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Instead of Outline

« Janik and Peschanski [hep-th/0512162] used AdS/CFT
correspondence to show that at asymptotically late proper
times the strongly-coupled medium produced in the
collisions flows according to Bjorken hydrodynamics.
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— Re-derived JP late-time results without requiring the
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Instead of Outline

« Janik and Peschanski [hep-th/0512162] used AdS/CFT
correspondence to show that at asymptotically late proper
times the strongly-coupled medium produced in the
collisions flows according to Bjorken hydrodynamics.

* |n our work we have

— Re-derived JP late-time results without requiring the
curvature invariant to be finite.

— Analyzed early-time dynamics and showed that energy
density goes to a constant at early times.

— Have therefore shown that isotropization (and hopefully
thermalization) takes place in strong coupling dynamics.

— Derived a simple formula for isotropization time and used
it for heavy ion collisions at RHIC to obtain 0.3 fm/c, In
agreement with hydrodynamic simulations.
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following notations:
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Notations

We'll be using the \ A
following notations:

proper time

_ z 2

and rapidity

nzlln ke
>
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Most General Boost Invariant Energy-
Momentum Tensor

The most general boost-invariant energy-momentum tensor
for a high energy collision of two very large nuclei is (at x; =0)

(e(r) O 0 0 \%

0 p(r)y O 0 |1X
0 0 p(r) 0 |x,

L 0 0 0 p;(7) ) X%

T_m' 2l

Pirsa: 07050079 Page 14/123




Most General Boost Invariant Energy-
Momentum Tensor
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Most General Boost Invariant Energy-
Momentum Tensor

The most general boost-invariant energy-momentum tensor
for a high energy collision of two very large nuclei is (at x; =0)

(e(r) 0 0 0 X

0 p(r) O 0 |X
0 0 p(r) 0 |X

0  pi(r)) %

which. dueto O T -
gives dz __&+p,
dr

T_m- _
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Most General Boost Invariant Energy-
Momentum Tensor

The most general boost-invariant energy-momentum tensor
for a high energy collision of two very large nuclei is (at x; =0)

(e(r) O 0 0 X

0 p(r) O 0 [X
0 0 p(7) 0 |X

0 pi(r))%

which. dueto O T’” Y
gives f__EJrPS
dr

T_m- .

bpere are 3 extreme limits.




Limit |: “Free Streaming”

Free streaming is characterized by the following “2d”
energy-momentum tensor:

(e(r) O 0 0)Xx,
0 p(7) 0 0fx
0 0 p(r) 0|x,

.0 0 0 0)x

T
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Limit |: “Free Streaming”

Free streaming is characterized by the following “2d”
energy-momentum tensor:

(e(r) O 0 0)X such that
. 0 0 0
T‘Hl = p(r} | xl & g
0 0 p(t) O X, d_:__
r T
0 0 0 0)x

\
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Limit |: “Free Streaming”

Free streaming is characterized by the following “2d”
energy-momentum tensor:

(e(r) O 0 0)Xx such that
. 0 (7) 0 0
T}Iﬂ = p ) xl (ig £
0 0 p(f) 0 xz d_:__
T T
. 0 0 0 0)x
1
and . _

T

~ The total energy E~ ¢ 1 is conserved, as expected for
non-interacting particles.
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Limit |l: Bjorken Hydrodynamics

In the case of ideal hydrodynamics, the energy-momentum
tensor is symmetric in all three spatial directions (isotropization):

(e(t) O 0 0 )X,

T _ 0 p(r) O 0 | X
0 0 p(r) 0 [X

. 0 0 0 p(7)) x5
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Limit |l: Bjorken Hydrodynamics

In the case of ideal hydrodynamics, the energy-momentum
tensor is symmetric in all three spatial directions (isotropization):

(e(r) O 0 0 )X such that
. 0 (r) O 0
™= a2 | - de &+p
0 0 p(7) 0 e = —_—=—
drt T
. 0 0 0 (7)) X5
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Limit |l: Bjorken Hydrodynamics

In the case of ideal hydrodynamics, the energy-momentum
tensor is symmetric in all three spatial directions (isotropization):

(e(r) O 0 0 )X such that
, 0 (7T) 0 0
. 2 | % de E+p
0 0 p(r) 0 | X i
| drt T
. 0 0 0 (7)) X5

Using the ideal gas equation of state, £€=3p . yields
1

4/3
y 4

Bjorken, ‘83

S-.—u
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Limit |l: Bjorken Hydrodynamics

In the case of ideal hydrodynamics, the energy-momentum
tensor is symmetric in all three spatial directions (isotropization):

(e(r) O 0 0 )X such that
_. 0 (7T) 0 0
= = 5 de E+p
0 0 p(1) 0 = —_—=—
dt T
. 0 0 0 p(7)) X5

Using the ideal gas equation of state, £€=3p . yields

1

473
=

Bjorken, ‘83

~ The total energy E~ £ t is not conserved, while the
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total entropy S is conserved.




Most General Boost Invariant Energy-
Momentum Tensor

d&‘: €T P35 onegets £~
dr T ‘

1

1+A

If p3 >0 then. as




Most General Boost Invariant Energy-
Momentum Tensor

1

it p, >0 then, as d_&‘: ETP3 onegets g~ —
dr ‘s L

. 1 . .

Deviations fromthe & ~ —— scaling of energy density,
T
ike » _ 11+..g : A > () are due to longitudinal pressure
T

P, . which does work D, dV inthe longitudinal direction

modifying the energy density scaling with tau.

Pirsa: 07050079 Page 26/123




Most General Boost Invariant Energy-
Momentum Tensor

1

if p, >0 then, as d_&‘: ETP3 onegets £~ —
dr T L

o 1 . .

Deviations fromthe & ~ —— scaling of energy density,
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Most General Boost Invariant Energy-
Momentum Tensor

1
if p, >0 then, as d_&‘: ETP3 onegets £~ —
dr T L
- 1 | |
Deviations fromthe & ~ —— scaling of energy density,
T .
|
ike »~ _ 11+a : A > () aredue to longitudinal pressure
7 3

P, . which does work J 2 AV inthe longitudinal direction

modifying the energy density scaling with tau.

~ Non-zero positive longitudinal - 1
| il e — deviations from &€ —~
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Limit [ll: Color Glass at Early Times

In CGC at very early times smlogzi, t0s <<l (Lappi, '06)
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such that. since fz _£T P;  we get, at the leading log level,
| dr T

ps(1) = —€(7),  p(7) = €(7)




Limit Ill: Color Glass at Early Times

In CGC at very early times smlogzi, 0 <<1 (Lappi, '06)

such that. since fz_ £+ P;s we get, at the leading log level,
| dr T

ps(1) = —€(7),  p(7) = €(7)

Energy-momentum tensor Is

(e(r) O 0 g X
ow_| O & 0 0 |x
0 0 &) 0 x

¢ @ 0 0 —&(r)) x,




AdS/CFT Approach

Start with the metric in Fefferman-Graham coordinates in AdS;
space

1
ds’* = — |-A(7,2)dr* + 7 B(1,2) dn* + C(7, 2) dz} + d2’]
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Limit Ill: Color Glass at Early Times

In CGC at very early times Emlogzi, t0s<<1 (Lappi, '06)

such that. since fz _£7T P;  we get, at the leading log level,
| dr T

ps(1) = —e(7),  p(7) = €(7)

Energy-momentum tensor Is

(e() O 0 g \x
ow_| 0 & 0 0 |x
0 0 &) 0 x

. 0 0 0 —&(r)) x,




AdS/CFT Approach

Start with the metric in Fefferman-Graham coordinates in AdS;
space

1
ds’* = — |-A(7,2)dr* + 7° B(1,2) dn* + C(1, 2) dz] + d2’]
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AdS/CFT Approach

Start with the metric in Fefferman-Graham coordinates in AdS;
space

1
ds® = = |—A(7,2)dr* + 72 B(1, 2) dn* + C(7, 2) dz? + d2°]
1

and solve Einstein equations Rm, — > Guv R—6 9 =0
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AdS/CFT Approach

Start with the metric in Fefferman-Graham coordinates in AdS;
space

1
ds® = = |—A(7,2)dm* + 72 B(1, 2) d* + C(7, 2) dz? + d2°]
1
and solve Einstein equations R,,,,.. — § Guv R—6 9 =0

Expand the 4d metric near the boundary of the AdS space

(2, 2) = GO@) + 2G2() + 2 5) + ..
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AdS/CFT Approach

Start with the metric in Fefferman-Graham coordinates in AdS;
space

1
ds® = = |—A(7,2)dr* + 72 B(1, 2) d* + C(7, 2) dz? + d2?]
1

and solve Einstein equations Rm, — 5 Guv R—6 Gy =0

Expand the 4d metric near the boundary of the AdS space
G2, 2) = §0(@) + 2§D (@) + 2 GD(@) + ...

If our world is Minkowski, G (T) = Mo . then g’jﬁ)(x) =4

and
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AdS/CFT Approach

Start with the metric in Fefferman-Graham coordinates in AdS;
space

1
ds® = = |—A(7,2)dr* + 72 B(1, 2) d* + C(7, 2) dz? + d2?]
1

and solve Einstein equations R,,,, — 5 Guv R—6 Gy =0

Expand the 4d metric near the boundary of the AdS space
G, 2) = éﬂ(x) + 2 fﬁ?(a:) + g”jﬁ)(:z:) 2 ..

If our world is Minkowski, G (z) = Mu | then gﬁ)(:r) ==

and T.) = Ne -
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lterative Solution

General solution of Einstein equations is not known and is hard
to obtain. One first assumes a specific form for energy density

£—z{1)
and the solves Einstein equations perturbatively order-by-order

In zZ:

Gu(z,2) = g (z) + 22§32 (z) + 2* §0)(z) + ...
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lterative Solution

General solution of Einstein equations is not known and is hard
to obtain. One first assumes a specific form for energy density

£—ztr)
and the solves Einstein equations perturbatively order-by-order

nz: _ ) N )
Gl Z,2) = gﬂ)(a:) + 22 gﬁ?(a:) + 2* gfﬁ)(x) + ...

The solution in AdS space (if found) determines which
function of proper time is allowed for energy density.
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lterative Solution

General solution of Einstein equations is not known and is hard
to obtain. One first assumes a specific form for energy density

e=¢&(7)
and the solves Einstein equations perturbatively order-by-order

nmz _ ) ; )
Gu(z,2) = gD (z) + 22§32 (z) + 2* §0)(z) + - ..

The solution in AdS space (if found) determines which
function of proper time is allowed for energy density.

At the order z* it gives the following familiar conditions:

8, (T™) =0 and  (TF) =0
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lterative Solution

We begin by expanding the coefficients of the metric

1

ds® = = |—A(7,2)dr* + 72 B(1, 2) dn* + C(7, 2) dz? + d2°]

A(1,2) = ™), B(1,2) = &™), C(r,2) = ™




lterative Solution

We begin by expanding the coefficients of the metric

1

ds® = = |—A(7,2)dr* + 72 B(1, 2) dn* + C(7, 2) dz? + d2°]

A(TTZ) — ea(r,z)’ B(T*} Z) — eb(TTZ): C(T; Z) — ec(""z)

Into power series in z:

o0

a(1,z) = Zan('r) g, Mya) = Ebn('r) g, dra)= Zc,,('r) 2
n=>0 n=0

n=0
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £ o TA
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £ o z—‘é‘

we Iteratively obtain coefficients in the expansion

=0

alr,z) = Zaﬂ(r) . M) = an('r) 2 elasa) = Zc,,(r) e
n=0 n=>0

n=0




lterative Solution: Power-Law Scaling

Assuming power-law scaling £~ z—’ﬁ

we Iteratively obtain coefficients in the expansion

o0

alr, z) = Zan(r) 2 ox) = an(‘r) 2 dnz) = Zc,,('r) =
n=0

n=>0 n=>0

To lllustrate their structure let me display one of them:
1

ay(7) = —o7 [T T (447 - A%) + 47" 8(8 +8A +3A%)]
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £~ z—‘i

we Iteratively obtain coefficients in the expansion

=0 - o)

el — Zan(r) 2 ) — Zb 2N ) = Zc,,(’r) -

n=»0 n=>0

To lllustrate their structure let me display one of them:

1
—3g7 (07 T (4A% - A%) +a; T8 (8 +8A +3A7)]

dominates at
late times

ax(7) =
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £~ TA

we Iteratively obtain coefficients in the expansion

o0

alzrz) = Zan(r) . e = an('r) 2 ) = Zc,,(r) e
n=>0 n=0

n=»0

To lllustrate their structure let me display one of them:
1

ay(7) = —go7 [a0T T (AAT - AY) +ag T8 (8 +8A +3A%)]
dominates at dominates at

early times late times
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £~ TA

we Iteratively obtain coefficients in the expansion

=0

arz) = Zan('r) 24 M, 2) = an(‘r) " e rz) = Zc,,('r) -
n=>0

n:n I‘I:—"O

To illustrate their structure let me display one of them:

ax(7) = ‘E{é?i [ao ™ (4A% — A*) + a5 7728 (8 + 8A + 3A?)]
dominates at dominates at
early times late times
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Allowed Powers of Proper Time

Janik and Peschanski (‘'05) showed that requiring the energy
density to be non-negative g(z)>0 In all frames leads to
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Allowed Powers of Proper Time

Janik and Peschanski (‘'05) showed that requiring the energy
density to be non-negative g(z)>0 In all frames leads to

€(r) <0, 7€ (1) > —4e(7)




Allowed Powers of Proper Time

Janik and Peschanski (‘'05) showed that requiring the energy
density to be non-negative g(z)>0 in all frames leads to

€(r) <0, 7€ (1) > —4e(7)

Assuming power-law scaling E~T A the above
conditions lead to
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Allowed Powers of Proper Time

Janik and Peschanski (‘'05) showed that requiring the energy
density to be non-negative g(z)>0 In all frames leads to

€(r) <0, Te(T) > —4¢€(T)

Assuming power-law scaling E~7T o the above
conditions lead to

—4<A<0.

The above conclusion about which term dominates at what
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Late Time Solution: Scaling

At late times the perturbative (in z) series becomes

a(r,2) = #2ATA+ #2120+
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Late Time Solution: Scaling

At late times the perturbative (in z) series becomes

a(1,2) = #A8+# 228+

Janik and Peschanski (‘05) were the first to observe it and
looked for the full solution of Einstein equations at late proper
time as a function of the scaling variable

)1/4 A4

v = (—ap) 27T
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Late Time Solution: Scaling

At late times the perturbative (in z) series becomes

a(1,2) = #2T+# 2722+

Janik and Peschanski (‘05) were the first to observe it and
looked for the full solution of Einstein equations at late proper
time as a function of the scaling variable

)1/4 A4

v = (—ag) " 2z7T

The metric coefficients become:

a(1,z) = a(v), b(1,z) = b(v), and ¢(7,2) = ¢(v)
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Late Time Solution: Scaling

At late times the perturbative (in z) series becomes

a(1,2) = #2218+ #2228+

Janik and Peschanski (‘05) were the first to observe it and
looked for the full solution of Einstein equations at late proper
time as a function of the scaling variable

)1/4 A4

v=(—ag) " zT

The metric coefficients become:

a(t,z) = a(v), b(1,z) = b(v), and ¢(7,z) = ¢(v)

. o — A2
Here a, <0 is the normalization e(r) = — N A
- oof the energy density 2 2




Janik and Peschanski's Late Time
Solution

The late time solution reads (in terms of scaling variable v,
for v fixed and t going to infinity):

a(v) = 3 (1 —5) In(1 + Dv%) +§ (1+5) In(1 — Dv?)

13 A+1) 4 1 A+1 4
b(v)—Q(l— D ln(l+D1-)+2(l+ D )ln(l—DL)
1 A+2) R A+2 i
E(U)_§(1+W) ID(I-;—DL-)-I-E(I—W)]I[(l—DL)

with  , _ \/3&2+8&+8
N 24

Pirsa: 07050079 Page 58/123




Janik and Peschanski's Late Time
Solution

The late time solution reads (in terms of scaling variable v,
for v fixed and t going to infinity):

av) = 2 (1 - 5) In(1+ Dv") + > (1 + 5) In(1 — Dv%)

b(v) = = (I—ALI) l::i(l-l—D?;“)‘)+l (1+ &+1) In(1 — Dv?*)

2 D 2 D
1 A+2 1 A+2

with  , _ \/3&2+8&+8

= But what fixes A 77?
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Janik and Peschanski's Late Time
Solution

The late time solution reads (in terms of scaling variable v,
for v fixed and t going to infinity):

=} (1-2) - 0et -} (1 2) w0t

1 A+1 P A+1 -
b(t)—g(l— 5 )ln(l-l—Dt-)+2(l+ D )ln(l—Dt)
s A+2 i o 4 A+2 4
c{t—)-g(l—t— QD)ID(I:DL)-I-?(I— 2D)ln(l—.if).t,-)

- 2+ +
with Dz\/:m. - 8A + 8

= But what fixes A 77?

At this point Janik and Peschanski fixed the power A by
requiring that the curvature invariant has no singularities:
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Late Time Solution: Branch Cuts

=
_—

o3
—

I

1 1 1
e D v s — — Dt
(1 D) In(1+Dv )-l-2 (1+D) In(1 v”)

(1— A+1) 111(1+D“L’4)+% (1+ A+1) In(1 — Dv*)
+

o
—
o
——
I

D D

A+2 1 A+2

(1+—) 211(1+Dv4)+§ (1——) In(1 — Dv*)

1
2
1
2
1
2 2D 2D

0
—_—
-
S
|
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Late Time Solution: Branch Cuts

1 1 1 1
= - — — D*4 —_—— —_— _Dr4
a(v) 5 (1 D) In(1+ Dv™) 5 (1+ D) In(1 v”)
1 A+1 o 1 A+1 \
b(t)—g(l— 5 )ln(l—i—Dt)—i—?(l—i— D )ln(l—Dt)
. A+2 ! P 1 A+2 4
C(L)—2(1+ 2D)In(1=DL)+2(l QD)IB(I D v*)

Instead we notice that the above solution has a branch cut for
1-Dv* <0
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Late Time Solution: Branch Cuts

1 1 1
— — ‘D-fl' +_ — _D 74
(1 D) In(1+ Dv™) 5 (1+ D) In(1 v”)
A+1 p L A+1 \
(1— 5 )ln(1+D1)+2(1+ = )111(1—DL)

A+2 e B A+2 4
(1-}- 2D)h:l(l.;'l?'t,)-l-z(l QD)IH(I Dv*)

lel—' b.:.}lr—- t~~.:i||ri

Instead we notice that the above solution has a branch cut for
1-Dv* <0

This is not your run of the mill singularity: this is a branch cut!
This means that the metric becomes complex and multivalued
for 1 — Dv* < 0! Since the metric has to be real and
single-valued we conclude that the metric (and the curvature

invariant) do not exist for 1 — Dv* < 0 . Thatis unless
"1fté coefficients in front of the logarithms are integers! ™~

IIIII




Late Time Solution: Branch Cuts

1 1 1
e SR D'4 = s Beee - D 4
(1 D) In(1+ Dv7) 5 (1+ D) In(1 v”)

1

2

1 A+1 1 A+1

5(1— - )ln(l—i—Dv*)—i——(l-ﬁ— = )ln(l—Dv“)
-

2

k= D 2 D
e A+2 | 4 1 A+2 4
elv) = (I-+— 2D)iﬂ(1:DL)+2(l 2’]5,’)111(1 D v*)

Remember that functions a(v), b(v) and c(v) need to be
exponentiated to obtain the metric coefficients:

A(T,Z) e 6E(T’Z), B(T, z) — eb(T,Z)T C(T, Z) o eC(T,z)
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Late Time Solution: Branch Cuts

1 1 1 1
N e D;Ir e Siec _D -
a(v) 5 (1 D) In(1+ Dv") 5 (1+D) In(1 vY)
1 A+1 P A+1 4
b(t)—Q(l— D )ln(1+Dt-)+2(l+ D )ln(l—DL)
1 A+2 e, ] A+2 P
C(L)—2(1+ 2D)hl(l..}l)t-).2(1 QD)ID(I D v*)

Remember that functions a(v), b(v) and c(v) need to be
exponentiated to obtain the metric coefficients:

A(T,Z) — EH(T’Z), B(T? z) — eb(‘r,z)’ C(T! Z) — ec(r,z)

If the coefficients in front of the logarithms are integers,
functions A, B and C would be single-valued and real.
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Late Time Solution: Fixing the Power

Requiring the coefficients in front of the logarithms to be
iIntegers |.m.n 1
:




Late Time Solution: Fixing the Power

Requiring the coefficients in front of the logarithms to be
iIntegers |.m,n 1
:

after simple algebra (!) one obtains that the only allowed

poweris A = —% . giving the Bjorken hydrodynamic scaling

of the energy density, reproducing the result of Janik and
Peschanski

N2 1 1
272 O an X
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Late Time Solution: Fixing the Power

Requiring the coefficients in front of the logarithms to be
integers |.m,n 1
:

D

1 ( A+ 1)

— |1+ — | = m

2 D

1 A+2

E (1_ nnﬁ_j&xt = |
after simple algebra (!) one ok f&gt the only allowed
poweris A =—2%  givingthi - 7 hydrodynamic scaling
of the energy density, reprodu Tlm result of Janik and
Peschanski =

N2 25—
)= N
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Late Time Solution:

Fixi

Requiring the coefficients in front of th

integers |.m.n

after simple algebra (!) one of_=== _
poweris A = —% . giving th %

of the energy density, reprodu
Peschanski

N2 S
e(1) = —2;2 ag vy x
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Late Time Solution: Fixing the Power

Requiring the coefficients in front of the logarithms to be
integers | m,n 1
:

D
1 A+1
—|1+——— | =m
; (1+75)
1(,_A+2) _
9 a N ==

after simple algebra (!) one ot—===ht the only allowed

poweris A = —% .givingthe —— sz 2] hydrodynamic scaling
of the energy density, reprodu = {result of Janik and
Peschanski -

Nz == 1y

)= %am S n
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1 Early Time Dryniamics in Heawy Ton
2 Instead of Outline
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5 Limik I: "Free Streaming”
& Limik IT: Bjorken Hydrodynamics

Requiring the coefficients in front of thq 7ot Goeraiost vrntEne )@
3 Limik IIT: Color Glass ak Early
_b_ — 10 Ikerakive Solukion
[ t2terative Solution: Power-tawse |
l (1 + A + 1) — m: IEMﬂwsufpmwﬂmﬂ
2 D 14 Late Time Salution: Sealing
‘ 15 Janik and Peschanski's Late Time

1 (1 . A +2 — ll 1& Late Time Solution: Branch Cuks

11 Tkerative Solukion

integers |, m,n ; ( 1) [ —
= L

2

a N ; 17 Late Time Solution: Branch Cuts
Bk 12 Late Time Solution: Fixing the B

19 Earby Time Salution: Scaling

after simple algebra (!) one ob__ === scymesmrs=  red

- A0 —[ GatoSide  » 21 Earby-Time General Salution )
poweris A=—%  givingthi - sseseure= |scaling

Screen b 23 Early Time Solution: Terminaking

of the energy density, reprodul o  scu tmosien and
Pesch anski I'_H&:L . 25 Early Time Solution: Log &nsakz

26 Isotropization Transition: the B

Previous

\'rQ End Show | 27 Isatropization Transition

i c X ! 78 Tsokropization Transition: Time

(T) — S 2 dg /3 O 25 motropizstion Transiton: Time
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1 Earfy Time Crvniamics in Heawy Ton
2 Instead of Outline

| ate Time Solution: Fixir =_.______ yer

5 Limik I: "Free Streaming”
& Limik II: Bjorken Hydradynamics

Requiring the coefficients Iin front of the msxassnem= He

. & Limik ITT: Color Glass ak Early
integers |.m,n ] : | [P
5 (1 _+_ _,_) — n 10 kerative Solution

[t Beatve Sokaon II
IZM&&M:FGW—L&HEE
l (1 - A + 1) = m' 13 allowed Powers of Proper Time

2

|
| 14 Late Time Solution: Scaling

1 & I 15 Janik and Peschanski's Late Time
| + 2 f 16 Late Time Solution: Branch Cuts
( 0 T 1 17 Lake: Time: Solution: Branch Cuks
- 18 Late Time Solution: Fixing the P
= 19 Earby Time Salution: Scaling

after simple algebra (!) one of__===  zcimsmwm==  jed

" 2 —l GatoSide  » 21 Earby-Time General Solution )
power Is A:-% cgivingtht —— | zaccreesemme= + SCaling

Sireen 2 23 Earby Time Solukion: Terminaking

of the energy density, reprodt  ccoces | e moos and
Peschanski = | inie———

26 Isotropization Transition: the B

T2 E ‘ 27 Isotropizakion Transikion
( ) ..'.N c 1 i 28 Tsatropization Transition: Time
E\7) = — ag X 29 Isatropization Transition: Time
2 Tr2 T4'f3 i 30 Isofropizakion Transikion Estima:
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lterative Solution

We begin by expanding the coefficients of the metric

1

ds® = = |—A(7,2)dr* + 72 B(1, 2) dn* + C{7, 2) dz? + d2°]

A(T,2) = ™, B(r,2) = 4™, C(1,2) = 4™

Into power series in z:

alz;z) = Zan('r) . W) = Zbﬂ('r) . dna) = Zc,,('r) - idans
n=0 n=0 n=>0
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £ TA

we Iteratively obtain coefficients in the expﬁ‘nsion

o0

a(t,z) = Zan('r) il s an('r) 2. ) = Zcﬂ(r) g
n=0

n:n ﬂ:—"ﬁ

To lllustrate their structure let me display one of them:
ax(7) = ‘E{é?i [ag ™ (4A% - A*) + a3 728 (8 + 8A + 3A%)]
dominates at

late times
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £~ z—’ﬁ

we Iteratively obtain coefficients in the expansion

o0

alr.z) = Zan(r) et ) = Ebn('r) 2PN k) — Zc:,,('r) i
n=0

n=0

To lllustrate their structure let me display one of them:

1 ,
ax(7) = — l[ag ™ (4A% — A*) + a3 T2 8(8 + 8 A + 3A?)]
dominates at dominates at

early times late times
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lterative Solution: Power-Law Scaling

Assuming power-law scaling £ o TA

we Iteratively obtain coefficients in the expansion

o0

a2} = Zan(r) e ) — an('r) i, . 5 Zc,,('r) g T
n=0

n=>0

To illustrate their structure let me display one of them:

ax(7) = —3-;-5 [ag ™ (4A% - A*) + a3 T2 8 (8 + 8A +3A%)]
dominates at dominates at
early times late times
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Late Time Solution: Branch Cuts

1 1 1 1
) = — - — F Do)+ = — — Dv*
a(v) 5 (1 D) In(1+ Dv™) 5 (1+D) In(1 v”)
a A+1 o A+1 4
b(:)_Q(l— 5 )111(1+D1)-:—2(1+ ) )ln(l—Dt-)
1 A+2 1 A+2
1) —m — _ 1+ 4 — — — — 4
c(v) 2(1-}- QD)lu( DL)—!—2(1 2D)1n(1 D v?)

Instead we notice that the above solution has a branch cut for
1-Dv* <0

This is not your run of the mill singularity: this is a branch cut!
This means that the metric becomes complex and multivalued
for 1 — Dv* < 0! Since the metric has to be real and
single-valued we conclude that the metric (and the curvature

invariant) do not exist for 1 — Dv* < 0 . Thatis unless
4tfe coefficients in front of the logarithms are integers! ™™=




Late Time Solution: Branch Cuts

1 1 1
e D v* = Bt — Dt
(1 D)In(1+ L)+2(1+D)lﬂ(1 v)

1

2

1 A+1 1 A+1

5(1— - )ln(1+Dv4)+—(1+ 2 )111(1—1)1?4)

=
—

e
—

|

D 2 D
1 A+2 il A+2 P
C(L)—2(1+ 2D)hl(ir}l)t,)+2(l 2’D)ln(l Dv*)

Remember that functions a(v), b(v) and c(v) need to be
exponentiated to obtain the metric coefficients:

A(T,Z) = eﬂ(T’Z), B(T, 2‘:) = eb('r,z)’ C(T: Z) — ec(m2)
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Early Time Solution: Scaling

Let us apply the same strategy to the early-time solution: using
perturbative (in z) solution at early times give the following

series =
CI(T,EI) - #341"1-}-#’367'&_2+#"EST&_4+...

~4

=
4 A r =~ "~
—=- Gl ; #+#_+# _.|..___
( ¥ 7 )

While no single scaling variable exists, it appears that the

series expansion is in Z
u

-
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Early Time Solution: Scaling

Let us apply the same strategy to the early-time solution: using
perturbative (in z) solution at early times give the following

series
a(1,2) = #2T+ #5241 B A

- ~4

4 A y < "~
— i ] #.[.#_.I.# _+___
( o o )
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Early Time Solution: Scaling

Let us apply the same strategy to the early-time solution: using
perturbative (in z) solution at early times give the following

series ,
a(1,2) = #2520

~4

=2
4 A r =~ "~
- e 7 #.[.#_.i.# _+___
( %’ T4 )

While no single scaling variable exists, it appears that the

series expansion is in Z
u

-
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Early Time Solution: Scaling

Let us apply the same strategy to the early-time solution: using
perturbative (in z) solution at early times give the following
Series (.I(T_,E)z +#I .6 &?+#rf 8 &4_1__”

= it

4 A y < "~
—— il #+#_+# _+___
( 5 7 )

While no single scaling variable exists, it appears that the

series expansion is in Z
u

-

such that a(r,u) = ™2 ut (#+# 2 +#"u* +...)
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Early Time Solution: Ansatz

Keeping u fixed and taking t —0, we write the following ansatze
for the metric coefficients:

A(T,u) = eo(Tu) — efaﬂ a(v) _ 14 FAH a(u) + G(T2&+3)
B(r,u) = 1+ 7" B(u) + o(7*2%)
C(r,u) = 1+ 77 9(u) + o(7?41)
with «, p and v some unknown functions of u.
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Early-Time General Solution

Solving Einstein equations yields

A(T,u) = 14 agria 4F( 1——%,—-% 3; u)

. A A
B(T,U) = 1+aﬂT4-.--iu4 I:(ﬁ-f-l)F(—l—?—E?),ui’)

A(A+2) , A A
5 uF(l 5 241;)],

C(r,u) = 1+ap7* ' ﬁ;? [-6F( 1_%’-2 P u)

2
2 A A 2)
+Au F(l 7 2:4,11 .
where F Is the hypergeometric function.
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Early-Time General Solution

Solving Einstein equations yields

A(T,u) = 1+ agr*2 4F( 1—-%,—-% 3u)

» A A
B(r,u) = 1+ao7* u* [(A-i— 1) F (—1 - ?,—5;3; ui")

A(A+2) , A A
5 uF(l 5 241:)].

C(r,u) = 1+ ag72u? &1;2 [-GF( 1-%,-2 - u)

2
2 A A 2)
+Au F(l 5 2=4,u .
where F Is the hypergeometric function.

Hypergeometric functions have a branch cut for u>1.
We have branch cuts again!

||||| : 07050079 Page 85/123




Allowed Powers of Proper Time

However, now hypergeometric functions are not in the exponent.
The only way to avoid branch cuts is to have hypergeometric
series terminate at some finite order, becoming a polynomial.
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Allowed Powers of Proper Time

However, now hypergeometric functions are not in the exponent.
The only way to avoid branch cuts is to have hypergeometric
series terminate at some finite order, becoming a polynomial.

Before we do that we note that, at early times the total energy
of the produced mediumis F _ o7 .
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Allowed Powers of Proper Time

However, now hypergeometric functions are not in the exponent.
The only way to avoid branch cuts is to have hypergeometric
series terminate at some finite order, becoming a polynomial.

Before we do that we note that, at early times the total energy
of the produced mediumis F _ o4 .

Requiring it to be finite L ~ &7 <o we conclude that for

E ~ T’A the power shouldbe A >_7 .
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Allowed Powers of Proper Time

However, now hypergeometric functions are not in the exponent.
The only way to avoid branch cuts is to have hypergeometric
series terminate at some finite order, becoming a polynomial.

Before we do that we note that, at early times the total energy
of the produced mediumis F _ o7 .

Requiring it to be finite E ~ &7 <20 we conclude that for

E ~ TA the power shouldbe A >_7 .

Hence, at early times the physically allowed powers are:

—l<iNn<{l
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Early Time Solution: Terminating the Series

Finally, we see that the hypergeometric series in the solution

= 4+4A 4 el
A(T,u) = 1+agT F(l % 231.'.)

. A A
B(T._.'U.) = +aUT41—-iu4 [(A+ 1)F (—1 —??—?;3;1‘;2)

AA+2) , A A
5 uF(l 5 2411.)}

C(r,u) = 1+ ao7 2 u? ﬁl-;? [-SF( 1-%}-% 3;u )

A A
+Au2F(1—3,—?;4;u2)].

terminates only for |A = 0‘ In the physically allowed

rangeof —]< A <L().
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Early Time Solution

The early-time scaling of the energy density in this
strongly-coupled medium is

e(7) — constant as T — 0.

Wi p(r) = —er),  p(r) = e(7)
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Early Time Solution

The early-time scaling of the energy density in this
strongly-coupled medium is

e(7) — constant as T — 0.

with p3(7) = —e(7), p(1) = €(7)

This leads to the following energy-momentum tensor,

reminiscent of CGC at very early times:

(e(r) O 0 g )
0 &) 0O 0
0 0 &) 0

\ 0 0 0 —E(‘I') J

=

"R

R
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Early Time Solution: Log Ansatz

One can also look for the solution with the logarithmic ansatz
(sort of like fine-tuning):

N? 1 1
k)= —2;2 [aﬂ In’ (;) +a; In°! (;)]




Early Time Solution: Log Ansatz

One can also look for the solution with the logarithmic ansatz
(sort of like fine-tuning):

N2 1 1
tr) = —2;2 [au In’ (;) +a; In*? (;)]

The result of solving Einstein equations (no branch cuts this
time)isthat § = () and the energy density scales
as

(1) = —— [ﬂo+ - ], as T — 0.

In(1/7)
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Early Time Solution: Log Ansatz

One can also look for the solution with the logarithmic ansatz
(sort of like fine-tuning):

N2 1 1
e(r) = —2;2 [au In’ (;) + a; In®°! (;)]

The result of solving Einstein equations (no branch cuts this

time)isthat 4§ = () and the energy density scales
as
*N? aq
(1) = T 9.2 [ﬂo : ln(l/'r)] , as T — 0.

The approach to a constant at early times could be
logarnthmic! (More work is needed to sort this out.)
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Isotropization Transition: the Big Picture

We summary of our knowledge of energy density scaling with
proper time for the strongly-coupled medium at hand:

g M
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Isotropization Transition: the Big Picture

We summary of our knowledge of energy density scaling with
proper time for the strongly-coupled medium at hand:

e M

4 Janik,
Peschanski
‘05

r£~1
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Isotropization Transition: the Big Picture

We summary of our knowledge of energy density scaling with
proper time for the strongly-coupled medium at hand:

€
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Isotropization Transition

We have thus see that the strongly-coupled system starts out
very anisotropic (with negative longitudinal pressure) and
evolves towards complete (Bjorken) isotropization!
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Isotropization Transition

We have thus see that the strongly-coupled system starts out
very anisotropic (with negative longitudinal pressure) and
evolves towards complete (Bjorken) isotropization!

Let us try to estimate when isotropization transition takes place:
the iterative solution has both late- and early-time terms.
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Isotropization Transition

We have thus see that the strongly-coupled system starts out
very anisotropic (with negative longitudinal pressure) and
evolves towards complete (Bjorken) isotropization!

Let us try to estimate when isotropization transition takes place:
the iterative solution has both late- and early-time terms.

1 g
ax(1) = 331 [G{JTA_4 (4&2—A4)+aﬁr2ﬁ8(8+8&+3&2)]
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Isotropization Transition

We have thus see that the strongly-coupled system starts out
very anisotropic (with negative longitudinal pressure) and
evolves towards complete (Bjorken) isotropization!

Let us try to estimate when isotropization transition takes place:
the iterative solution has both late- and early-time terms.

1 ,
ay(7) = —5o7 [0 (4A% - A%) +ag "8 (8 +8A +3A7)]

dominates at
late times
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Isotropization Transition

We have thus see that the strongly-coupled system starts out
very anisotropic (with negative longitudinal pressure) and
evolves towards complete (Bjorken) isotropization!

Let us try to estimate when isotropization transition takes place:
the iterative solution has both late- and early-time terms.

1

mir) =——2 (g™ (4A% - A*) + a3 22 8 (8 + 8 A + 3A?)]
dominates at dominates at

early times late times

irsa: 07050079 Page 103/123




Isotropization Transition

We have thus see that the strongly-coupled system starts out
very anisotropic (with negative longitudinal pressure) and
evolves towards complete (Bjorken) isotropization!

Let us try to estimate when isotropization transition takes place:
the iterative solution has both late- and early-time terms.

1

alr) =— [aom™*(4A% - A*) + a3 22 8 (8 + 8A + 3A?)]
dominates at dominates at
early times late times

has a branch cut at
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Isotropization Transition

We have thus see that the strongly-coupled system starts out
very anisotropic (with negative longitudinal pressure) and
evolves towards complete (Bjorken) isotropization!

Let us try to estimate when isotropization transition takes place:
the iterative solution has both late- and early-time terms.

1

mlr) = —o (o™ (AA% - A*) + a5 7?2 8 (8 + 8A + 3A?)]
dominates at dominates at
early times late times
has a branch cut at has a branch cut at
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Pirsa:

Isotropization Transition: Time Estimate

We plot both branch cuts in the (z, 1) plane:

00000000

T

A

\




Isotropization Transition: Time Estimate

We plot both branch cuts in the (z, 1) plane:

The intercept is at the
“Isotropization time”
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Isotropization Transition: Time Estimate

In terms of more physical quantities we re-write the above

estimate as

where ¢, Is the coefficient in Bjorken energy-scaling:

Pirsa: 07050079

Tiso
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3 N2

€9 2 T2
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(1) = —
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Isotropization Transition: Time Estimate

In terms of more physical quantities we re-write the above
estimate as 3
3 N2)\s3

R (60 211'2)

where g, Is the coefficient in Bjorken energy-scaling:

€0

() = ¢

T3

For central Au+Au collisions at RHIC at s =200GeV /4
hydrodynamics requires =15 GeV/m?3 at 1=0.6 fm/c

(Heinz, Kolb ‘03), giving £,=38 fm33. This leads to
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Isotropization Transition: Time Estimate

In terms of more physical quantities we re-write the above
estimate as 3
3 N2)\s3

- (60 271'2)

where ¢, Is the coefficient in Bjorken energy-scaling:

€0

() = ¢

T3

For central Au+Au collisions at RHIC at s =200GeV /4
hydrodynamics requires =15 GeV/m?3 at 1=0.6 fm/c

(Heinz, Kolb ‘03), giving £,=38 fm33. This leads to
Tiso =~ 0.29fm/c

o0y good agreement with hydrodynamics!




Isotropization Transition Estimate: Self-Critique

An AdS/CFT skeptic would argue that our estimate

3 N2\*
- (eo 211'2)

Is easy to obtain from dimensional reasoning. If one has a
conformally invariant theory with e(1) = €0 | the only
4
T3
scale in the theory is given by &, . Making a scale with

dimension of time out of it gives e e .
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Isotropization Transition: Time Estimate

In terms of more physical quantities we re-write the above
estimate as 3
3 N2\

- (eo 271'2)

where ¢, Is the coefficient in Bjorken energy-scaling:

€0

e(1) = —<

T3

For central Au+Au collisions at RHIC at s =200GeV /4
hydrodynamics requires =15 GeV/fm?3 at 1=0.6 fm/c

(Heinz, Kolb ‘03), giving £,=38 fm33. This leads to
Tiso =~ 0.29fm/c

o0y good agreement with hydrodynamics!




Isotropization Transition Estimate: Self-Critique

An AdS/CFT skeptic would argue that our estimate

3 N2\*
o (eo 271'2)

Is easy to obtain from dimensional reasoning. If one has a
conformally invariant theory with e(1) = €0 | the only
— 1
T3
scale in the theory is given by &, . Making a scale with
dimension of time out of it gives e
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Isotropization Transition Estimate: Self-Critique

An AdS/CFT skeptic would argue that our estimate

3 N2\*
- = (60 271'2)

IS easy to obtain from dimensional reasoning. If one has a
conformally invariant theory with e(1) = €0 | the only
4
T3
scale in the theory is given by &, . Making a scale with

dimension of time out of it gives el

We would counter by saying that AAS/CFT gives a prefactor.
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Isotropization Transition Estimate: Self-Critique

An AdS/CFT skeptic would argue that our estimate

3 N2\*
e (eo 271'2)

Is easy to obtain from dimensional reasoning. If one has a

conformally invariant theory with 6(1_) € the only
— "4
T3
scale in the theory is given by &, . Making a scale with

dimension of time out of it gives g

We would counter by saying that AAS/CFT gives a prefactor.

The skeptic would say that for N~ =3 it is awfully close to 1...
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Conclusions
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Conclusions

We have:
_| Re-derived JP late-time results without requiring the

curvature invariant to be finite: all we need Is for the metric
to exist.
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Conclusions

We have:

| Re-derived JP late-time results without requiring the
curvature invariant to be finite: all we need is for the metric
to exist.

! Analyzed early-time dynamics and showed that energy
density goes to a constant at early times.
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Conclusions

We have:

! Re-derived JP late-time results without requiring the
curvature invariant to be finite: all we need Is for the metric
to exist.

—! Analyzed early-time dynamics and showed that energy
density goes to a constant at early times.

| Have therefore shown that isotropization (and hopefully
thermalization) takes place in strong coupling dynamics.
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Conclusions

We have:

! Re-derived JP late-time results without requiring the
curvature invariant to be finite: all we need Is for the metric
to exist.

density goes to a constant at early times.

| Have therefore shown that isotropization (and hopefully
thermalization) takes place in strong coupling dynamics.

_! Derived a simple formula for isotropization time and used
it for heavy ion collisions at RHIC to obtain 0.3 fm/c, in
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agreement with hydrodynamic simulations.




Early Time Solution: Terminating the Series

Finally, we see that the hypergeometric series in the solution

A(T,u) = 1+ aor*2 4F( 1—3,—-5 & u)

. A A
B(T._.'U.) — 1_E_aﬂ,r41r$u4 [(A—E— I)F (—1—?—53,1;2)

A(A+2) , A A
5 uF(l 5 241;)]

C(r,u) = 1+ ag72u? ﬁl-;? [-SF( 1-%}-% s u)

A A
+Au2F(1—3,—?;4;u2)].

terminates only for |A = O‘ In the physically allowed

rangeof —]<A<L().
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lterative Solution

We begin by expanding the coefficients of the metric

1
ds® = = |—A(7,z)dm* + 7° B(1, 2) dn’ + C(7, 2) dz” + d2°]

A(T,2) = ™, B(r,2) = 4™, C(1,2) = 4™

Into power series in z:

= ian('r) 2= .2 = ibﬂ(.r) A ol ) = ch 1) A

n=>0 n=>0 n=0
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Isotropization Transition Estimate: Self-Critique

An AdS/CFT skeptic would argue that our estimate

3 N2\*
- (60 211'2)

Is easy to obtain from dimensional reasoning. If one has a

conformally invariant theory with e(1) = €0 | the only
4
T3
scale in the theory is given by &, . Making a scale with
dimension of time out of it gives o ™

We would counter by saying that AAS/CFT gives a prefactor.

The skeptic would say that for N- =3 it is awfully close to 1...
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