

@ Z,°Z.° X, ° (measure b)

If we keep doing more operations, and a, ¢, or d are measured:
absorb Pauli operators into measurement basis!

(instead of actually performing corrections)

COISC 200fage 13963317




We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

E.g.

If we keep doing more operations, and a, ¢, or d are measured:
absorb Pauli operators into measurement basis!

(instead of actually performing corrections)

CQISC 200fa0e 14963317
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

Eg

@ Z,°Z."Xy"° (measure b) NZ,

Ll

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

COISC oonPage 141633:
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We can assemble more complex operations from sequences of
measurements and conirolied-Z operations —

E.g.

@ Z,°Z:-°Xy " (measure b) "Z 54"\ 4.

L

If we keep doing more operations, and a, ¢, or d are measured:
absorb Pauu operators into T‘.:L‘-E.‘LSL.EI’E&'T]EHE basis!

(instead of actually performing corrections)

w2 W |
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

E.g.

#

$ C

If we keep doing more operations. and a. ¢. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

CQISC 200face 14363317
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We can assemble more complex operations from sequences of
measurements and conirolied-Z operations —

E.g.

If we keep doing more operations. and a. ¢. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

CQISC 20aF29° 14463347
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

E.g.

@ 7,°Z.°Xy° (measure by "\Z

L

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

COISC 20nPage 145633
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

E.

If we keep doing more operations. and a. ¢, or d are measure
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

COISC 2onPage 1461633 7




i ’ - e T T
i i i i | L i s L AL L LA N

We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

Eg

@ 72, 7" Xy (measureb) N\Z .,

#

®C

If we keep doing more operations. and a. ¢. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

CQISC 20aF29° 1476317
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

g

@ Z,°Z:" Xy (measureb) 2,4 N\ 4

o

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

COISC 2ooPage 148633
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We can assemble more complex operations from sequences of
measurements and contirolled-Z operations —

Eg

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections)

COISC 20nPage 1491633
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We can assemble more complex operations from sequences of
measurements and conirolled-Z operations —
E.g.

"y 7
L e d

It we keep doing more operations, and &, ¢
absorb Pauli operators into measurement basis!
(instead of H"+det’ﬂ’ ;__,E"""“:[’F"ﬂf"*j corrections

. Or d are measured:
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

Eg

If we keep doing more operations. and a. c. or d are measured:
absorb Pauli operators into measurement basis!

(instead of actually performing corrections)

COISC 20nPage 151633
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —
g.

If we keep doing more operations, an

—_

e
-

absorb Pauli operators into measurement basis!
(instead of actually performing corrections

Or g are measureg:
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We can assemble more complex operations from sequences of
measurements and controlled-Z operations —

g

If we keep doing more operations. and a. ¢. or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections])
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We can assemble more complex operations from sequences of
measurements and controlied-Z operations —

E.g.

@ Z,°Z. "Xy ° (measure b) de b4 (prepare d)

If we keep doing more operations, and a, ¢, or d are measured:
absorb Pauli operators into measurement basis!
(instead of actually performing corrections

CQISC 200fa0° 15463317
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Measurement patterns: quantum operations given by
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” qubits I}

CQISC 200fa0e 156317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of

COISC onoPage 1574633 7
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” gubit
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

COISC 200F20° 159317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

CQISC 200fa0e 1698317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” qubits I}

@ entangling operations on pairs of qubiis

which all commuie)

COISC 20nPage 164633
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubits

WNICH ail commuie)

CQISC 200face 1683317




Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state
{except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubiis

Which aill commuie)

@ a sequence of adaptive single-qubit measurements

{depending on resuils of earlier measuremeants)

all ba n the equator of the Bloch sphere)

COISC 2o0fage 16363317




Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubits

which all commute)

@ a sequence of adapftive single-qubit measurements

-dEDE’ﬂGiﬂg on resuils of eariier measurements)

all bases on the equator of the Bloch sphere)

COISC 20nPage 164633 7
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Measurement patterns: quantum operations given by

@ 3 collection of qubt prepared in the state

{except possibly fo

@ entangling operations on pairs of qubits

which all commute)

@ a sequence of adaptive single-qubit measurements

{depenading on resulls of eariier measurements)

r

all bases on the eguator of the Bloch sphere)
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input”

QUOILS i}

@ entangling operations on pairs of qubits
which all commute])

@ a sequence of adapfive single-qubit measurementis
depending on resuiils of earlier measur

all bases on the eguator of the Bloch

L
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” gubit

@ entangling operations on pairs of qubits

which all commutie)

@ a sequence of adapfive single-qubit measurements

{depending on re

CQISC 200729 16%$17




Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input™ qubits I)

@ entangling operations on pairs of qubiis

which all commute)

@ a sequence of adapfive single-qubit measurements

(depending on re:

all bas

COISC 2onPage 168633
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

(except possibly for some set of “input” qubits 1)

@ entangling operations on pairs of qubits

which all commuie)

@ a sequence of adapftive single-qubit measurements

(depending on resuits of earlier measurements)

all bases on the equator of the Bloch sphere)

CQISC 200F29° 16%:17
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state
except possibly for some set of “input” qubits |

@ entangling operations on pairs of qubits

which all commute)

@ a sequence of adam‘;ve siﬂaie—qubit measurements
(depending on re

COIST 200Page 170633 7
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I}

@ entangling operations on pairs of qubits

WhHhich ail commute)

@ a sequence of adapfive single-qubit measurements

I - = = I3 + o omed e e lat Bl d =) T
{gepenaing on resuils o1 eariier measurements)

all bases on the eguator of the Bloch sphere)
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubits

which all commutie)

@ a sequence of adapfive single-qubit measurements

{depenaing on resuils of eariier measurements)

(all bases on the equator of the Bloch sphere)

C 200730° 174#17
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” qubits |

@ entangling operations on pairs of qubits

which all commuie)

@ a sequence of adapfive single-qubit measurements
(depending on resuits of earlier measurements)

i 1

(all bases on the eguator of the Bloch sphere]

COISC 2ooPage 173633
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

(except possibly for some set of “input” qubits I}

@ entangling operations on pairs of qubits

which all commute)

@ a sequence of adapftive single-qubit measurements
depending on resuits of earlier measure!

(all bases on the equator of the Bloch sphere)

CQISC 200729 178317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” qubits I

@ entangling operations on pairs of qubits

which all commuie)

@ a sequence of adaptive single-qubit measurements

{Gepenaing on resulis of eariier measurements)

all bases on the equator of the Bloch sphere)

CQISC 200729 1789317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubits

which all commutie)

@ a sequence of adapfive single-qubit measurements

(depending on results of earlier measurements)

all bases on the equator of the Bloch sphere)

COISC 20nPage 176633
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state
{except possibly for some set of “input” gubiis |

@ entangling operations on pairs of qubits
which all commute)

@ a sequence of adapftive single-qubit measurements
{depending on resulls of earlie
all bases o

r measurements)
n the equator of the

COISC 200fage 177833y 7
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubits

which all commute)

@ a sequence of adapftive single-qubit measurements

(depending on resuits of earlier measurements)

all bases on the equator of the Bloch sphere)

CQISC 200F29° 1788317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I}

@ entangling operations on pairs of qubits

which all commutie)

@ a sequence of adapfive single-qubit measurements

{Cepenaing on resuils

CQISC 200fa0° 179817
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Measurement pafterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I}

@ entangling operations on pairs of qubits

which all commutie)

@ a sequence of adapftive single-qubit measurements

depending on resuits of earlier measurement

{all bases on the eguator of the Bloch

@ Pauli operations on any unmeasured “ouiput” subsystem,
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state
{except possibly for some set of “input”™ qubits I)

@ entangling operations on pairs of qubits

Il

(which all commutie)

@ a sequence of adapfive single-qubit measurements

(depending on resuiis of earlier measurements)

(all bases on the equator of the Bloch sphere)

@ Pauli operations on any unmeasured “output” subsystem,

CQISC 200729 189317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubits

{which aill commute)

@ a sequence of adapfive single-qubit measurements

{dependading on resulls of earlier me urements)

juator of th

@ Pauli operations on any unmeasured “output” subsystem.,
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits I)

@ entangling operations on pairs of qubits

WhHhich ail commuie)

@ a sequence of adapfive single-qubit measurements

{depenaing on resuils of eariier measurements)

(all bases on the equator of the Bloch sphere)

@ Pauli operations on any unmeasured “output” subsystem,

COISC 2o0fage 18363317




Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state
{except possibly for some set of “input” qubits )

@ entangling operations on pairs of qubits

which all commuie)

@ a sequence of adapftive single-qubit measurements
depending on resulis of earlier measurements)

all bases on the equator of the Bloch sphere)

@ Pauli operations on any unmeasured “output” subsystem,

— universal for guantum computation.

Via univeraiity ot £
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits [}

@ entangling operations on pairs of qubits

which all commute

@ a sequence of adapfive single-qubit measurements
{depenaing on resuits of earlier measurements)

all bases on the equator of the Bloch sphere)

@ Pauli operations on any unmeasured “output” subsystem,

— universal for quantum computation.
via univerali fy of L

CQISC 200Fa0 18963317
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

{except possibly for some set of “input” qubits [}

@ entangling operations on pairs of qubits

which all commute)

@ a sequence of adapftive single-qubit measurements
(depending on results of earlier measurements)

all bases on the eguator of the Bloch sphere!

@ Pauli operations on any unmeasured “output” subsystem,

— universal for guantum computation.

{ Via univeraiity ot £
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Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state
{except possibly for some set of “input” gubiis I)

@ entangling operations on pairs of qubits

{which all commute)

@ a sequence of adapfiive single-qubit measurements

(depending on resulis of earlier measurements)

(all bases on the equator of the Bloch sphere)

@ Pauli operations on any unmeasured “output” subsystem,

— universal for guantum computation.

{ via univerality of z

CQISC 200729 188317




Measurement patterns: quantum operations given by

@ a collection of qubits prepared in the state

except possibly for some set of “input” qubits 1)

@ entangling operations on pairs of qubits

which all commute)

@ a sequence of adapfive single-qubit measurementis
depending on resuiis of earlier measurements)

all bases on the equator of the Bloch sphere)

@ Pauli operations on any unmeasured “output” subsystem,

— universal for quaﬂtum computation.
via univerali ty of L
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What questions can we ask about this as a modef of computation?
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What questions can we ask about this as a modef of computation?

Is the measurement order unique?

Usually not (independent chains of qubit measurements...
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What questions can we ask about this as a modef of computation”

Is the measurement order unique?
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What questions can we ask about this as a modef of computiation?

Is the measurement order unique?

Usually not (independent chains of qubit measure




What questions can we ask about this as a modef of computation?

Is the measurement order unique?

Usually not (independent chains of qubit measurements...
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What questions can we ask about this as a modef of computation?

Is the measurement order unique?

Usually not (independent chains of qubit measureme
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What questions can we ask about this as a modef of computation?

Is the measurement order unique?

Usually not (independent chains of qubit measurements...
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What questions can we ask about this as a mode/ of computation?

Is the measurement order unique?

Usually not (independent chains of qubit measurements...
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What questions can we ask about this as a modef of computiation?

Is the measurement order unique?

Usually not (independent chains of qubit measurements...
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What questions can we ask about this as a modef of computation?

Is the measurement order unique?

Usually not (independent chains of qubit measurements...
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What questions can we ask about this as a modef of computation?

Is the measurement order unique?

Usually not (independent chains of qubit me
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What questions can we ask about this as a modef of computation?

Is the measurement order unique?

Usually not (independent chains of qubit measurements...
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

ang outpuls
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = ( V. E) with inputs and outputs
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Fows describe how information is “transmitlted” in a geometry:

an entanglement graph &G = ( V. &£ ) with inputs | © V and oulputs

CQISC 200729 2 :17




—
=

= e
-

- Y N N R =1 -
— ¥  — - .
S Sl Nl - T - - ot B W

Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

and outputs
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Flows describe mformanon is “transmitied” in a geometry:
an entangiement h £ /. E) with inputs [ C V and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

anda outpuls

CQISC 2007 P29° 2963317

Lt




Flows describe how mformanon IS transmitted in a gecﬂ'?efw:

afl ﬂﬂ’[ﬁﬂﬂ*ﬂ”ﬁ&?ﬂt araph & /. £} with inputs | — ¥ afll nd outputs
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Fows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

and oulpuls
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Fows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

and outpuis
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Fows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ T V and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. £) with inputs I T V and outputs
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Flows describe how information is “transmitted” in a geometry:

aldEi

an entanglement graph G = (V. E) with inputs [ T V and outputs

— —
o - 3 = 2 = -
R S - - - - . Tt - —_—
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Flows describe how mfarmanon IS ‘{raﬂsm;tted ina aesmem«’

an entangiement gr aph ( /. £ ) with inputs | / and outpuis
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Flows describe how information is “transmitied” in a geomelry:
an entanglement graph G = (V. E) with inputs |

anda oulpuls
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FHows describe how information is “transmitied” in a geometry:

an entanglement graph G = (V. E) withinputs | Z V and outputs O C
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ Z V and outputs ¢
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FHows describe how information is “transmitted” in a geometry:
an entanglement graph G = (V. E) with inputs [ T V and outputs
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Flows describe how information is “transmitted” in a geomelry:

e, - ' o W

an entanglement graph G = (V. E) with inputs [ T V and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. £) with inputs I Z V and outputs
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FHows describe how mformatuon IS ‘fransm;tted in a geometry:

an entangiement gi raph C /. £ ) with inputs | = na outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ T V and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

and outlpuls
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Fows describe how information is “transmitted” in a geomefry:

an entanglement graph G = (V. E) with inputs | /' and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs I T V and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ T V and outp

L LHU?S
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Flows describe how information is “transmitied” in a geometry:

an entanglement graph G = (V. E) withinputs [ T V and outputs O C
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Hows describe how information is “transmitted” in a geometry:

an entanglement graph G = (V. E) with inputs [ T V and outputs
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FHows describe how information is “transmitted” in a geometry:
B, N _

Yol

raph G = (V. £ )withinputs | T V and oulputs

an entangiement
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

and outpuls




P ey gl e f — — ) i
e i — — ~y
et - - ot B W S

Flows describe how information is “transmitted” in a geometry:
an entangiement gra 3

ph G = (V. E) with inputs | / and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs |

and outpuls
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs

and outputs
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an entanglement graph G = (V. E) with inputs

TEFSITI A P

A flowon (G.1.O) is an ordered pair (f. <

f- O° — I° is a function on vertices

]
@ =< is a partial orderon V

{L.e. & refiexive, transitive, & antisymimetric reiation

F ol

which satisfy the following three conditions
for all vertices:

(FY x~ O
(Fif} X -
(Fi)

Flows describe how information is “transmitted” in a geomelry:

and outputs O _
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an entanglement graph G = (V. E) with inputs

G.1.0O) is an ordered pair (. <
J)* — I* Is a function on vertices
< is a partial orderon V

p— ] 5 o - B e —;.l'r-_ g — ary o - — 4 oy g
{L.e. a refiexive, transitive, & arnisymmewric reigaton

which satisfy the following three conditions
for all vertices:

(FiY x -
(Fiiy x -
(Fi1)

Flows describe how information is “transmitted” in a geomelry:

andg outpuls
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FHows describe how information is ‘fraﬂsm;tted in a geometry:

an entangiement grap G = (V. E) with inpuis 1 — and outputs

e e e

e B

A flow on (G. 1. O) is an ordered pair (1. <

f - O° — I° I1s a function on vertices
a partial orderon V

L.e. a reflexive, transitive, & antisymmetric reiation)

which satisfy the following three conditions
for all vertices:

(FiY x -
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Flows describe how mformanon is “transmitted” in a ae&%err;:
an entanglement graph G /. E) with inputs [ C V and outlputs

e @ e e

B

A flow on (G.1. O) is an ordered pair (f. =
f - O — I° is a function on vertices
< part;ai order on V

(i.e. areflexive, transitive, & antisymmetric relation)

9
9

which satisfy the following three conditions
for all vertices:

(Fi} Xx -
) 2=
(Fury vy -
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ T V and outputs ¢

=.1.0) is an ordered pair {f. <
f- O° — I° is a function on vertices
< is a partial orderon V

. 5 [3 ey 3 - Tt e~ Fesl=ybie
fiexive, iransiive, & antisymmetric reiaton

which satisfy the following three conditions
for all vertices:

(FY x~
(Fiiy x =
(Fii) vy -
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an entanglement graph G = (V. E) with inputs

R T

L

A flowon (G.1. O) is an ordered pair (/. <

f- O° — I° is a function on vertices

2
@ =< is a partial order on V

(i.e. a reflexive, transitive, & antisymmetric relation

which satisfy the following three conditions
for all vertices:

(Fi} x-

(Fify X -
(Fiir)

Flows describe how information is “transmitted” in a geomelry:

and outpuls
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = ( V. E) with inputs

~%

Aflowon (G.1.O) is an ordered pair (1. <

f- O° — I° is a function on vertices

]
@ =< is a partial orderon V

- i i ¥ iy = - — - '
{L.e. a refiexive, transiive, & aniisymmetric reiaton

which satisfy the following three conditions
for all vertices:

(FiY x -

(Fif} X -
(Fi)

and outpuls
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) with inputs

Sialielal s

Ml

A flowon (G.1.O) 1s an ordered pair (f. =

@ [ O° — I° s a function on vertices
@ < is a partial order on V

ey e ) 4 v hig o | L ¥ *ry | F 1
{L.e. a refiexive, ransHive, & anisymmetric retation

which satisfy the following three conditions
for all vertices:

) 2~
(Fiiy x -
(Fiii)

and ouipuls |
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Flows desr*rfb how information is "transmitted” in a geswefry

an entanglement graph G = (V. £ with inputs

e 3 e e e

A flow on (G.1. O) is an ordered pair (/. <

@ f O — I° is a function on vertices
>

< is a partial orderon V

l.e. a reflexive, transitive, & antisymmetric reiation)

which satisfy the following three conditions
for all vertices:

and outputs |
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207 Page 245/633+ —




FHows describe how information is “transmitted” in a geometry:
an entanglement graph G = (V. E) with inputs | T V and outputs

e ey e e

o

A flow on (G.1. O) is an ordered pair (1. <

@ 0O — I°is a function on vertices
]

< isa partéai order on V

(i.e. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:
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an entanglement graph G = ( V. &) with inputs

—
akidl alkd Tl =
et et o

A flowon (G.1. O) is an ordered pair (7. <
@ /: O° — I° is a function on vertices
@ =< is a partial orderon V

i.e. arefiexve, fransitive, & antisymmetnc reiation

which satisfy the following three conditions
for all vertices:

(Fi) x-
(Fif} Xx =

(Fur) vy -

Flows describe how information is “transmitted” in a geometry:
B, - |

and outpuis ¢
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) withinputs I — V and outputs O C

arrows — action of f

= S S indicates qubits with
A flow on (G.1. O) is an ordered pair (f. < e

@ [ O — I° is a function on vertices —
@ < is a partial orderon V

(i.e. a reflexive, transitive, & antisymmetric relation

which satisfy the following three conditions
for all vertices:

(FHY x ~
(Fiiy x =< f(x
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Flows describe how information is “transmitted” in a geometry:
an entanglement graph G = (V. E) with inputs [ T V and outputs

e 3 ey e e

L

A flow on (G.1. O) is an ordered pair (/. <

@ O — I° is a function on vertices
>

< is a partéai order on V

(i.e. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:

(Fi) Xx -
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Flows describe how mformaﬂcn s traﬂsmizted ina JQG’?’EQE‘W
£ and outputs O C

an entanglement graph G V. E) with inputs

Aflowon (G.1.O) is an ordered pair (1. <

@ [ O° — I° is a function on vertices
@ < i part{aE order on V

(e . ar xive, transitive, & antisymmetrnic reiation

which satisfy the following three conditions
for all vertices:

—

irrows — action ot 1

indicates qubits with
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Flows describe how information is “transmitted” in a geomelry:
| C ana outputs O

an entanglement graph G = ( V. E) with inputs

TEFSETI A P

Aflowon (G.1.O) is an ordered pair (/. <

f- O° — I° is a function on vertices

]
@ =< is a partial order on V

{i.e. a reflexive, transitive, & antisymmetric relation

F ool

which satisfy the following three conditions
for all vertices:

(FiY Xx -
(Fii) x =
(Firy vy -

—

X corrections

IITOwWs — action ot 7

indicates qubits with

st

—
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Flows describe how mformatian IS transwzzed in a geometry-
: and outputs

an entanglement graph G /. E) with input

G.1.O) is an ordered pair (1. <

= —— I° is a function on vertices

< is a partial order on V

{1.e. areflexive, transitive, & antisymmetric reiation)

Folers &

which satisfy the following three conditions
for all vertices:

irrows — action ot 7/

—

X Oy rroscTinnes
¥ uuiir‘u;ibllb

ingicales quoits with
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Flows describe how mformanon is “fransmitied”

an entanglement graph G /. E) with inputs

e R e e

e f Sl

A flowon (G.1.O) is an ordered pair (1. <

i —— I° is g function on vertices
9

< partiai order on V

e, transitive, & antisymmetric reiatio

which satisfy the following three conditions
for all vertices:

in a QEGF?’?E‘H’?I
and outputs

4

X

ndicates gqubils

grreciions
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an entanglement graph G = ( V. E) with inputs

Aflowon (G.1.0) is an ordered pair (. <
@ f: O — I° is a function on vertices
@ =< is a partial order on V

{Le. arefiexive, iransitive, & antisymmetric reiation

which satisfy the following three conditions
for all vertices:

(Fi) x~
(Fil} X =
{ FH! .r ;s

Flows describe how information is “transmitied”

in a geometry-
anda oulputs

qubits with

~rroactiance)
A Correcuons)

—

* —@
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ T V and outputs ¢

S rrrigic

dialdilala Y o

el T

Aflowon (G.1.O) is an ordered pair (1. <

@ [ O — I° is a function on vertices
@ < is a partial orderon V

. ransitive, & antisymmetric reiation

which satisfy the following three conditions
for all vertices:

(FiY x -

— actionof f
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Flows describe how information is traﬂsm;tted in a GE‘O’??QTI’}’
an entanglement graph G = (V. E) with input

and outputs ¢

Lo

A flow on (G.1. O) is an ordered pair (/. <

@ f O — I° is a function on vertices
@ < is a partial orderon V

&. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:

(K} Xx-
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an entanglement graph G = (V. E) with inputs

Aflowon (G.1.O) is an ordered pair (1. <

@ [ O — I° is a function on vertices
@ =< is a partial order on V

L I ¥ =l td LT _- o Frosd g - - - - i
{.e. a refiexive, transitive, & antisymmetric reiation

=

which satisty the following three conditions
for all vertices:

(F) x -
i'_ F?‘f } b

(Fiii) y -

Flows describe how information is “transmitted” in a geomelry:

and outputs |

-~

2ITOWS — acion ot /

indicates qubits with

S rres il B
A COfTecl

—

10NSs)
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an entanglement graph G = (V. E) with inputs

G.1.0O) is an ordered pair (1. <

) —— I° is a function on vertices
< is a partial order on V

--—\;l-'t- s ¥ "—\-!—l-—l-."F-. 3 _- e Fi 4 F T e =t L=t o'
{L.e. a refiexive, transitive, & arntisyrmmetric reiation

which satisfy the following three conditions
for all vertices:

(FiIY x ~ f(x
(Fil x-
(Fiir)

Flows describe how information is “transmitted” in a geomelry:

and outpuls
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Flows describe how mfarmation is “transmitted” in a aesmefry
an entanglement graph G = (V. E) with inputs [ Z V and outputs ¢

: ¢
x =LA  i'ala N et i
fimitiAm =igRWL L, — aClon o1 |
- St

— . . . indicates gqubits with
A flowon (G.1.O) is an ordered pair (1. = ey

! et S b By

@ f:0° — I° is a function on vertices —
- ]

< is a partial orderon V

, & anfisymmetnc reiation)

which satisfy the following three conditions
for all vertices:

(Fi)
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) withinputs | Z V and outputs O C

arrows — action of f
G.1.O) is an ordered pair (1. <

) —— I° is a function on vertices
is a partial orderon V

i.e. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:

(Fi}) x-
(Fif} X =

(Fii)) y -
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) withinputs I Z V and outputs O C

arrows — action of f

S . = {ind i qubiis with
=.1.0) is an ordered pair (f. = e
-_,usrz“‘uaif._;ﬂb

] -

f - O° — I° i1s a function on vertices .
< is a partial orderon V g

[ r i 3 ¥ _—;.'-_ L= Froy g T { e
{i.e. a refiexive, transitive, & antisymmetric reiation

e

which satisfy the following three conditions
for all vertices:

(FY x~ f(x):
(Fily x =
{ FH:’
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Flows describe how mformanon is “transmitted” in a aesﬂefr,»’

an entanglement graph G /. E) with inputs

A flow on (G.1.O) is an ordered pair (/. <

@ f O — I° is a function on vertices
- ]

< | part;ai order on V

L.e. a reflexive, transitive, & AMISYITHNeric r iation)

which satisfy the following three conditions
for all vertices:

(Fi) x -

nd outputs
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Flows describe how information is “transmitited” in a geamefry

an entanglement graph G — ( V. E) with inputs

e e e e

b

A flow on (G.1.O) is an ordered pair (/. <

@ f: 0O — I°is a function on vertices
-

< is a partial orderon V

i.e. a refiexive, transitive, & antisymmetnc r iation)

which satisfy the following three conditions
for all vertices:

(F)
(Fif)
(Fii)

and outputs |
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Flows desr*rtb how information is “transmitled” in a geometry:
an entanglement graph G = (V. E) with inputs [ T V and outputs |

finition arrows — action ¢
Tiile

(indicates ZIE_l its with

A flowon (G.1.O) is an ordered pair (f. < G

@ f: O° — I° is a function on vertices —
>

< part;ai order on V

.. k| X . 0 iive, & antisymmetrnic r iation)

which satisfy the following three conditions
for all vertices:

(Fi) x -
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) with inputs | T V and outputs

arrows — actionof f

: = e indicates qubits with
.1.0O) i1s an ordered pair (1. < et
v AT TSI o

i r

- O — I i1s g function on vertices —

< is a partial orderon V

e. a reflexive, transitive, & antisymmetric relation)

falbers &2 4

which satisfy the following three conditions
for all vertices:

(Fi) x -

{F8) X

(Fii)
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Flows describe how mformatmn is traﬁsmizzed in a geomeltry:
an entanglement graph G /. E) with inputs I T V and outputs

irrows — action of {

= = : - ibits with
Aflowon (G.1.0) is an ordered pair {{. =
f - O° — I° is a function on vertices

< is a partial order on V

{Le. a refiexive, transitive, & antisymmetric reiation

=

2
P

which satisfy the following three conditions
for all vertices:

COISC 2007 Page 26616331 7
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Flows describe how information is “transmitted” in a geometry:
. -

— o~ — .
el e i — - - —
\ 1 AW E & : - | s m A — — R R

raph G = (V. E) withinputs I C V and outputs O C

an entangiement

WS — action ot 7

SR 5 WY

e 2l e T =

LI}
{ INQICaies qubils with

A flowon (G.1.O) is an ordered pair (f. < ¥ it

@ 0O — I° is a function on vertices —
o ]

< is a partial orderon V

(i.e. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:

(FH) X -
iF” l‘-‘ X =




Flows desr*rtb how mfarmanon is “transmitied” in a geometry:
 C and outputs

— (V. E) with inputs

o~
i —
e

arll er‘rtangsementg apil &

G.1. O) is an ordered pair (f

f - O° — I° is a function on vertices

part;ai orderon V

flexive, transitive, & antisymmetnc r iation)

which satisfy the following three conditions
for all vertices:

(FiY x -
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Flows describe how information is “transmitted” in a geomelry:
' | — V and outputs O C

an entanglement graph G = ( V. E) with inputs

~
| =

Aflowon (G.1.0) is an ordered pair (. <
f. O° — I* is a function on vertices
< IS a partial order on V

{L.e. a refiexive, transitive, & anlisymmetric reigton

3
I

which satisfy the following three conditions
for all vertices:

(FiY x-
(Fiiy x -
(Fi)

{ITOWS — acuon ot 7/

indicates qubits with

A COolrecilions;

—
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Flows describe how information is “transmitted” in a gecwe*ry

an entanglement graph G = (V. E) with inputs

A flow on (G.1. O) is an ordered pair |

@ f: O — I° is a function on vertices
- ]

< is a partial order on V

{Le. a reflexive, transitive, & antisymimelric reiation)

which satisfy the following three conditions
for all vertices:

(Fi)
(Fii)
(Fiir)

and outputs
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an entanglement graph G = (V. E) with inputs

e T

o

Aflowon (G.1.O) is an ordered pair {f. =

f- O° — I° is a function on vertices

]
@ =< is a partial order on V

(i.e. a reflexive, transitive, & antisymmetric relation

R

which satisfy the following three conditions
for all vertices:

(Fi) x -
(Fiiy Xx -
{ Fr’ f',-‘r }

Flows describe how information is “transmitted” in a geomelry:

anda outpuls

actionof f
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Flows describe how mformat:an is “transmitted”™ in a aea'nefry
an entanglement graph G /. E) withinputs | T V and outputs O C

— actionof f

- = = 5 indicates qubiis with
A flow on (G.1. O) is an ordered pair (7. < it ’{

e
frecilons)

@ F: O° — I° is a function on vertices
]

= part;aé order on V

l.e. a reflexive, transitive, & antisymmetric reiation;)

which satisfy the following three conditions
for all vertices:

(F)) X -
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Flows dES*"ﬁb how mfarmanon is “transmitted” in a aecm?erry

an entanglement graph G /. E) with inputs

IS an ordered pair |

b E g

@ ] —— ¢ is a function on vertices
- ]

< is a partial orderon V

- - A RN P
2. d refiexive

transitive, & antisymmetnc reiation)

which satisfy the following three conditions
for all vertices:

(Fi) x -
(Fii) x =
(it} y -

i d d

nd outputs |

ows — action o

indicates gubits

X coirec ﬂ‘r 10Ns

o
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Flows describe how information is “transmitted” in a geometry:

an entanglement graph G = (V. E) with inputs

F i

.1.O) is an ordered pair {{. <
f . O° — I° is a function on vertices
is a partial orderon V

{Le. a refiexive, fransitive, & antisymmetric reiation

which satisfy the following three conditions
for all vertices:

(FiY x ~
{ FH } X =
{ Fa‘ fl;’r } ke

and outputs
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs | and outputs O <
arrows — actionof f

-1

(indicates qubiis with

A flowon (G.1.O) 1s an ordered pair (f. =

@ [ O° — I° is a function on vertices
>

< is a partial order on V

{Le. a refiexive, transitive, & antisymmetric reiation

Falesa

which satisfy the following three conditions
for all vertices:

{(Fi) x~ f{x);
(Fill x=<Tf
(Fii)
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FHows describe how information is trans*mtted in a geometry:
an entanglement graph G = (V. E) with inputs [ T V and outputs

e e e e

Lo

A flow on (G.1. O) is an ordered pair (/. <

@ O — I° is a function on vertices
9

< isa partéai order on V

Le. a reflexive, transitive, & anfisymmetric reiation)

which satisfy the following three conditions
for all vertices:

(FiY x -

CQISC 2007729 26317
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ T V and outputs ¢

A flowon (G.1.O) 1s an ordered pair (f. =

f- O — I° is g function on vertices

< is a partial order on V

et Tt I ¥ = 1% - Ty oy -~
{Le. a refiexive, transitive, & antisymmetric reiation

2
P

which satisfy the following three conditions
for all vertices:

(FY x~f

{ F” } X =
(Fiii) y -
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FHows describe how information is “transmitted” in a geometry:
an entanglement graph G = (V. E) with input | | |

e ey e e

LS

A flow on (G.1. O) is an ordered pair (7. <
f - O° — I° is a function on vertices
< is a partial orderon V

i.e. a refiexive, transitive, & antisymmetric relation

7
P

which satisfy the following three conditions
for all vertices:

(FiY x -
{_ F” } X =
(Fur) vy -
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Flows describe how mfarmanon is “transmitted” in a geometry:

an entanglement graph G /. cywithinputs | © V and outputs O T

oo p o e e

o f

A flowon (G.1. O) is an ordered pair (7. <
f - O° — I° is a function on vertices
< is a partial orderon V

i.e. a reflexive, transitive, & antisymmetric relation)

=
9

which satisfy the following three conditions
for all vertices:

(Fi} Xx-
(Fif)
(Fir)
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an entangiementg aph G = (V. E) with inputs

e 3y e e

Lo

A flow on (G.1. O) is an ordered pair |
f - O° — I° is a function on vertices
< is a partial orderon V

b
2

i.e. a reflexive, transitive, & antisymmetric relation}

which satisfy the following three conditions
for all vertices:

(F) x-

CQISC 2007 Page 294§t 7
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an entanglement graph G /. E) with inputs

Aflowon (G.1.O) is an ordered pair (/. <

@ [ O — I° is a function on vertices
@ < i part;ai order on V

l.e. a retiexive, transitive, & antisymmetric reiation)

which satisfy the following three conditions
for all vertices:

(F) x -
(Fii) x =
(Fiit} y -

Flows describe how mformat:an IS transmizzed in a geometry:

and outputs O C
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Flows describe how information is “transmitied” in a ge{}mefw

an entanglement graph G = (V. E) with inputs

A flow on (G.1. O) is an ordered pair ({. <

@ /0O — I° is a function on vertices
]

< is a partial orderon V

l.e. areflexive, transitive, & anfisymmetnc relation)

which satisfy the following three conditions
for all vertices:

nd outputs
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an entanglement graph G = (V. E) with input

il sl b el =

el

~
f =

Aflowon (G.1.O) is an ordered pair (/. <

@ [ O — I° s a function on vertices
@ < is a partial orderon V

{Le. a refiexive, transitive, & antisymmetric reiation)

which satisfy the following three conditions
for all vertices:

{(F} x~ flx

(Fify X -
(Fi)

Flows describe how information is “transmitted” in a geomelry:

andg outpuls
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) with inputs [ T V and outputs

— actionof f

ndicates QUDIL its with

G.1.O) is an ordered pair (f. <

I€ is a function on vertices
is a partiai order on V

{L.e. a reflexive, transitive, & anltisymmetric reiation

which satisiy the following three conditions
for all vertices:

(Fi\ x -
) ©=
(Fiii) y -
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) withinputs I © V and outputs O C

G.1.0O) is an ordered pair (1. <

) —— I° is a function on vertices
< is a partial orderon V

{Le. a refiexive, fransitive, & antisymmetric reiation)

which satisfy the following three conditions
for all vertices:

(FiY x ~ f(x):
(Fil}y X =
(Fir)




Fows describe how mfarmanon is “transmitied” in a geometry:
an entanglement graph G = (V. E) withinputs [ C V and outputs O C

e o e e

-l

A flow on (G.1. O) is an ordered pair (1. <

@ f: O — I° iIs a function on vertices
- ]

< is a partial orderon V

i.e. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:

(FiY x -
(Fif} Xx =

(Firy vy -
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an entanglement graph G = ( V. E) with inputs

= F T =N =

Wl e

Aflowon (G.1.O) is an ordered pair (1. <

f- O° — I is a function on vertices

]
@ =< is a partial orderon V

L.e. areflexive. transitive, & antisymmetric relation)

Falese

which satisfy the following three conditions
for all vertices:

(FiY x ~

(Fiiy x =
| FH,‘” j.rf }

Fows describe how information is “transmitted” in a geomelry:

and outputs O T

arrows — action ot /

indicates qubiis with

e T ais T il ]

A COorrecuons

—
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Flows describe how information is “transmitied” in a aesmefry

an entanglement graph G = (V. E) with inputs

e R e e

A flow on (G.1. O) is an ordered pair |

@ f O — I° is a function on vertices
]

<1 part;ai orderon V

L.e. a reflexive, transitive, & anfisymmetric reiation)

which satisfy the following three conditions
for all vertices:

(FiY Xx -~
(Fii)
(Fiir)

and outputs |
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Flows describe how mformatmn is transm itted” in a geometry-
an entanglement graph G = (V. E) with inputs [ Z V and outputs ¢

arrows — action of f

_ =y : = (indicates qubiis with
G.1.0) is an ordered pair (. < Coraicead

¥ et § Sl Ei._.r‘""

I€ is a function on vertices =
< isa partiaé orderon V

{.e. areflexive nsitive, &hﬂ[;;\.r"f‘]i'!":,!'”“ reiation)

which satisfy the following three conditions
for all vertices:
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Flows describe how information is “transmitied”

an entanglement graph G = (V. E) with inputs

e ey e e

o h

A flow on (G.1. O) is an ordered pair (/. <

@ 7 O — I° is a function on vertices
]

< is a partial orderon V

i.e. arefiexive, transitive, & antisymmetnc reiation;)

which satisfy the following three conditions
for all vertices:

(Fi}) Xx -
(Fify x
(Fiir)

in a geometry:

%

and outputs

(indi

Y T -~

AT St

—

s qubit
10Ns
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Flows describe how information is “transmitted” in a ges*r:refry

an entanglement graph G = (V. E) with inputs

e e e e

el

Aflowon (G.1.O) is an ordered pair {f. =
@ f: O° — I° is a function on vertices
@ < i part;ai order on V

L.e. a reflexive, transitive, & anftisymmetric reiation)

which satisfy the following three conditions
for all vertices:

(FiY x -
(Fif)
(Fiir)

nd o

utputs O C
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Flows describe how information is “transmitted” in a geometry:
B, - . .

raph G = ( V. £} with inputs

an entanglement

e ey e e

- h

A flowon (G.1. O) is an ordered pair {7. <
@ 7:0° — I° is a function on vertices
@ < is a partial orderon V

i.e. a refiexve, transitive, & antisymmetric relation;)

which satisfy the following three conditions
for all vertices:

(FiY x -
(Fif) X
(i)

and outputs
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) with inputs

G.1. O) is an ordered pair (7. <

I is a function on vertices
part;af orderon V

transitive, & antisymmetric reiation)

which satisfy the following three conditions
for all vertices:

(F} x -
(Fi)
(Fr)

and outputs
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Flows describe how informatian is transm itted” in a geometry:
an entanglement graph G /. E) with inputs I T V and outputs

L —— -

el

Aflowon (G.1.O) is an ordered pair (1. <

f- O° — I° is a function on vertices

3
9

< is g partial orderon V

{i.e. a reflexive, transitive, & antisymmetrnic reiation

which satisfy the following three conditions
for all vertices:

(Fi) x~ f{
(Fif)
(F1i1)
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Flows describe how information is “transmitted” in a geomelry:
an entanglement graph G = (V. E) withinputs I © V and outputs O C

Nl sl el =

L

A flowon (G.1.O) 1s an ordered pair (f. =

f- O° — I° is a function on vertices

2
@ =< is a partial orderon V

(Le. a reflexive, transitive, & antisymmetric relation

F oo e

which satisfy the following three conditions
for all vertices:

(FiY x -
(Fiiy x -
(Fiii)
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Fows describe how mformatian is “transmi Hed in a gea'new

an entanglement graph G V. E) with input

TEFSITI A Y

Aflowon (G.1.O) 1s an ordered pair (1. <

= —— I° is a function on vertices

part{aé order on V

transitive, & antisymmetric reiation

which satisfy the following three conditions
for all vertices:

(Fiy x ~

(Fil} x =
(Fii)

and outputs O C
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an entanglement graph G = (V. E) with inputs

G.1.0) 1s an ordered pair (f. <

—— I° is g function on vertices
is a partial orderon V

{i.e. a refiexive, transitive, & antisymmetnc reiation)

which satisfy the following three conditions
for all vertices:

(Fi) x -
(Fii) Xx =

- i

Flows describe how information is “transmitted” in a geomelry:

andg outpuls
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) with input

G.1.O) is an ordered pair (1. <

) —— I° is a function on vertices
< is a partial orderon V

{Le. a refiexive, iransitive, & antisymmetric reiation

which satisfy the following three conditions
for all vertices:

{(Fi) x~f

(Fify x =
(Fir) ¥

and outiputs O _
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G — (V. E) with inputs

e e T o

A flowon (G.1.O) 1s an ordered pair (f. =

f- O° — I° is a function on vertices

2
@ =< is a partial order on V

{L.e. a refiexive, transitive, & aniisymmeric reigtion

which satisfy the following three conditions
for all vertices:

{(F1) x~ f{(x);

and outputs |
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FHlows describe how information is ‘fransm;{ted in a gee,“?efry

an entanglement graph G = (V. E) with input

A flow on (G.1. O) is an ordered pair (. =

@ f O — I° is a function on vertices
@ < i part;ai order on V

i.e. a reflexive, transitive, & antisymmetric relation)

which satisfy the following three conditions
for all vertices:

(F#)
(Fif)
(Fiir)

and outputs |
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-

£} with inputs

an entanglement graph G —

A flow on (G.1. O) is an ordered pair ({. <
O — I° is a function on vertices

-
T =
3

)
@ =< is a partial orderon V

i.e. arefiexve, transitive, & antisymmetrnic reiation)

which satisfy the following three conditions
for all vertices:

(F1)

Flows describe how information is “transmitted” in a geometry:

and outputs
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) with inputs

G.1.O) 1s an ordered pair (f. =

—— I° is a function on vertices
< IS a partial orderon V

{L.e. a refiexive, transitive, & artisymmetric reiation)

which satisfy the following three conditions
for all vertices:

{FiY x~ f{x):
(Fill x =
{ Ff'!'f:f

and outpuis
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Flows describe how information is “transmitted” in a geometry:

an entanglement graph G = (V. E) with inputs

G.1.O) is an ordered pair (1. <
J)* — I* Is a function on vertices
< is a partial order on V

(L& a refiexive, fransitive, & antisymmetric reiation

which satisfy the following three conditions
for all vertices:

(FiY x -
(Fil} X -

and outputs O C
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) with inputs

G.1.0O) is an ordered pair (1. <

) —— I° is a function on vertices
< is a partial orderon V

(i.e. a reflexive, transitive, & antisymmetric relation

which satisfy the following three conditions
for all vertices:

(FiY x-
(Fiiy x -
(Fi)

and oufpuls |
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Flows desrﬁb how information is transm;{{ed

an entanglement graph G = (V. E) with inputs

e oy e e

e d s

A flow on (G.1.O) is an ordered pair (/. <

@ O — I° is a function on vertices
- ]

< isa partéai order on V

L.e. a reflexive, transitive, & anftisymmetric relation)

which satisfy the following three conditions
for all vertices:

it} X-
(Fii) x
(Fiii)

in a QE‘GF‘?QHW
afﬁﬂ -..».Jl.ﬂuz.q
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Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G = (V. E) with inputs

o R e L

A flowon (G.1.O) 1s an ordered pair (f. =

f- O° — I° 1s a function on vertices

2
@ < is a partial orderon V

. 4 refiexive, iransitive. & antisymmetric reiation

which satisfy the following three conditions
for all vertices:

(Fi) x ~ f(x):
(Fily x < f(x)

(Fi1)

and outpuis
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Flows describe how information is “transmitted” in a geometry:
an entanglement graph G = (V. E) with inputs [ T V and outputs ¢

e e e e

B

A flow on (G.1.O) is an ordered pair (1. =

@ O — I° is a function on vertices
@ =< is a partial orderon V

3 refiexve, transifive, & antisymmetnc reiation)

which satisfy the following three conditions
for all vertices:

(FiY x -
(Fi)
(i)




Flows describe how information is “transmitted” in a geomelry:

an entanglement graph G — ( V. £) with inputs

G.1.0O) is an ordered pair (1. <

—— I° is g function on vertices
< IS a partial orderon V

{Le. a refiexive, transilive, & antisymmetric reiation

-
P

which satisfy the following three conditions
for all vertices:

(1} Xx -
(Fify x

(Fiif)

and outputs O C
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@ Geometries with flows can be easily converted into circuits
‘on a small number of qubits) — and vice-versa.




@ Geometries with flows can be easily converted into circuits
on a small number of qubiis) — and vice-versa.
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@ Geometries with flows can be easily converted into circuils
‘on a small number of qubits} — and vice-versa.




S

@ Geometries with flows can be easily converted into circuits
(on a small number of qubiis) — and vice-versa.
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@ Geometries with flows can be easily converted into circuits
‘on a small number of qubits) — and vice-versa.




S

@ Geometries with flows can be easily converted into circuits
(on a small number of qubits) — and vice-versa.




@ Geometries with flows can be easily converted into circuils
‘on a small number of qubits) — and vice-versa.
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@ Geometrnies with flows can be easily converted into circuits
(on a small number of qubils) — and vice-versa.
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@ Geometries with flows can be easily converted into circuits
on a small number of qubits) — and vice-versa.
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@ Geometries with flows can be easily converted into circuits
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Consider a geometry (G. 1. O), along with
a set of measurement angles
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When does this represent a unitary matrix?

Given that it represents a unitary:
when does a correction scheme exist?

Given that there is a correction scheme:
when can such a scheme be efficiently found?

Given a correction scheme:

Can we translate this into a circuit (on a small number of qubits)?
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Consider a geometry (G. 1. O), along with
a set of measurement angles

@ When does this represent a unitary matrix?

@ Given that it represents a unitary:

when does a correction scheme exist?

Given that there is a correction scheme:
when can such a scheme be efficiently found?

Given a correction scheme:

Can we translate this into a circuit (on a small number of qubits)}?
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when can such a scheme be efficiently found?

Given a correction scheme:
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Robust and parsimonious realisations of unitaries in the one-way model.
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Determinism in the one-way model.

Finding flows in the one-way measurement model.
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One-way quantum computation — a tutorial introduction.
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The purpose of the adaptive measurements/correction
evolve the state as if —, were always the mea
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