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QCD versus N'=4 SYM: Shear viscosity

Guy D. Moo, with Simon Caron-Huwot. Sangyong Jeon

Outline:
e What does a Heavy lon Collision look like?
e What is viscosity and is g];e QGP an ideal fluid?
e Claimed bound on 7/s: N'=4 Super-Yang-Mills
e What is N'=4 Super-Yang-Mills anyway
e Really comparing QCD and N'=4 SYM

irsa: 07050052 Page 2/74

21



QCD versus N'=4 SYM: Shear viscosity

Guy D. Moorm. with Simon Caron-Huot. Sangyeng Jeon

Qutline:
e What does a Heavy lon Collision look like?
e What is viscosity and is g;j?':e QGP an ideal fluid?
e Claimed bound on 7/s: N'=4 Super-Yang-Mills
e What is N'=4 Super-Yang-Mills anyway
e Really comparing QCD and N'=4 SYM

irsa: 07050052 Page 3/74

21



What a heavy ion collision looks like

before

Lorentz flattened nuclei collide, form “flat almond™ shaped
region of plasma
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Weak coupling picture

Almost free quarks+gluons = fly in straight lines

Each chunk of almond has particles flying in each direction

If they NEVER re-scatter: this is hadron distribution too
No preferred direction in detector: azimuthal symmetry
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Strong coupling picture

Plasma acts like a fluid, with pressure and press. gradients

ol m - Large pressure gradients forward and backward. Vertical
- - gradient small and in small area. Most of fluid starts flowing
- - forward or baqlr?vard- Particle momenta will be thermal
il - PLUS fluid CM component. More forward & backward,

U less in-plane.
.
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Momentum Selection

Another way of thinking of the same thing

Back Moving | ol Only Forward Moving Things
[hings in the _ End Up n the Forward Region
Backwards ‘ /

Region

l\\{“lk\{ mly Lateral Movers End

Faa Up in the Central Region
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Strong coupling picture

Plasma acts like a fluid, with pressure and press. gradients
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Momentum Selection

Another way of thinking of the same thing

Back-—Moving | _ ! Onlv Forward Moving Things
TR B = = -— z = i
Things in the . / End Up in the Forward Region

Backwards
Region

~.__ Only Lateral Movers End
|~ Up in the Central Region
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Strong coupling picture

Plasma acts like a fluid, with pressure and press. gradients

i m - Large pressure gradients forward and backward. Vertical
. s gradient small and in small area. Most of fluid starts flowing
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Momentum Selection

Another way of thinking of the same thing

Back Moving _1_{1“};. Forward Moving Things
Things in the™ | / End Up in the Forward Region

Backwards
Region

~.__ Only Lateral Movers End
|~ Up in the Central Region
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Same is true in transverse plane

In Local CM

. £ . ]
Scattering converts P, nto p.

2 9
. a0\ Vx—Py
A measure: v = (cos 20) ~ =%
e ! !!} —-—1.':3_
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Observed v as large as can be.

Namely, v» maximum if rescattering perfect—ideal
hydrodynamics. ldeal hydro calculations get v5 right.

ldeal hydro: stress conservation and an equation of state

r‘}“ T!lﬂ — () Tﬁw — PUFIH o P s Fi]”‘“”’” P - PfFl
\
Leading corrections: viscosity. In local rest frame u = 0,

20, . i
Tf’.; = Pd,; —n (r"), ;- O — _;HA-H;-) — (0; ;0 uy
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Expansion has nonzero d;

Reduces force in | direction, reduces system expansion.

Viscosity similarly reduces elliptic flow, ©5.

Pirsa: 07050052

Longitudinal expansion again

it

—_—
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Expansion has nonzero d; v

Reduces force in | direction, reduces system expansion.

Viscosity similarly reduces elliptic flow, ©5.
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Same is true in transverse plane

In Local CM
/Frame:
¥ B

Pirsa: 07050052
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Computing 1 in QCD

We can only do it reliably at weak coupling!
Quasiparticle picture: long lived quarks and gluons.
Approach to equilibrium determined by collisions C

n: failure of equilibrium. Involves inwverse of collision rate.
Roughly

=
e
|
r'lx
]
I
——
—
-
™
oy
——
p—
H_
—

More collisions—closer to equilibrium, smaller 7
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Dominant collisions in QCD

The most important collisions are Coulomb scattering

Vacuum cross-section divergent as ¢' [ d°(Q)/Q"
Small angle scatterings’ importance x Q-

Thermal medium effects: importance
x [ d*QQ* /Q*(()* + ¢°T?). Finite but IR dominant.
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n/(P+p) =T (0,2,3,4 quark species)

]

ha

'l

Results in QCD
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Coupling strength a,
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Computing 1 in QCD

We can only do it reliably at weak coupling!
Quasiparticle picture: long lived quarks and gluons.
Approach to equilibrium determined by collisions C

n: failure of equilibrium. Involves inwverse of collision rate.

Roughly
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7/(P+p) =T (0,2,3,4 quark species)
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How else can you compute 7 in QCD?

Pirsa: 07050052

Lattice? Only does statics. Dynamics by analytic continuation, fraught

with error

Chiral perturbation theory? Only works at T < 200 MeV. Breaks

down where it's interesting
Instantons? Quark models? No quantitative, reliable techniques.

Similar, solvable theories? Let's explore
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How else can you compute 1 in QCD?

Pirsa: 07050052

Lattice? Only does statics. Dynamics by analytic continuation, fraught

with error

Chiral perturbation theory? Only works at T« 200 MeV. Breaks

down where it's interesting
Instantons? Quark models? No quantitative, reliable techniques.

Similar, solvable theories? Let's explore
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N =4 Super-Yang-Mills

A theory you can solve!

e Yang-Mills theory with gauge group SU(\,)
e 4 adjoint Weyl fermion + 6 real adjoint scalar fields

e Yukawa, scalar interactions fixed by (high)
supersymmetry

e Exactly conformal: no masses, scale invariant coupling

e Large N. and ¢ N. limit solvable by string theory
methods

irsa: 07050052 Page 27/74
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N =4 Super-Yang-Mills

Consider minimally SUSY theory in 10 dimensions:

e Gauge fields for SU(V.): 8 polarizations

e single 16-component Majorana-Weyl fermion field
Now make 6 dimensions small and compact:

e Gauge fields (G 4—4 o are scalars ©4 in 4-dimensions

» ]—EA field strengths give (), 04)” kinetic terms

e 16-component fermion is 4 Majoranas in 4-D

o " a4l)a1 become Yukawa interactions

- I‘EB become Lf-'f_a‘f.?g]'z scalar quartics

16 real supercharges is N'=4 in 4-D

Pirsa: 07050052 Page 28/74
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Policastro, Son, Starinets
Solve large N., g°N. = \ theory at T using string methods

Viscosity 17 computed and has simple form:

Kovtun, Son, Starinets

Determine 1;/s in several theories with gravity duals. Find

in all of them. Ratio is dimensionless and all known substances have

n/s > 1/4x. May be universal bound! it s conen hep-thyo702136
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Policastro, Son, Starinets
Solve large N., ¢°N. = \ theory at T using string methods

Viscosity 17 computed and has simple form:

Kovtun, Son, Starinets

Determine 13/s in several theories with gravity duals. Find

in all of them. Ratio is dimensionless and all known substances have

n/s > 1/47. May be universal bound! bt see coben. hep-thoro2136
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/s as a dimensionless ratio

Definition of 7): stress divided by dv/dz.

. Force __ m
StrESS. area  [#2
¥ r'. - - IIT r — ]-
"[! I'. f].:'. - ! — l.;_ "

rm

|

Entropy density: s = & in natural units

2
mlil“

t

/9 = = energy xtime = action.
n/s x h.

(Roughly, 77/ s is time between scatterings x particle energy.)
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QCD and N'=4 SYM

QCD and SYM are not that different. Could QCD at strong
coupling saturate the bound?

SYM at strong coupling: €(T')/ex_olT) = 3/4
QCD at 1-3 T.: « .:'rlftg?‘:[l very close to 3._-*"'4

SYM has a few more fields and they are adjoint, but it's not
that different, is it?

QCD seems to demand small 77/s. Speculation: it's near
bound.

irsa: 07050052 Page 33/74
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Comparing pressure with free theory value in QCD:

10

0.8
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0.4

02
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P/ Pgg

3 flavour

2 flavour e

T,

1.0

15

20

25

3.0

Near P/P,g.a = 3/4 in a range, 24T,

Below: conformal breaking important. Above: not strongly coupled.
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QCD and N'=4 SYM
QCD and SYM are not that different. Could QCD at strong

coupling saturate the bound?
SYM at strong coupling: €(T)/ex_o(T) = 3/4
QCD at 1-3 T.: €/€,2_q very close to 3/4

SYM has a few more fields and they are adjoint, but it's not
that different, is it?

QCD seems to demand small 77/s. Speculation: it's near
bound.
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Comparing pressure with free theory value in QCD:

Near P/

Below: conformal breaking important. Above: not strongly coupled.

Pirsa: 07050052
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Rash of papers using SYM to study heavy ion collisions

® ViSCOSity Papers mentioned. Shurvak and Zahed, hep-th /0308073

hep-ph /0405066 hep-ph 0307267

® Heavy quark diffusion 3 groups: UW group hep-th /0605158, Teaney

hep-ph /0605199, Gubser hep-th /0605182 hep-th /0605202 all heavily cited
e Hard quark energy loss hep-ph /0605178 and its 57 citations
e Photon and dilepton production hep-th 0607237

e Full heavy-ion dynamics Shuryak and Zshed, hep-th/0511190
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Actually testing QCD-SYM comparison

Before believing any of this, we should see if QCD and SYM

give close to the same answers for anything.
Weak coupling: calculations possible in both theories

Compare weak coupling—see if they're at all the same.

Goal: look at 1/s in Weak-Coupled NV'=4 SYM
and compare to QCD.

irsa: 07050052 Page 38/74
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Quasiparticle picture

State described up to small corrections by 2-point function
(}F}l_.r'l. Tr9) = (olrq)olry) = f;'}l_'p. T)
—T

("}':I’* r) = _(_f.ri(p —w) + (1 £ floa(p+ .,._.‘:I)

g

Equilibrium:
f(p.x) = [exp (BPPu,(x)) £ 1]

Propagation: G~ = Y.¢; becomes
prouf = EClf]

with C| f| a collision term arising from self-energies which resembles a
momentum-integrated matrix element squared with external

population functions.

Pirsa: 07050052 Page 39/74
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Naive collision term

<o

Sum over all lowest-order (2 — 2) processes
N (2(9)4 54

‘ (.f};_.f'p*fﬁ L1+ fe)(1£for) — fofw (1 fp (12 £ ')
Halves of self-energy: ‘M and M"

“cut’ lines: on-shell external states
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Quasiparticle picture

State described up to small corrections by 2-point function
G~ (x1.x39) = (ofx1)0(x2) = G~ (p.T)
—iT

(,':3"1:!'1. ey = _(j*;il:!'ﬁ — w] 1 q: I - r :”i(p 1 v__1|)

e

Equilibrium:
f')” Il = [i-:{l} ': f!h‘.l ”H':,I':l_l 3+ 1-_1

Propagation: G~ = Y.¢; becomes
I"u”n.rr = P:pfif_:

with C| f| a collision term arising from self-energies which resembles a
momentum-integrated matrix element squared with external

population functions.
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Extra process: collinear splitting

Massless/light external states have O(g°) or O()\) chance to “split”

into 2 particles DGLAP equations

Coulomb scattering has @ ~x ¢* or A rather than expected x g* or \2.

Splitting is as common as hard scattering up to logs

We must include splitting.

Sensitive to small (thermal-induced) masses

Sensitive to exact nature of thermal-corrected Coulomb

Sensitive to multiple-scattering interference (LPM effect)

Must be careful
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Results in SYM theory

1D

- | Weak coupling S
L Weak coupling extrapolated ]
———_strong ecupling (leading)
....... strong coupling {(subleading)]

b

T T T TTTT]
7

=

py Ratio n/s

Entro
[
‘."

=
[

T T

Coupling A=N g

Approaches strong-coupling around A = 15 (o, = .4 for
Ne =3}

Pirsa: 07050052 Page 43/74



Extra process: collinear splitting

Massless/light external states have O(g°) or O(\) chance to “split”

into 2 particles DGLAP zquations

Coulomb scattering has o ~x ¢* or A rather than expected x g* or \2.

Splitting is as common as hard scattering up to logs

We must include splitting.

Sensitive to small (thermal-induced) masses

Sensitive to exact nature of thermal-corrected Coulomb

Sensitive to multiple-scattering interference (LPM effect)
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Naive collision term

S

Sum over all lowest-order (2 — 2) processes
= _Z })n/ L’rib —ed! P f"lf ; ,JT' -"' I_H——‘H —}[.—; )
bed <l kp’'k’

( (-l’}:f;;*'. |+ fe L Efrr ) — JoJrr (LS )1 fpr )
Halves of self-energy: ‘M and M~

“cut” lines: on-shell external states
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Quasiparticle picture

State described up to small corrections by 2-point function
G~ (xy.x3) = (d(x1)0(x2) = G (p. 1)
—T

(,'}.:11. r) = _(f,i{p —w)+ (1 f 1.”5‘.,“ 5 wf_.)

L

Equilibrium:
f(p.z) = [exp (8P uu(x)) = 1:_1

Propagation: G~ = Y.¢; becomes
,f""u';-"pf = [':p‘-r:f:

with C| f| a collision term arising from self-energies which resembles a
momentum-integrated matrix element squared with external

population functions.
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Extra process: collinear splitting

Massless/light external states have O(g°) or O(\) chance to “split”
into 2 particles DGLAP =quations

2

Coulomb scattering has & ~x ¢> or \ rather than expected x ¢* or \2.

Splitting is as common as hard scattering up to logs

We must include splitting.

Sensitive to small (thermal-induced) masses

Sensitive to exact nature of thermal-corrected Coulomb

Sensitive to multiple-scattering interference (LPM effect)

Must be careful
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Approaches strong-coupling around A = 15 (a, = .4 for

=23

Pirsa: 07050052

1D

py Ratio n/s

Entro
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Results in SYM theory

L T L LI L T T L LJ 'I L T_-
E — Weak eoupling ]
. Weak coupling extrapolated
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....... streng coupling {subleading)’
a b
E e
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. e e
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Coupling A=N g
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Big differences between QCD and SYM

More scattering targets in SYM than in QCD

o e = T ; _
QCD: m}, = L5—(Negluons + $Ntquarks) = $Neg?T? [Ng = 3].

A

. 2 gET
SYM: m2, = £I°

i - i = g i g | 2
\ -\'ngunns + 2N cfermions + 3 Nescalars) = 2N F-!'?-T'

Larger Casimir to couple to gauge bosons N. rather than

(N2-1)/2N,

Extra scattering processes due to Yukawa, scalar
interactions

Extra collinear processes due to scalar-gauge and

Yukawa couplings QCD: GGG and FFG. SYM: GGG, FFG, SSG,

FFS
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Approaches strong-coupling around A = 15 (o, = .4 for

N, = 3)

Pirsa: 07050052

1D

Entropy Ratio /s

e
[N

Results in SYM theory

L T Ld LI L T T L LJ 'I L T_-
E — Weak ecoupling ]
. Weak coupling extrapolated ]

——__strong ecupling (leading)

....... strong coupling {subleading)]
E - E
= i e
C -
1 b

)
“'l
o o ‘-"‘-\._h_
— :.*'-'::-.._.

e o B
= I 1 i i i | I
1 10

Coupling A=N g
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Big differences between QCD and SYM

More scattering targets in SYM than in QCD

. ; ETE_ _ - e n v
QCD: m%] o 31_1 Negluons + é-'\fquarka' = %-'\C!’;"’T'] [Ve = 3].

A

y 3 g T
SYM ”?D — T

r T 5 3.V & T i # | 7 |
(Nec gluons T 2N\ cfermions T 3N cscalars) = 2N C!‘}"-T_

Larger Casimir to couple to gauge bosons N. rather than

(N2-1)/2N,

Extra scattering processes due to Yukawa, scalar
interactions

Extra collinear processes due to scalar-gauge and

Yukawa couplings QCD: GGG and FFG. SYM: GGG, FFG, SSG,

FFS
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Big differences between QCD and SYM

More scattering targets in SYM than in QCD

: ; ETE e = = ‘ “ 3
QCD: mf)] = ‘qg_‘- Negluons + %i\fquark:i* = %-'\ cg>T? [Ng =3].

2]

.2 _ a°T
SYM ”?D = T

(N IN L AN — IN 22T 2
\ -\Cgiunm + 2N cformions + 3Ncscalars) = 2Ncg=T

Larger Casimir to couple to gauge bosons N. rather than

(N2-1)/2N

Extra scattering processes due to Yukawa, scalar
interactions

Extra collinear processes due to scalar-gauge and

Yukawa couplings QCD: GGG and FFG. SYM: GGG, FFG, SSG,

FFS
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QCD and SYM compared

I | ] = i

(#7]
o
il i e i M s v

| | | ' | | | .| | | | | | 1 | |

-/”gljr'M/ . ﬁw%@/'
0 2 - g 8 10

4
Coupling A=N_g?

/s in SYM is pretty drastically lower!
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Number of scatterers: 1:x

b 4]

8

(Coe/ C)(mME/TE)AX /5

Why so much lower?

Casimir coupling to quarks:

T | EENN SEE | t T | DI | T '|' T T | I | 'I' | B | T T '|' T T | B | 'I

LT

— — N,— QCD
-—-- N,=3 QCD Plallt
—---N,=0 QCD e
—— Super Yang—Mills g

1 1 1 ] [ [ ] 1 1 | 1 | 1 L I 1 L ] ] | L 1 ] L I

0.5 1 1.5 2 2.5
Screening strength m,/T

Same result rescaling by these differences
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QCD and SYM compared

I | ] gl

80 -

~ | ]
= ; d
X 40 —
oy - .
< | |
20 —
-/’-'SJT’M"J’ | visgw%@—/'ﬁ

0 2 6 8 10

4
Coupling A=N_g?

n/s in SYM is pretty drastically lower!
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Number of scatterers: 1

b 4]

8

(Cave/ Ca)(mf/T2)AX n /5

Why so much lower?

Casimir coupling to quarks:

T I T 0 I T | B T '|' T ] | R | 'I' L T T '|' T T | B | :I

- N oo QCD
I A

- N,=3 QCD P

N0 gCD o

— Super Yang—Mills < 7

1 1 1 1 I. [ ] 1 1 | 1 1 1 1 I L 1 ] ] | L 1 ] L] !

a 0.5 1 1.5 2 2.8

Screening strength my/T

Same result rescaling by these differences
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Big differences between QCD and SYM

More scattering targets in SYM than in QCD

; . ETE_ _ - - a ;
QCD' ”;'I_:_"_) e 31_1 :\fglunm . %-'\I’quarlw' == '%-\c_‘-’f-)T_] [-\f = 3].

- 9 ir2 . kT . T
SYM: s | [ _ 3 \ ‘\fgiunn:; + 2N cfermions T+ ';-\rscalars‘ P 2.\'rg-T'

Larger Casimir to couple to gauge bosons N. rather than

(N2-1)/2N,

Extra scattering processes due to Yukawa, scalar
interactions

Extra collinear processes due to scalar-gauge and

Yukawa couplings QCD: GGG and FFG. SYM: GGG, FFG, SSG,

FFS
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QCD and SYM compared
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Coupling A=N_g?

/s in SYM is pretty drastically lower!
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Number of scatterers: 1:x

b 4]

S

(Cave/ CH(mME/THAX /5

Why so much lower?

Casimir coupling to quarks:

¥ T T T , T T T T '|' T T T T 'I' L T T '|' T T T T l

= 1;{ — 1:':{—'—_:' A
- N,=3 QCD o
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Same result rescaling by these differences
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) ) T
Lesson: compare my, not g~ N,

But that means a, = 0.5 in QCD equates with A = 1.5 rather than
A= 18 in SYM.

=
o
LB

_‘ll'-aal: cmxp.hn,g E
e Weak coupling extrapoleted

W
o —— —_strong coupling (lsading)
= -———- strong coupling (subleading)’
o |
=
M 1p . =
I?-'. 'L"'\_ .
B N
= .
o .
K M
: 2
—
= o1l ‘\t::'-*—-._.___.____ -
_________ =
Pl |
1 10

Coupling A=N_g®

Far from 1/47 limit
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Why so much lower?

Casimir coupling to quarks:
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Lesson: compare mg, not g~ /N,

But that means a, = 0.5 in QCD equates with A = 1.5 rather than
A= 18 in SYM.
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Far from 1/47 limit
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Why so much lower?

Casimir coupling to quarks:
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Lesson: compare mg, not g~ N,

But that means a, = 0.5 in QCD equates with A = 1.5 rather than
A= 18 in SYM.
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Far from 1 /47 limit
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Also: SYM thermo approach strong coupling behavior
around A = 2 — 4. We see 1)/s approaches strong coupling
nearer A = 10. Takes much more coupling to get 7 ~ 1 /47
than €/ex_g = 3/4.

SYM actually implies that QCD would only reach
/s = 1 /47 at unachievable coupling.
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n/(P+p) xT (0,2,3,4 quark species)
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Results in QCD
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Coupling strength a,

11/s is large except where you can’t believe it
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Comparing pressure with free theory value in QCD:

Near P/

Below: conformal breaking important. Above: not strongly coupled.
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Comparing pressure with free theory value in QCD:

10 v - T . . .
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Near P/P,g.a = 3/4 in a range, 24T,

Below: conformal breaking important. Above: not strongly coupled.
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Lesson: compare mg, not g~ N,

But that means a, = 0.5 in QCD equates with A = 1.5 rather than
A= 18 in SYM.
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Also: SYM thermo approach strong coupling behavior
around A = 2 — 4. We see 17/s approaches strong coupling
nearer A = 10. Takes much more coupling to get 7 ~ 1 /47
than €/ex—g = 3/4.

SYM actually implies that QCD would only reach
/s = 1 /47 at unachievable coupling.
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Conclusions

e \N'=4 SYM is a beautiful theory
e To test analogy to QCD, look at weak coupling

e Quantitatively quite different from QCD:

+ More fields, especially when you count by size of

representation
+ Larger Casimirs, hence larger couplings
+ Extra (scalar and Yukawa) couplings

e Weak-coupling analysis suggests 17/s in QCD actually
quite far from 1/4x
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Lesson: compare mp, not g~ N,

But that means a, = 0.5 in QCD equates with A = 1.5 rather than
A =18 in SYM.
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