Title: Fictional Forces in a SYM Thermal Bath

Date: May 23, 2007 11:00 AM

URL: http://pirsa.org/07050057

Abstract:

Pirsa: 07050057 Page 1/35

Frictional forces in strongly coupled superYang-Mills plasmas

M. Edalati, J. Vázquez-Poritz (hep-th/0608118, 0612157)

P. Moomaw, R. Wijewardhana, J. Wittig (in progress)

I Light-like Wilson Loop in N=4 SYM

II AdS representation of SYM frictional forces

Pirsa: 07050057 Page 2/35

Frictional forces in strongly coupled superYang-Mills plasmas

M. Edalati, J. Vázquez-Poritz (hep-th/0608118, 0612157)

P. Moomaw, R. Wijewardhana, J. Wittig (in progress)

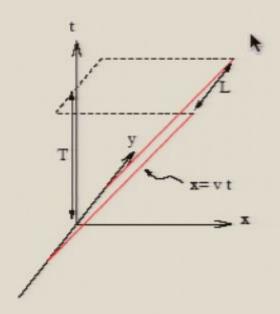
I Light-like Wilson Loop in N=4 SYM

II AdS representation of SYM frictional forces

Pirsa: 07050057 Page 3/35

I Light-like Wilson Loop in N=4 SYM

Liu, Rajagopal, Wiedemann (hep-ph/0605178, 0607062) proposed that a certain lightlike Wilson loop W measures the jet quenching parameter \hat{q} non-perturbatively:



$$\langle W \rangle \sim \exp \left\{ -T(\cdots + \hat{q}L^2 + \cdots) \right\}$$

with $v \to 1^+$, $T \to \infty$, and $m^{-1} \ll L \ll \beta$, where m is the probe quark mass, and β the inverse temperature. Quark self-energies are to be probability acted.

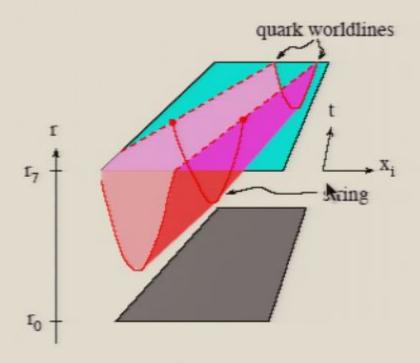
We consider this Wilson loop in the $N \gg g_{ym}^2 N \gg 1$ $\mathcal{N}{=}4$ SU(N) SYM theory, dual to IIB strings on AdS₅×S⁵:

SYM theory			string theory
number of colors			$R^4/(4\pi\alpha'^2g_s)$
't Hooft coupling	$\lambda = g_{\rm ym}^2 N$	\Leftrightarrow	R^4/α'^2
inverse temperature	β	\Leftrightarrow	$\pi R^2/r_0$
probe quark mass	m	\Leftrightarrow	$r_7/(2\pi\alpha')$
probe quark worldline		\Leftrightarrow	∂(string worldsheet)

Background geometry: AdS₅ black 3-brane

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = -\frac{r^4 - r_0^4}{r^2 R^2} dt^2 + \frac{r^2}{R^2} (dx^2 + dy^2 + dz^2) + \frac{r^2 R^2}{r^4 - r_0^4} dr^2.$$

with probe D7 brane down to $r = r_7$.



• The classical string dynamics governed by the Nambu-Goto action:

$$S = \frac{-1}{2\pi\alpha'} \int d^2\sigma \sqrt{-G}, \qquad G := \det \left[g_{\mu\nu} \frac{\partial x^{\mu}}{\partial \sigma^{\alpha}} \frac{\partial x^{\nu}}{\partial \sigma^{\beta}} \right].$$

ullet e^{iS} for its solutions with spacelike worldsheets give the semi-classical (saddlepoint) approximation contributions to the Wilson loop.

Describe by a worldsheet embedding

$$t = \tau$$
, $x = v\tau$, $y = \sigma$, $z = 0$, $r = r(\sigma)$,

with boundary conditions

$$0 \le \tau \le T$$
, $-L/2 \le \sigma \le L/2$, $r(\pm L/2) = r_7$.

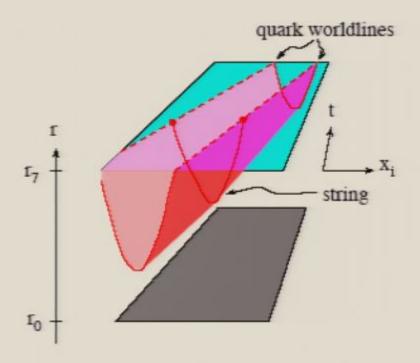
· Get equation of motion

$$r'^{2} = \frac{r^{4} - r_{0}^{4}}{a^{2}r_{0}^{4}R^{4}} \left[(v^{2} - 1)r^{4} - (a^{2} - 1)r_{0}^{4} \right],$$

where a^2 is a positive integration constant (its sign chosen so that the worldsheet is spacelike).

ullet Worldsheet can be spacelike even for v < 1, if

$$r_7^4 < \frac{r_0^4}{1 - v^2}$$



The classical string dynamics governed by the Nambu-Goto action:

$$S = \frac{-1}{2\pi\alpha'} \int d^2\sigma \sqrt{-G}, \qquad G := \det \left[g_{\mu\nu} \frac{\partial x^{\mu}}{\partial \sigma^{\alpha}} \frac{\partial x^{\nu}}{\partial \sigma^{\beta}} \right].$$

ullet e^{iS} for its solutions with spacelike worldsheets give the semi-classical (saddlepoint) approximation contributions to the Wilson loop.

We consider this Wilson loop in the $N\gg g_{ym}^2N\gg 1$ $\mathcal{N}{=}4$ SU(N) SYM theory, dual to IIB strings on AdS₅×S⁵:

SYM theory	,		string theory
number of colors			$R^4/(4\pi\alpha'^2g_s)$
't Hooft coupling	$\lambda = g_{\rm ym}^2 N$	\Leftrightarrow	R^4/α'^2
inverse temperature	β	\Leftrightarrow	$\pi R^2/r_0$
probe quark mass	m	\Leftrightarrow	$r_7/(2\pi\alpha')$
probe quark worldline		\Leftrightarrow	∂(string worldsheet)

Background geometry: AdS₅ black 3-brane

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -\frac{r^{4} - r_{0}^{4}}{r^{2}R^{2}}dt^{2} + \frac{r^{2}}{R^{2}}(dx^{2} + dy^{2} + dz^{2}) + \frac{r^{2}R^{2}}{r^{4} - r_{0}^{4}}dr^{2}.$$

with probe D7 brane down to $r = r_7$.

Describe by a worldsheet embedding

$$t = \tau$$
, $x = v\tau$, $y = \sigma$, $z = 0$, $r = r(\sigma)$,

with boundary conditions

$$0 \le \tau \le T$$
, $-L/2 \le \sigma \le L/2$, $r(\pm L/2) = r_7$.

· Get equation of motion

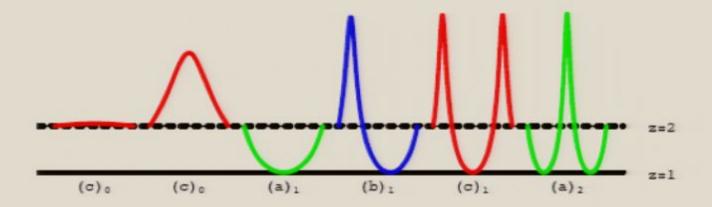
$$r'^{2} = \frac{r^{4} - r_{0}^{4}}{a^{2}r_{0}^{4}R^{4}} \left[(v^{2} - 1)r^{4} - (a^{2} - 1)r_{0}^{4} \right],$$

where a^2 is a positive integration constant (its sign chosen so that the worldsheet is spacelike).

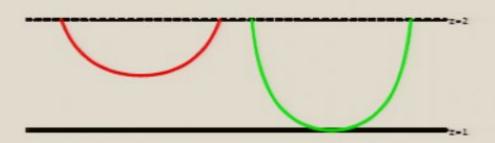
ullet Worldsheet can be spacelike even for v < 1, if

$$r_7^4 < \frac{r_0^4}{1 - v^2}$$

Find infinitely many spacelike string solutions with v < 1 (with same boundary condition):



Find two spacelike strings with v > 1:



Describe by a worldsheet embedding

$$t = \tau$$
, $x = v\tau$, $y = \sigma$, $z = 0$, $r = r(\sigma)$,

with boundary conditions

$$0 \le \tau \le T$$
, $-L/2 \le \sigma \le L/2$, $r(\pm L/2) = r_7$.

· Get equation of motion

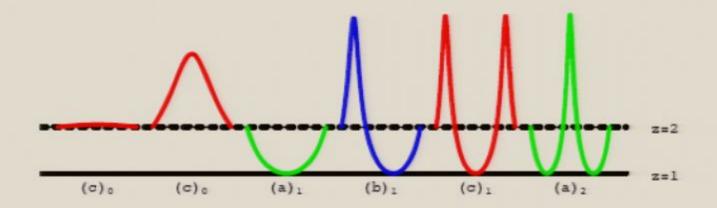
$$r^{2} = \frac{r^{4} - r_{0}^{4}}{a^{2}r_{0}^{4}R^{4}} \left[(v^{2} - 1)r^{4} - (a^{2} - 1)r_{0}^{4} \right],$$

where a^2 is a positive integration constant (its sign chosen so that the worldsheet is spacelike).

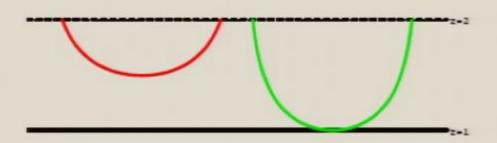
ullet Worldsheet can be spacelike even for v < 1, if

$$r_7^4 < \frac{r_0^4}{1 - v^2}$$

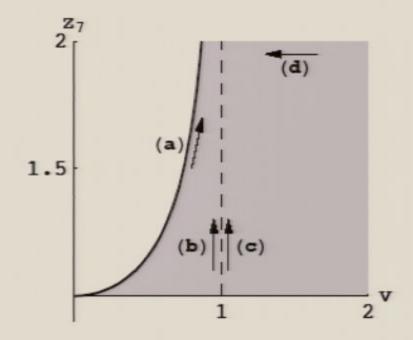
Find infinitely many spacelike string solutions with v < 1 (with same boundary condition):



Find two spacelike strings with v > 1:



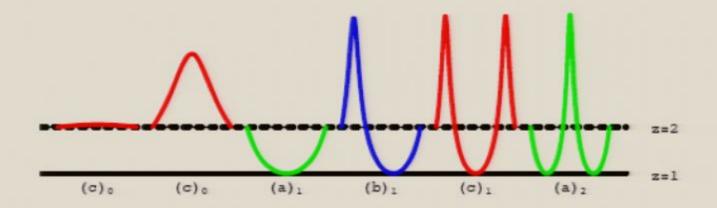
Now take the $v \to 1$ and $m \to \infty$ $(r_7 \to \infty)$ limits:



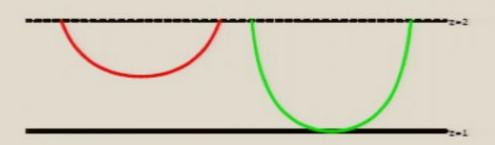
The answer is robust: independent of how the limit is taken

- \bullet The shortest (red) string gives $iS \sim -c_1TL$ and has no L^2 piece.
- ullet The sub-leading (green) string has a leading $iS\sim -c_2TL^2$ piece.

Find infinitely many spacelike string solutions with v < 1 (with same boundary condition):

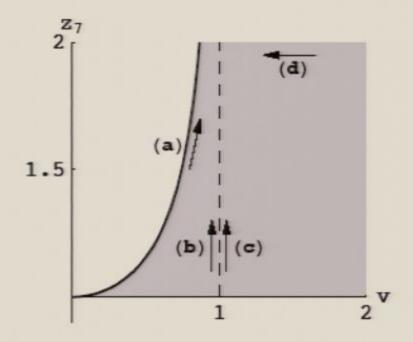


Find two spacelike strings with v > 1:



Pirsa: 07050057 Page 15/35

Now take the $v \to 1$ and $m \to \infty$ $(r_7 \to \infty)$ limits:



The answer is robust: independent of how the limit is taken

- \bullet The shortest (red) string gives $iS \sim -c_1TL$ and has no L^2 piece.
- ullet The sub-leading (green) string has a leading $iS\sim -c_2TL^2$ piece.

Summing the saddlepoints:

$$\langle W \rangle = C_1 \exp \left\{ -T \frac{\sqrt{\lambda}}{\beta} \left(-1.3 + \frac{\pi L}{2\beta} \right) \right\} + C_2 \exp \left\{ -T \frac{\sqrt{\lambda}}{\beta} \left(0 + 0.94 \frac{L^2}{\beta^2} + \mathcal{O}(L^4) \right) \right\}.$$

Only the first term survives the $T \to \infty$ limit for any L/β .

Comments:

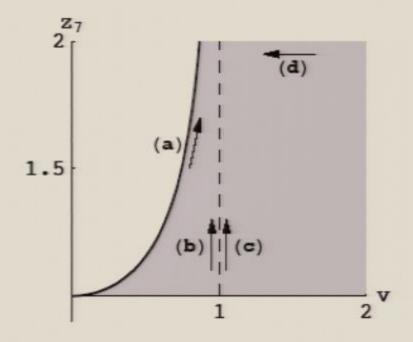
 Infinite self-energy subtraction was made; finite pieces are terms in red.

Such subtractions are *ad hoc*: one does not have the freedom to make them in a gravitational theory. Better prescription: Drukker-Gross-Ooguri (hep-th/9904191)?

Possible that not both saddle points contribute (K.R.)?

Pirsa: 07050057 Page 17/35

Now take the $v \to 1$ and $m \to \infty$ $(r_7 \to \infty)$ limits:



The answer is robust: independent of how the limit is taken

- \bullet The shortest (red) string gives $iS \sim -c_1TL$ and has no L^2 piece.
- \bullet The sub-leading (green) string has a leading $iS \sim -c_2TL^2$ piece.

Summing the saddlepoints:

$$\langle W \rangle = C_1 \exp \left\{ -T \frac{\sqrt{\lambda}}{\beta} \left(-1.3 + \frac{\pi L}{2\beta} \right) \right\} + C_2 \exp \left\{ -T \frac{\sqrt{\lambda}}{\beta} \left(0 + 0.94 \frac{L^2}{\beta^2} + \mathcal{O}(L^4) \right) \right\}.$$

Only the first term survives the $T \to \infty$ limit for any L/β .

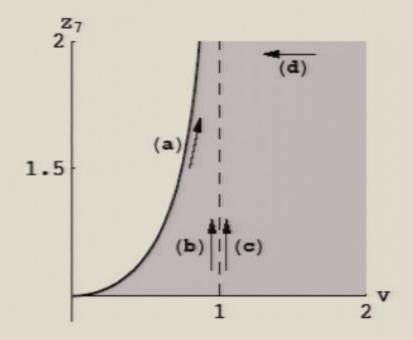
Comments:

 Infinite self-energy subtraction was made; finite pieces are terms in red.

Such subtractions are *ad hoc*: one does not have the freedom to make them in a gravitational theory. Better prescription: Drukker-Gross-Ooguri (hep-th/9904191)?

Possible that not both saddle points contribute (K.R.)?

Now take the $v \to 1$ and $m \to \infty$ $(r_7 \to \infty)$ limits:



The answer is robust: independent of how the limit is taken

- \bullet The shortest (red) string gives $iS \sim -c_1TL$ and has no L^2 piece.
- \bullet The sub-leading (green) string has a leading $iS \sim -c_2TL^2$ piece.

Describe by a worldsheet embedding

$$t = \tau$$
, $x = v\tau$, $y = \sigma$, $z = 0$, $r = r(\sigma)$,

with boundary conditions

$$0 \le \tau \le T$$
, $-L/2 \le \sigma \le L/2$, $r(\pm L/2) = r_7$.

· Get equation of motion

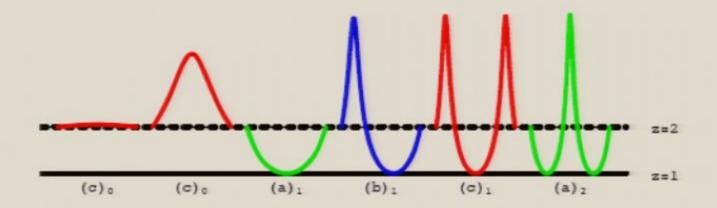
$$r'^{2} = \frac{r^{4} - r_{0}^{4}}{a^{2}r_{0}^{4}R^{4}} \left[(v^{2} - 1)r^{4} - (a^{2} - 1)r_{0}^{4} \right],$$

where a^2 is a positive integration constant (its sign chosen so that the worldsheet is spacelike).

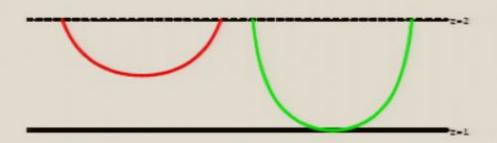
ullet Worldsheet can be spacelike even for v < 1, if

$$r_7^4 < \frac{r_0^4}{1 - v^2}$$

Find infinitely many spacelike string solutions with v < 1 (with same boundary condition):



Find two spacelike strings with v > 1:



Pirsa: 07050057 Page 22/35

Summing the saddlepoints:

$$\langle W \rangle = C_1 \exp \left\{ -T \frac{\sqrt{\lambda}}{\beta} \left(-1.3 + \frac{\pi L}{2\beta} \right) \right\} + C_2 \exp \left\{ -T \frac{\sqrt{\lambda}}{\beta} \left(0 + 0.94 \frac{L^2}{\beta^2} + \mathcal{O}(L^4) \right) \right\}.$$

Only the first term survives the $T \to \infty$ limit for any L/β .

Comments:

 Infinite self-energy subtraction was made; finite pieces are terms in red.

Such subtractions are *ad hoc*: one does not have the freedom to make them in a gravitational theory. Better prescription: Drukker-Gross-Ooguri (hep-th/9904191)?

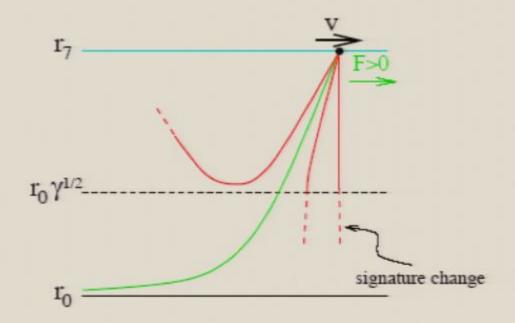
Possible that not both saddle points contribute (K.R.)?

II Frictional forces in AdS

A. N=4 SYM plasma: Single quark friction parameter.

[Herzog et al hep-th/0605158, Gubser hep-th/0605182, Herzog hep-th/0605191]

Drag on a single colored probe pulled through the SYM thermal bath at constant velocity v:



Less drag and string changes signature below $r=r_0\sqrt{\gamma}$. More drag and string rises back to D7 brane.

Pirsa Trosom gy flows down infinite string, "deposited in black hole".

Summing the saddlepoints:

$$\langle W \rangle = C_1 \exp\left\{-T \frac{\sqrt{\lambda}}{\beta} \left(-1.3 + \frac{\pi L}{2\beta}\right)\right\} + C_2 \exp\left\{-T \frac{\sqrt{\lambda}}{\beta} \left(0 + 0.94 \frac{L^2}{\beta^2} + \mathcal{O}(L^4)\right)\right\}.$$

Only the first term survives the $T \to \infty$ limit for any L/β .

Comments:

 Infinite self-energy subtraction was made; finite pieces are terms in red.

Such subtractions are ad hoc: one does not have the freedom to make them in a gravitational theory. Better prescription: Drukker-Gross-Ooguri (hep-th/9904191)?

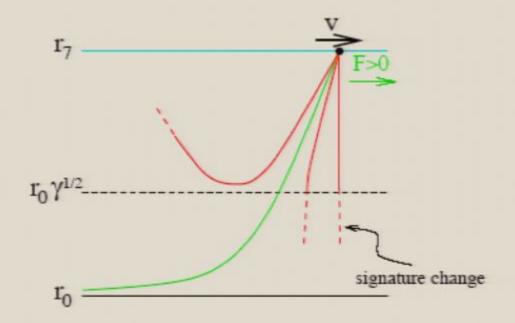
Possible that not both saddle points contribute (K.R.)?

II Frictional forces in AdS

A. N=4 SYM plasma: Single quark friction parameter.

[Herzog et al hep-th/0605158, Gubser hep-th/0605182, Herzog hep-th/0605191]

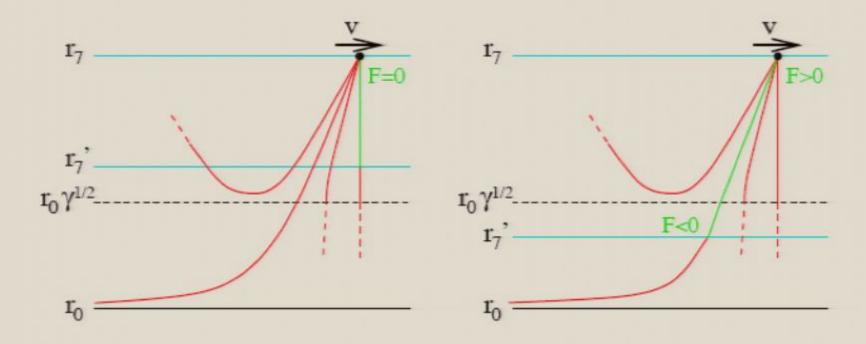
Drag on a single colored probe pulled through the SYM thermal bath at constant velocity v:



Less drag and string changes signature below $r=r_0\sqrt{\gamma}$. More drag and string rises back to D7 brane.

Pirsa Trosom gy flows down infinite string, "deposited in black hole".

But if put a second (lighter quark) 7-brane at lower altitude r'_7 , and only pull on the heavy quark, then only upright solution:



Once $r_7' < r_0 \sqrt{\gamma}$, jump to HK³Y+G solution. But still not dragged: instead deposits energy on second brane?

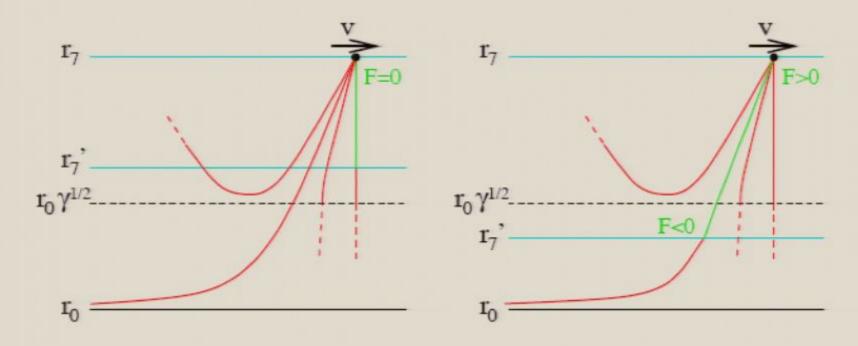
Does some (small) effect destabilize the F=0 solution when $r_7'>r_0\sqrt{\gamma}$, and select an $F\neq 0$ one?

C. String friction in AdS space?

These examples seem to suggest that we need to include explicit drag forces on the gravity side. Some possible sources (all 1/N effects):

- 1) Drag in the black hole Hawking radiation: down by 1/N...
- 2) Radiation reaction:
- gravitational etc. radiation of strings.
- zero for stationary strings. But, if strings show instabilities, oscillations can source radiation.
- down by 1/N. But can be amplified if cusps are typically formed, e.g. at $r = r_0 \sqrt{\gamma}$ barrier.

But if put a second (lighter quark) 7-brane at lower altitude r'_7 , and only pull on the heavy quark, then only upright solution:



Once $r_7' < r_0 \sqrt{\gamma}$, jump to HK³Y+G solution. But still not dragged: instead deposits energy on second brane?

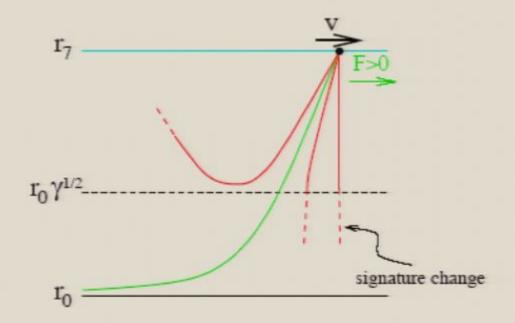
Does some (small) effect destabilize the F=0 solution when $r_7'>r_0\sqrt{\gamma}$, and select an $F\neq 0$ one?

II Frictional forces in AdS

A. N=4 SYM plasma: Single quark friction parameter.

[Herzog et al hep-th/0605158, Gubser hep-th/0605182, Herzog hep-th/0605191]

Drag on a single colored probe pulled through the SYM thermal bath at constant velocity v:



Less drag and string changes signature below $r=r_0\sqrt{\gamma}$. More drag and string rises back to D7 brane.

Pirsa Trosom gy flows down infinite string, "deposited in black hole".

B. Velocity-dependent interquark potential.

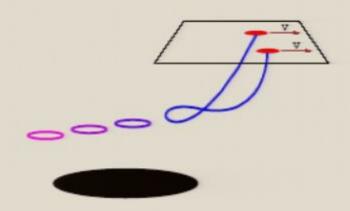
- No stationary dragged string solutions. M. Chernicoff et. al., hep-th/0607089
 Interpretation: color-neutral mesons feel no drag.
- Quasi-static potential at small v; subtract KE. H. Llu et. al., hep-ph/0607062; M. Chernicoff et. al., hep-th/0607089; K. Peeters et. al., hep-th/0606195; E. Cáceres et. al., hep-th/0607233; S. Avramis et. al., hep-th/0609079

 However one computes, the results indicate a non-trivial velocity dependence of the interquark potential in contrast to the lack of drag felt by these quark-antiquark configurations.

Pirsa: 07050057 Page 31/35

3) String looping:

perhaps favored solutions are not stationary, despite stationary boundary conditions:



E.g. development of turbulence in steady flows, resulting in spontaneous breaking of time-translation invariance. Cf. Frless et al hep-th/0609137

Small η/s in SYM means large Reynolds number, turbulence? Simple estimate gives $Re\gg 1$ if $\gamma\gg 1$.

C. String friction in AdS space?

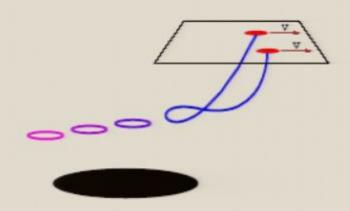
These examples seem to suggest that we need to include explicit drag forces on the gravity side. Some possible sources (all 1/N effects):

- 1) Drag in the black hole Hawking radiation: down by 1/N...
- 2) Radiation reaction:
- gravitational etc. radiation of strings.
- zero for stationary strings. But, if strings show instabilities, oscillations can source radiation.
- down by 1/N. But can be amplified if cusps are typically formed, e.g. at $r = r_0 \sqrt{\gamma}$ barrier.

Pirsa: 07050057 Page 33/35

3) String looping:

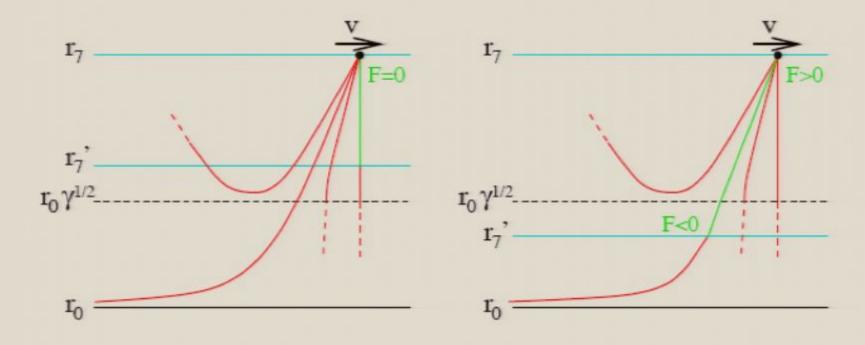
perhaps favored solutions are not stationary, despite stationary boundary conditions:



E.g. development of turbulence in steady flows, resulting in spontaneous breaking of time-translation invariance. Cf. Frless et al hep-th/0609137

Small η/s in SYM means large Reynolds number, turbulence? Simple estimate gives $Re\gg 1$ if $\gamma\gg 1$.

But if put a second (lighter quark) 7-brane at lower altitude r'_7 , and only pull on the heavy quark, then only upright solution:



Once $r_7' < r_0 \sqrt{\gamma}$, jump to HK³Y+G solution. But still not dragged: instead deposits energy on second brane?

Does some (small) effect destabilize the F=0 solution when $r_7'>r_0\sqrt{\gamma}$, and select an $F\neq 0$ one?