Title: Quarkonium Suppression in QGP via String Theory

Date: May 23, 2007 05:20 PM

URL: http://pirsa.org/07050063

Abstract:

Pirsa: 07050063

# Quarkonium in a thermal medium via string theory

Hong Liu

Massachusetts Institute of Technology

Qudsia Ejaz, Thomas Faulkner, HL, Krishna Rajagopal, Urs Wiedemann

hep-ph/0607062, hep-ph/0612168, and to appear

Pirsa: 07050063 Page 2/101

Above T<sub>C</sub>, light-quark mesons no longer exist due to deconfinement.

Heavy quarkonium may still exist above  $T_c$  and dissociate at a higher temperature  $T_d$  (due to color screening), e.g.

$$J/\psi (\overline{\mathbf{c}} \mathbf{c}) : \mathsf{T}_{\mathsf{d}} \sim 2 \,\mathsf{T}_{\mathsf{c}}$$
  
 $\Upsilon (\overline{\mathsf{b}} \mathbf{b}) : \mathsf{T}_{\mathsf{d}} \sim 3 \,\mathsf{T}_{\mathsf{c}}$ 

Asakawa, Hatsuda; Datta, Karsch, Petreczky, Wetzorke,

while their excited states already dissociate above 1.2 T<sub>c</sub>.

Pirsa: 07050063 Page 3/101

Above T<sub>C</sub>, light-quark mesons no longer exist due to deconfinement.

Heavy quarkonium may still exist above  $T_c$  and dissociate at a higher temperature  $T_d$  (due to color screening), e.g.

$$J/\psi (\overline{\mathbf{c}} \mathbf{c}) : T_{d} \sim 2 T_{c}$$
  
 $\Upsilon (\overline{\mathbf{b}} \mathbf{b}) : T_{d} \sim 3 T_{c}$ 

Asakawa, Hatsuda; Datta, Karsch, Petreczky, Wetzorke,

while their excited states already dissociate above 1.2 T<sub>c</sub>.

Pirsa: 07050063 Page 4/101

Above T<sub>C</sub>, light-quark mesons no longer exist due to deconfinement.

Heavy quarkonium may still exist above  $T_c$  and dissociate at a higher temperature  $T_d$  (due to color screening), e.g.

$$J/\psi (\overline{\mathbf{c}} \mathbf{c}) : T_d \sim 2 T_c$$
  
 $\Upsilon (\overline{\mathbf{b}} \mathbf{b}) : T_d \sim 3 T_c$ 

Asakawa, Hatsuda; Datta, Karsch, Petreczky, Wetzorke,

while their excited states already dissociate above 1.2 T<sub>c</sub>.

Quarkonium suppression is a sensitive probe of QGP.

Matsui and Satz (1987)

Pirsa: 07050063 Page 5/101

Above T<sub>C</sub>, light-quark mesons no longer exist due to deconfinement.

Heavy quarkonium may still exist above  $T_c$  and dissociate at a higher temperature  $T_d$  (due to color screening), e.g.

$$J/\psi (\overline{\mathbf{c}} \mathbf{c}) : T_d \sim 2 T_c$$
  
 $\Upsilon (\overline{\mathbf{b}} \mathbf{b}) : T_d \sim 3 T_c$ 

Asakawa, Hatsuda; Datta, Karsch, Petreczky, Wetzorke,

while their excited states already dissociate above 1.2 T<sub>c</sub>.

Quarkonium suppression is a sensitive probe of QGP.

Matsui and Satz (1987)

Lattice: static quark potential, spectral functions

Pirsa: 07050063 Page 7/101

Connecting lattice QCD to heavy ion phenomenology requires understanding:

Pirsa: 07050063 Page 8/101

Connecting lattice QCD to heavy ion phenomenology requires understanding:

Initial conditions, formation time, formation mechanism

Pirsa: 07050063 Page 9/101

Connecting lattice QCD to heavy ion phenomenology requires understanding:

- Initial conditions, formation time, formation mechanism
- Heavy quark mesons could move very fast relative to the hot medium.

How does the screening effect depend on the velocity?

Velocity dependence of the T<sub>d</sub>?

Pirsa: 07050063 Page 10/101

Connecting lattice QCD to heavy ion phenomenology requires understanding:

- Initial conditions, formation time, formation mechanism
- Heavy quark mesons could move very fast relative to the hot medium.

How does the screening effect depend on the velocity?

Velocity dependence of the T<sub>d</sub>?

Coalescence

Pirsa: 07050063 Page 11/101

Connecting lattice QCD to heavy ion phenomenology requires understanding:

- Initial conditions, formation time, formation mechanism
- Heavy quark mesons could move very fast relative to the hot medium.

How does the screening effect depend on the velocity?

Velocity dependence of the T<sub>d</sub>?

Coalescence



Connecting lattice QCD to heavy ion phenomenology requires understanding:

- Initial conditions, formation time, formation mechanism
- Heavy quark mesons could move very fast relative to the hot medium.

How does the screening effect depend on the velocity?

Velocity dependence of the T<sub>d</sub>?

Coalescence

Hard to do on the lattice



Pirsa: 07050063 Page 14/101

#### 1. In a $\mathcal{N}=4$ SYM QGP:

potential between a pair of infinitely heavy external quark and antiquark moving with some velocity;

velocity dependence of the screening length.

Pirsa: 07050063 Page 15/101

#### 1. In a $\mathcal{N}=4$ SYM QGP:

potential between a pair of infinitely heavy external quark and antiquark moving with some velocity; velocity dependence of the screening length.

2. In a  $\mathcal{N}=2$  SYM QGP with  $N_F << N_C$ :

Dispersion relation of mesons in the medium

Velocity dependence of the meson stability

Pirsa: 07050063 Page 16/101

1. In a  $\mathcal{N}=4$  SYM QGP:

potential between a pair of infinitely heavy external quark and antiquark moving with some velocity; velocity dependence of the screening length.

2. In a  $\mathcal{N}=2$  SYM QGP with  $N_F << N_C$ :

Dispersion relation of mesons in the medium

Velocity dependence of the meson stability

Speculations:

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

Pirsa: 07050063 Page 18/101

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

 $\mathcal{N} = 4$  Super-Yang-Mills theory in 4d with SU(N<sub>C</sub>)



IIB string theory in  $AdS_5 \times S_5$ 

Pirsa: 07050063 Page 19/101

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

 $\mathcal{N} = 4$  Super-Yang-Mills theory in 4d with SU(N<sub>c</sub>)



IIB string theory in AdS<sub>5</sub> x S<sub>5</sub>

Finite temperature



Black hole in AdS<sub>5</sub>

Pirsa: 07050063 Page 20/101

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

 $\mathcal{N} = 4$  Super-Yang-Mills theory in 4d with SU(N<sub>C</sub>)



IIB string theory in AdS<sub>5</sub> x S<sub>5</sub>

Finite temperature



Black hole in AdS<sub>5</sub>

Large N<sub>c</sub> and large 't Hooft coupling limit



Classical gravity limit

't Hooft coupling:  $\lambda = g_{vM}^2 N_C$ 

Pirsa: 07050063 Page 21/101

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

 $\mathcal{N} = 4$  Super-Yang-Mills theory in 4d with SU(N<sub>C</sub>)



IIB string theory in AdS<sub>5</sub> x S<sub>5</sub>

Finite temperature



Black hole in AdS<sub>5</sub>

Large N<sub>c</sub> and large 't Hooft coupling limit



Classical gravity limit

't Hooft coupling:  $\lambda = g_{vM}^2 N_C$ 

Note:  $\mathcal{N}=4$  SYM is conformally invariant.

Pirsa: 07050063 Page 22/101

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

 $\mathcal{N}$  = 4 Super-Yang-Mills theory in 4d with SU(N<sub>c</sub>)



IIB string theory in AdS<sub>5</sub> x S<sub>5</sub>

Finite temperature



Black hole in AdS<sub>5</sub>

Large N<sub>c</sub> and large 't Hooft coupling limit



Classical gravity limit

't Hooft coupling:  $\lambda = g_{YM}^2 N_C$ 

Note:  $\mathcal{N}=4$  SYM is conformally invariant.

Pirsa: 07050063 Page 23/101

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

N = 4 Super-Yang-Mills theory in 4d with SU(N<sub>c</sub>)



IIB string theory in AdS<sub>5</sub> x S<sub>5</sub>

Finite temperature

Large N<sub>c</sub> and large 't Hooft coupling limit





Black hole in AdS<sub>5</sub>

Classical gravity limit

't Hooft coupling:  $\lambda = g_{YM}^2 N_C$ 

Note:  $\mathcal{N}=4$  SYM is conformally invariant.

Pirsa: 07050063 Page 24/101

Pirsa: 07050063 Page 25/101

$$ds^{2} = -f dt^{2} + \frac{r^{2}}{R^{2}} \left( dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + \frac{1}{f} dr^{2} + R^{2} d\Omega_{5}^{2}$$

$$f \equiv \frac{r^2}{R^2} \left( 1 - \frac{r_0^4}{r^4} \right)$$

R: curvature radius of AdS

Pirsa: 07050063 Page 26/101

$$ds^{2} = -f dt^{2} + \frac{r^{2}}{R^{2}} \left( dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + \frac{1}{f} dr^{2} + R^{2} d\Omega_{5}^{2}$$

$$f \equiv \frac{r^2}{R^2} \left( 1 - \frac{r_0^4}{r^4} \right)$$

R: curvature radius of AdS

$$T_H = \frac{r_0}{\pi R^2} = T \qquad \frac{R^2}{\alpha'} = \sqrt{\lambda}$$

$$\frac{R^2}{\alpha'} = \sqrt{\lambda}$$

Pirsa: 07050063

$$ds^{2} = -f dt^{2} + \frac{r^{2}}{R^{2}} \left( dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + \frac{1}{f} dr^{2} + R^{2} d\Omega_{5}^{2}$$

$$f \equiv \frac{r^2}{R^2} \left( 1 - \frac{r_0^4}{r^4} \right)$$

R: curvature radius of AdS

$$T_H = \frac{r_0}{\pi R^2} = T \qquad \frac{R^2}{\alpha'} = \sqrt{\lambda}$$

$$\frac{R^2}{\alpha'} = \sqrt{\lambda}$$



Pirsa: 07050063

Pirsa: 07050063 Page 29/101

 $\mathcal{N}=4$  SYM theory contains only adjoint matter.

Fundamental external quarks can be introduced by putting a probe D3-brane near the boundary of AdS.

Pirsa: 07050063 Page 30/101

 $\mathcal{N}=4$  SYM theory contains only adjoint matter.

Fundamental external quarks can be introduced by putting a probe D3-brane near the boundary of AdS.



event horizon

Pirsa: 07050063 Page 31/101

 $\mathcal{N}=4$  SYM theory contains only adjoint matter.

Fundamental external quarks can be introduced by putting a probe D3-brane near the boundary of AdS.



Pirsa: 07050063 Page 32/101

 $\mathcal{N}=4$  SYM theory contains only adjoint matter.

Fundamental external quarks can be introduced by putting a probe D3-brane near the boundary of AdS.



Pirsa: 07050063 Page 33/101

### Static quark potential in $\mathcal{N}=4$ SYM

Maldacena; Rey, Yee; Rey, Theisen Yee; Brandhuber, Itzhaki, Sonnenschein Yankielowicz

.....

Pirsa: 07050063 Page 34/101

### Static quark potential in $\mathcal{N}=4$ SYM



Pirsa: 07050063 Page 35/101

### Static quark potential in $\mathcal{N}=4$ SYM



In the large  $N_C$  and large  $\lambda = g_{YM}^2 N_C$  limit:

quark potential = energy of open string connecting the pair

Pirsa: 07050063 Page 36/101

#### Static quark potential in $\mathcal{N}=4$ SYM



In the large  $N_C$  and large  $\lambda = g_{YM}^2 N_C$  limit:

quark potential = energy of open string connecting the pair

$$V(L) \propto \sqrt{\lambda} f(TL)$$
,

#### Static quark potential in $\mathcal{N}=4$ SYM



In the large  $N_C$  and large  $\lambda = g_{YM}^2 N_C$  limit:

quark potential = energy of open string connecting the pair

$$V(L) \propto \sqrt{\lambda} f(TL)$$
,

$$L_{\rm s} = 0.277/T$$

HL, Rajagopal Wiedemann

Pirsa: 07050063 Page 39/101



HL, Rajagopal Wiedemann

Pirsa: 07050063



HL, Rajagopal Wiedemann

**Event horizon** 

Event horizon 
$$L_S(\mathbf{v}) \approx L_S(0) \ (1-\mathbf{v}^2)^{1/4} \sim (1-\mathbf{v}^2)^{1/4} \frac{1}{T} \sim \frac{1}{(1-\mathbf{v}^2)^{-\frac{1}{4}}T}$$

Pirsa: 07050063



HL, Rajagopal Wiedemann

Event horizon

Event horizon 
$$L_S(\mathbf{v}) \approx L_S(0) \ (1-\mathbf{v}^2)^{1/4} \sim (1-\mathbf{v}^2)^{1/4} \frac{1}{T} \sim \frac{1}{(1-\mathbf{v}^2)^{-\frac{1}{4}}T}$$

In a rest frame of quark pair, the medium is boosted:

$$\varepsilon(v) = \left(\frac{1}{\sqrt{1 - v^2}}\right)^2 \varepsilon(0) \sim \left(\frac{1}{\sqrt{1 - v^2}}\right)^2 T^4 \sim \left((1 - v^2)^{-\frac{1}{4}} T\right)^4$$
Prisa: 07050963

HL, Rajagopal, Wiedemann



Pirsa: 07050063 Page 44/101

Dissociation temperature T<sub>d</sub>:

$$d \sim L_S(T_d)$$

d: size of a meson

Pirsa: 07050063 Page 45/101

Dissociation temperature T<sub>d</sub>:

$$d \sim L_S(T_d)$$

d: size of a meson

Given: 
$$L_S(\mathbf{v}) \approx \frac{1}{T} (1 - \mathbf{v}^2)^{1/4}$$

this suggests: 
$$T_d(\mathbf{v}) \sim (1 - \mathbf{v}^2)^{1/4} T_d(0)$$

Pirsa: 07050063

Dissociation temperature T<sub>d</sub>:

$$d \sim L_S(T_d)$$

d: size of a meson

Given: 
$$L_S(\mathbf{v}) \approx \frac{1}{T} (1 - \mathbf{v}^2)^{1/4}$$

this suggests: 
$$T_d(\mathbf{v}) \sim (1 - \mathbf{v}^2)^{1/4} T_d(0)$$

What would happen if QCD also has similar velocity scaling?

Pirsa: 07050063

## Has RHIC reached $T_d$ for $J/\psi$ ?

Pirsa: 07050063 Page 48/101

### Has RHIC reached T<sub>d</sub> for J/ψ?

Lattice: J/ψ may survive up to 2T<sub>c</sub>

Similarity of the magnitude of J/ψ suppression at RHIC and SPS

Pirsa: 07050063 Page 49/101

## Has RHIC reached T<sub>d</sub> for J/ψ?

Lattice: J/ψ may survive up to 2T<sub>c</sub>

Similarity of the magnitude of J/ψ suppression at RHIC and SPS



Karsch, Kharzeev, Satz,

RHIC has not reached  $T_d$  for  $J/\psi$ .

Pirsa: 07050063 Page 50/101

HL, Rajagopal, Wiedemann

Pirsa: 07050063 Page 51/101

HL, Rajagopal, Wiedemann

Heavy quark mesons with larger velocity dissociate at a lower temperature.

$$T_d(v) \sim (1-v^2)^{1/4} T_d(0)$$



Pirsa: 07050063

Page 52/101

HL, Rajagopal, Wiedemann

Heavy quark mesons with larger velocity dissociate at a lower temperature.

$$T_d(v) \sim (1-v^2)^{1/4} T_d(0)$$



Pirsa: 07050063

Page 53/101

HL, Rajagopal, Wiedemann

Heavy quark mesons with larger velocity dissociate at a lower temperature.

$$T_d(v) \sim (1-v^2)^{1/4} T_d(0)$$

Expect significant suppression at large P<sub>T</sub>.

This effect may be significant and tested at RHIC II or LHC



Pirsa: 07050063

Page 54/101

HL,Rajagopal,Wiedemann Casalderry-Solana,Teaney Gubser, Herzog, Karch, Kovtun, Kozcaz, Yaffe

Pirsa: 07050063 Page 55/101

For a quark of mass m<sub>q</sub>:

$$\mathbf{v}_C^2 = 1 - \frac{\lambda^2 T^4}{16m_a^4}$$

HL,Rajagopal,Wiedemann
Casalderry-Solana,Teaney
Gubser,
Herzog, Karch, Kovtun, Kozcaz, Yaffe

 $v_{\rm C}$  decreases with  $m_{\rm q}$ 

For  $v > v_C$ , quark potential ceases to exist for any L.

Pirsa: 07050063

For a quark of mass m<sub>q</sub>:

$$\mathbf{v}_C^2 = 1 - \frac{\lambda^2 T^4}{16m_a^4}$$

HL,Rajagopal,Wiedemann
Casalderry-Solana,Teaney
Gubser,
Herzog, Karch, Kovtun, Kozcaz, Yaffe

v<sub>C</sub> decreases with m<sub>q</sub>

For  $v > v_C$ , quark potential ceases to exist for any L.

v<sub>c</sub>: speed limit for mesons ?

Pirsa: 07050063

For a quark of mass m<sub>q</sub>:

$$\mathbf{v}_{C}^{2} = 1 - \frac{\lambda^{2} T^{4}}{16 m_{a}^{4}}$$

HL,Rajagopal,Wiedemann Casalderry-Solana,Teaney Gubser, Herzog, Karch, Kovtun, Kozcaz, Yaffe

 $\rm v_{\rm C}$  decreases with  $\rm m_{\rm q}$ 

For v > v<sub>C</sub>, quark potential ceases to exist for any L.

v<sub>c</sub>: speed limit for mesons ?



### Going beyond the potential model

1. So far have to restrict to  $m_q \gg \sqrt{\lambda}T$ 

What happens when  $m_q \sim \sqrt{\lambda}T$  ?

2. Information on bound states indirect.

It would be ideal to study mesons directly.

Pirsa: 07050063 Page 59/101

Karch, Katz

Pirsa: 07050063 Page 60/101

Karch, Katz

Add N<sub>F</sub> hypermultiplets in fundamental representation to  $\mathcal{N}=4$  SYM  $\rightarrow \mathcal{N}=2$  theory with flavors

Pirsa: 07050063 Page 61/101

Karch, Katz

Add N<sub>F</sub> hypermultiplets in fundamental representation to  $\mathcal{N}=4$  SYM  $\rightarrow \mathcal{N}=2$  theory with flavors

On gravity side, this can be achieved by adding  $N_F$  D7-branes to the AdS<sub>5</sub> x S<sup>5</sup> geometry.

Pirsa: 07050063 Page 62/101

Karch, Katz

Add N<sub>F</sub> hypermultiplets in fundamental representation to  $\mathcal{N}=4$  SYM  $\rightarrow \mathcal{N}=2$  theory with flavors

On gravity side, this can be achieved by adding  $N_F$  D7-branes to the AdS<sub>5</sub> x S<sup>5</sup> geometry.



Pirsa: 07050063 Page 63/101

Karch, Katz

Add N<sub>F</sub> hypermultiplets in fundamental representation to  $\mathcal{N}=4$  SYM  $\rightarrow \mathcal{N}=2$  theory with flavors

On gravity side, this can be achieved by adding  $N_F$  D7-branes to the AdS<sub>5</sub> x S<sup>5</sup> geometry.



Pirsa: O Boalaington, Erdmenger, Evans, Guralnik, Kirsch; Kruczenski, Mateos, Myers, Wirther 1910

#### Mesons

Babington, Erdmenger, Evans, Guralnik, Kirsch; Kruczenski, Mateos, Myers, Winters; Mateos, Myers and Thomson,

Pirsa: 07050063 Page 65/101

#### Mesons

Babington, Erdmenger, Evans, Guralnik, Kirsch; Kruczenski, Mateos, Myers, Winters; Mateos, Myers and Thomson,

Mesons:

Open string excitations on D7-branes:

Lowest lying mesons: field theory modes on D7 branes.

Mass spectrum: 
$$M \sim \frac{m_q}{\sqrt{\lambda}}$$



Pirsa: 07050063 Page 66/101

#### Mesons

Babington, Erdmenger, Evans, Guralnik, Kirsch; Kruczenski, Mateos, Myers, Winters; Mateos, Myers and Thomson,

#### Mesons:

Pirsa: 07050063

Open string excitations on D7-branes:

Lowest lying mesons: field theory modes on D7 branes.

Mass spectrum: 
$$M \sim \frac{m_q}{\sqrt{\lambda}}$$







Mateos, Myers and Thomson

Pirsa: 07050063 Page 68/101

Mateos, Myers and Thomson

Is there a velocity bound for mesons?

Pirsa: 07050063 Page 69/101

Mateos, Myers and Thomson

Is there a velocity bound for mesons?

We are interested in the behavior of mesons in the large k limit.

Pirsa: 07050063 Page 70/101

Mateos, Myers and Thomson

Is there a velocity bound for mesons?

We are interested in the behavior of mesons in the large k limit.



$$\omega = v_C k, k \to \infty$$

$$v_C = 0.35$$
 for  $T = 0.98 T_d$ 

$$v_C = 0.88$$
 for  $T = 0.65 T_d$ 

Pirsa: 07050063

Mateos, Myers and Thomson

Is there a velocity bound for mesons?

We are interested in the behavior of mesons in the large k limit.



Pirsa: 07050063

$$\omega = v_C k$$
,  $k \to \infty$   
 $v_C = 0.35$  for  $T = 0.98 T_d$   
 $v_C = 0.88$  for  $T = 0.65 T_d$ 



Consistent with earlier result obtained in the regime

$$m_q \gg \sqrt{\lambda}T$$

Ejaz, Faulkner, HL, Rajagopal, Wiedemann

Pirsa: 07050063 Page 73/101

Ejaz, Faulkner, HL, Rajagopal, Wiedemann

As k > Infinity, the meson wave function becomes more and more localized at the tip of the D7-branes.



Pirsa: 07050063 Page 74/101

Ejaz, Faulkner, HL, Rajagopal, Wiedemann

As k > Infinity, the meson wave function becomes more and more localized at the tip of the D7-branes.

In the large k limit:

$$\omega = kv_C + (n+2)\Omega + \mathcal{O}(k^{-1})$$

$$\Omega = \sqrt{\frac{8\varepsilon^2(1+\varepsilon^4)}{(1+\varepsilon^2)^3}}, \qquad \epsilon = \frac{1}{2} \left(\frac{r_0}{r_{tip}}\right)^2$$



Ejaz, Faulkner, HL, Rajagopal, Wiedemann

As k > Infinity, the meson wave function becomes more and more localized at the tip of the D7-branes.

In the large k limit:

$$\omega = kv_C + (n+2)\Omega + \mathcal{O}(k^{-1})$$

$$\Omega = \sqrt{\frac{8\varepsilon^2(1+\varepsilon^4)}{(1+\varepsilon^2)^3}}, \qquad \epsilon = \frac{1}{2} \left(\frac{r_0}{r_{tip}}\right)^2$$



Page 76/101

v<sub>C</sub> is always given by the local speed of light at the tip

Pirsa: 07050063

Ejaz, Faulkner, HL, Rajagopal, Wiedemann

As k → Infinity, the meson wave function becomes more and more localized at the tip of the D7-branes.

In the large k limit:

$$\omega = kv_C + (n+2)\Omega + \mathcal{O}(k^{-1})$$

$$\Omega = \sqrt{\frac{8\varepsilon^2(1+\varepsilon^4)}{(1+\varepsilon^2)^3}}, \qquad \epsilon = \frac{1}{2} \left(\frac{r_0}{r_{tip}}\right)^2$$



v<sub>C</sub> is always given by the local speed of light at the tip

Small T limit agrees exactly with earlier results based on
Pirsa: 07@eassical string.
Page 77/101

Pirsa: 07050063 Page 78/101



Pirsa: 07050063 Page 79/101



Pirsa: 07050063 Page 80/101



Pirsa: 07050063 Page 81/101



Near  $T_d$ ,  $v_c$  (T)  $\rightarrow$  0, for arbitrary large k.

Pirsa: 07050063 Page 82/101

#### A numerical fit



Pirsa: 07050063



Near  $T_d$ ,  $v_c$  (T)  $\rightarrow$  0, for arbitrary large k.

Pirsa: 07050063 Page 84/101

#### A numerical fit



Pirsa: 07050063

Pirsa: 07050063 Page 86/101

Velocity scaling of screening length

Pirsa: 07050063 Page 87/101

Velocity scaling of screening length

Velocity scaling of dissociation of temperature

Pirsa: 07050063 Page 88/101

Velocity scaling of screening length

Velocity scaling of dissociation of temperature

Speed limit for heavy quark mesons



Local speed of light in the bulk

Pirsa: 07050063 Page 89/101

Velocity scaling of screening length

Velocity scaling of dissociation of temperature

Speed limit for heavy quark mesons



Local speed of light in the bulk

Dramatic slowdown near T<sub>d</sub>

Pirsa: 07050063 Page 90/101

Velocity scaling of screening length

Velocity scaling of dissociation of temperature

Speed limit for heavy quark mesons



Local speed of light in the bulk

Dramatic slowdown near T<sub>d</sub>

All of them are rather qualitative features, which may Pirsa: 070500 not depend on the precise details of the underlying theory.

Pirsa: 07050063 Page 92/101



Pirsa: 07050063 Page 93/101



Will J/ψ break apart?



J/ψ suppression

Pirsa: 07050063 Page 94/101



Will J/ψ break apart?



J/ψ suppression

Or will it slow down and survive the medium

Pirsa: 07050063 Page 95/101



Will J/ψ break apart?



J/ψ suppression

Or will it slow down and survive the medium

What happens when medium disappears?

Pirsa: 07050063 Page 96/101





Or will it slow down and survive the medium

What happens when medium disappears?

Time delay? Page 97/101

#### Data to come

RHIC: low statistics on J/ $\psi$  with 2 < P<sub>T</sub> < 5 GeV, no data for P<sub>T</sub>> 5GeV

Reach in P<sub>T</sub> will extend to 10 GeV in coming years at RHIC.

LHC will reach even wider range.



Pirsa: 07050063



"I don't think I can do it, but I'll try."

Pirsa: 07050063



Ejaz, Faulkner, HL, Rajagopal, Wiedemann

As k → Infinity, the meson wave function becomes more and more localized at the tip of the D7-branes.

In the large k limit:

$$\omega = kv_C + (n+2)\Omega + \mathcal{O}(k^{-1})$$

$$\Omega = \sqrt{\frac{8\varepsilon^2(1+\varepsilon^4)}{(1+\varepsilon^2)^3}}, \qquad \epsilon = \frac{1}{2} \left(\frac{r_0}{r_{tip}}\right)^2$$



v<sub>C</sub> is always given by the local speed of light at the tip

Small T limit agrees exactly with earlier results based on
Pirsa: 07@eassical string.
Page 101/101