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reremerging theory of strongly coupl 1 qu
plasma (sQGP) at T=200-400 MeV, RHI

(bits of history and brief summary of main arguments)

« classical molecular dynamics (MD) of Non-Abelian
plasma => eqgn describing rotation of color vectors

. electric and magnetic
quasiparticles (EQPs and MQPs) are ﬁgh 'ing for
dominance
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short transport summary

log(inverse viscosity s/eta)- vs. log(invesre diffusion const
D*2piT) (avoids messy discussion of couplings)

 RHIC data: very
small viscosity and
D

» vs theory -

AdS/CFT and

MD(soon to be
explained)
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short transport summary

log(inverse viscosity s/eta)- vs. log(invesre diffusion const
D*2piT) (avoids messy discussion of couplings)
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Weak coupling end =>
(Perturbative results shown here)
Both related to mean free path
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short transport summary

log(inverse viscosity s/eta)- vs. log(invesre diffusion const
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short transport summary

log(inverse viscosity s/eta)- vs. log(invesre diffusion const
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Magdeburg hemlspheres
1656 ' aeg

+

Air:
P=p(inside)-p(atm)
QCD:
P=#(n.d.f)T"4-B

my arguments from 1970’s

QGP was expected to be much simpler than

the QCD vacuum, weakly coupled. We now see
it is also auite combplicated => sOGP..



My hydro history

» Hydro for e+e- as a spherical explosion (ES,PLB
34 (1971) 509)

=>
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My hydro history

« Hydro for e+e- as a spherical explosion (ES,PLB
34 (1971) 509)

=5 A \F in 73 {is _ ¢

* Trying to explain ISR pp data by hydro
(ES+0.V.Zhirov, PLB (1979) 253)

=2
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My hydro history

« Hydro for e+e- as a spherical explosion (ES,PLB
34 (1971) 509)

=t _ _ _ 5 -
* Trying to explain ISR pp data by hydro
(ES+0O.V.Zhirov, PLB (1979) 253)

=> _ : _ g

ES+Hung, prc57 (1998) 1891, radial flow at PbPb
at SPS (with separate freezeout surfaces)

WO rked ' (but nobody cared as cascades did the same)
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My hydro history

« Hydro for e+e- as a spherical explosion (ES,PLB
34 (1971) 509)

= \ | : - 42
. Trylng to explaln ISR pp data by hydro
(ES+0O.V.Zhirov, PLB (1979) 253)

=>FC

ES+Hung, prc57 (1998) 1891, radial flow at PbPb
at SPS (with separate freezeout surfaces)
WO rked ' (but nobody cared as cascades did the same)

v ES+D.Teaney (99-01) radial and elliptic flows at
RHIC worked like a clock!

00000000000
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From my QM99 (""RHIC predictions”)
talk, the ellipticity v2 vs enerqy

Qualitative

difference
with string
cascades
(RQMD)
and
parton

cascades
(HIJING)

0050
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005 .
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Our
hydro/
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Sonic boom from quenched jets

Casalderrey,ES, Teaney, hep-ph/0410067; H.Stocker...

» the energy deposited by jets into
liquid-like strongly coupled QGP

goes into conical shock
waves and flow to
Mach angle

* One can solve relativistic
hydrodynamics and got the flow
picture, not too close to the
head

 AdS/CFT allows
complete treatement
(not yet done in full)
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Casalderrey,ES, Teaney, hep-ph/0410067; H.Stocker...

* the energy deposited by jets into
liquid-like strongly coupled QGP

goes into conical shock
waves and flow to
Mach angle

* One can solve relativistic
hydrodynamics and got the flow
picture, not too close to the
head
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PHENIX jet pair distribution

3 i ‘mﬁ-;zmsev; 14p$m<?_5<p‘;m¢463w::| e _,
3 04 = 2 Note: it is only
% ” “'1] i -.*-;_‘? projection of a
= | L SO B N, A\l W cone on phi
R *ﬂ -------- SRE S - Red line -
5 M_ L expected Mach
E ol directiton for
e o S| <Cs>=.3
8 e
e 0.3; 3 '
N 0.1- i -

obe Dot | o ey e

2 25 3) 05 1 15 2 25 3
) A ¢ (rad)
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for =0 _3 b Ep gz s Seedlccomispe < bl 6
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subsonic o

=>N0 cone
=>(as in b-tagged jets — | _ < e
= — Antinori,ES, nucl-th/0507046) —~ "= T o T T

= BRI iEr, BT foxr v=—0 .5

Supersonic _
Note how | |

= e
angle
moves as
v=->CS .
Figure 4 Contour plots of K, |Q5| for various values of v at low momenta. The
Pirsa; 07050050 lime shows the Mach angle. The red curve shows where K, |QZ| is mixsi¥iized fo

fx —  K; + K5 The blue curves show where R, |QF | takes on half its maximuam vs

| e



2 Mach cones S T

il,‘ 55;I.t:lr.cjll,,l‘(‘;ll.!i, Compressional and shear wakes in a two-dimensional dusty plasma crystal

W Nosenko * T Goree." and 7 W Ma
Deparmmrern of Phyzics omd’ Asoeonomy, The Universiry of fowa, fTowa Chy, Jowa 37742 US4

coupled Bh e e

Daparmmeny of Phvsscz. Dnrversay of Califbrmiz ar S5an Diege. La folla Caolpformaz $2093 US4

plasmas .

frsrimur far Experiwenieils wed Ameewcmdte Phyiik, Chrisrian-Aibrechie Unversess Kol Garmomy

(thanks to E}_‘];](:i]i() (Recerved 8 July 2003 publabed 13 November 2003)
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- b |
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L |
> - 12 2
: I §
s | 415
$ o i
Theorstca it 1
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<< ﬂ gl | ] ] o« B o I v } n
0 1 2 3 4 5 6
w2ve mumber k (mm’)
ﬁhah%h. EiEral wakE

FIG. I3 Expenmengily measared dispersion relanon of com-
”Iwi,lm compressionai wave m':mttmmm%go%mml
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Two main differences between
sQGP and electrodynamical
plasmas:
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have COlOTS which varyin time =>

Gelman,Zahed,ES: Wong eqgn for color vectors
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Two main differences between
sQGP and electrodynamical

plasmas:
Electrons have the same charge -e at all
time, but our quasiparticles (quarks, gluons....)

have COlOTS which varyin time =>

Gelman,Zahed,ES: Wong eqgn for color vectors

There are not only “electric” but also
magnetically charged quasiparticles,
monopoles and dyons =>



o For SU(2) charge Q is a unit vector, Q = (Q1,Q% Q%)

dz;/dt = p;/m,

sl

dt = ( g*¢ '-—-\ fJ .{-_J &

—_— —

er/dt - (92/437) TQ? X ijfyfu'
e Note: {[Q? dt =0

Wong eqn can be rewritten as x-p canonical pairs,
1 pair for SU(2), 3 for SU(3), etc. known as

Darboux variables. We did SU(2) color => Q is a unit

vector on O(3)



Classical strongly coupled plasmas
As Gamma= <|Epot|>/<Ekin> grows
gas => liquid => solid

= NaCl Structure
- This is of course NaCl Structure

for +/- Abelian ™
charges, < 4

e But "green” and ' . :
“anti-green” =T I
quarks do the I
same! NaCl Stractre wih

Face Centered Cubie Hravas 1 attiee

*local order would be preserved in a liquid also,
as it is in molten solts (strongly coupled Two-Component

000000000000



Structure factor for cQGP

Gelman,ES,
Zahed,nucl- With a non-Abelian color => Wong egn
1-' A — - _ S - B o
leg[ | e
] s Eﬁ“m
T } solid
e

o G, correlation function for ' = 0.83,31.3,131, respectively;
red circles correspond to t* = 0, and blue squares correspond to
=6

o [ = 0.83 is a2 weak correlation between the particles; relaxes
rather quickly with time

» The correlation is more robust for ' = 31.3 (liquid)
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e For ' = 131 correlation is very stable (solid)



The stronger is coupling,
the smaller is diffusion const!

) =L (3 50 50
D(t) =——( Y #;(7)-7;(0))
3N \5 / e T
"
. .
D = / D(7) dr =
'J -:3}.
D =
BE‘
0.4 g
D = ,,
|—4,_.-'5
r

-{Compare it to AdS/CFT result by Casalderrey-Teaney D\sim 1/lambda”.5)



Shear viscosity

e Green-Kubo relation for viscosity

7= /ﬂx n(7T)dr

() = g0 <Z y(T) axy(03>

<y

2 _r<y —a sum over the three pairs of distinct tensor components
(zy,yz and zzx); the stress-energy tensor are given by

;-'MT 1

Oy — E MUz Uiy = 5 § : "'a‘j..rFij-y
g=—1 = =

B

ij is the force on particle i due to particle j
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Viscosity does noOt disappear but has a minimum

QGP coupling (blue arrow) seems to be about the best
liquid one can possibly make
translated to sSQGP => eta/s=3 ar an <<1

» Stress-tensor autocomelation comelation function nf¢) for I = | r

083,313,131 - 0.242 0.072
o n= 00011 + —03 =

irsa: 07050050 Page 49/86




sQGP= new type of plasma,
containing
competing electric /
magnetic quasiparticles
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containing
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Why Higgsing and monopoles?

« SUSY gauge theories have large degenerate
moduli spaces with Energy=0, with rich
variety of Higgsing and magnetic objects

« QCD at T can be viewed as a superposition
as all of them, with some weight W(<A 0>)

» Magnetic screening mass is nonzero: in fact
lattice told us it exceeds electric for T<1.4Tc

* Monopoles/dyons can be traced on the lattice

directly, especially while Nc of them make calorons (finite T
instantons)

Pirsa: 07050050



One can see monopoles/dyons
In lattice gauge theory simulations

154 -

m e
Berlin group - Ilgenfritz= 197 .
et al -

Red, blue and
green u(1) fields

2

3 dyons with corresp.
Field.strengths, SU(3), 1
Each (1,-1,0) charges




New (compactified) phase diagram

describing an electric-vs-magnetic competition

Dirac condition (old units e~ 2=alpha)
-

7. 9 <-n=2adjoint T

eg n

Thus at the e=g line m—dominated

e? Jhe = g* [he =1

Near deconfinement line g->0 in IR
(Landau’s U(1) asymptotic freedom)

=> e-strong-coupling

irsa: 07050050

0

m strongly correlated

e=g line

e—dominatedl

QGP

e—dominated
m—confined
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New (compactified) phase diagram

describing an electric-vs-magnetic competition

Dirac condition (old units e~ 2=alpha)
- .

€q n =
= = - - e—dominat
he 2 <- n=2 adjoint T m strongly correlated
QGP
Thus at the e=g line m—dominated .
e stronglv e=g line
correlated

e? Jhe = g° [he =1

Near deconfinement line g->0 in IR
(Landau’s U(1) asymptotic freedom)

=> e-strong-coupling

e—dominated
m—confined

Why is this diagram better? => 0
THereare e-flux tubes in all blue reglon, n& only in the 2

Page 55/86 w



How MQPs+EQPs move?

(2 pedagogical examples before we deal with a plasma)

(1) one MQP (dyon)+one static e-charge

A.Poincare => the motion

Is restricted to a cone
=angular momentum of the field J from
ExB| | to r J=hbar*(n/2) <= Dirac
g_eg_m/hbarc=N/2

=>Monopoles ofany sign repel
from a charge because
Their rotation makes a
repelling dipole

(also think of quantum mech.=>
localization energy!

Here is my solution for a dyon (with
attractive e-charge, preventing the
escape to large r)

.y

N

U
|

%]III

R A T

0.75

el

o

llI?IIIJ.‘InIIII

Page 56/86
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Second (and now entirely new) %

problem: static eDipole+MPS

Note that Lorentz force is O(v)!

) =
dr g = dr
M—==-F «
diz ¢ dt
s r —az r+az
B[ THer

|F—£I;ﬂ?’ |.'—+ f.I..'?|3
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We found that two charges play ping-
pong by a monopole without even
moving!

Chaotic, regular

and escape trajectories
for a monopole, all
different in initial
condition by 1/1000
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We found that two charges play ping-
pong by a monopole without even
moving!

Chaotic, regular

and escape trajectories

for a monopole, all

different in initial

condition by 1/1000 Dual to Budker’s
only! magnetic bottle

__I.-‘JI |
9
o’ |
/ :.
1} .
)
(
(
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Y
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MD simulation for plasma with monopoles
(Liao,ES hep-ph/0611131)

monopole admixture M50=50% etc
again diffusion decreases indefinitely, viscosity does not

“I'| " It matters: 50-50 mixture

makes the best liquid. as it

= 070511050 : : : . FIG. 16. Shear viscosity wn calculated P3i5*Hifferent
3 o N = 3p]mnparameterfﬁrMm(mclﬂ} M25(square), and

P ifmewnd B~ =9 - g oW P




We identified 3 collective modes

(1000 particles in a stable spherical drop)
I=0 breathing =>diffusion; |-2 quadrupole => shear viscosity,
I=1 plasmon => conductivity
and studied the dependence of their fequencies and

widths on coupling...
Quadrupole (phonon) and plasmon

P EFFEYE YR FEYEYFE R R )T o T L L ' ' '
180 i i
S 160 - = )
s 2 o
1- 140 = - 5 15
J dag
s H &
] Z
z 120 = .
® ol
s 100 N 210 =
I I B E
= W E i .
2 E
E =
o e — 5
- = o
: T 5 % b
E - N ks = o
: I 1 1 _: [ a
— M- & s - i I . a — 3
-2 s 5 -y qlf[:& e B o og
= H MM M nh:t | %Fﬂtm
I] : ] ] L B ] L |
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* le-flux tubes in QGP?

(with J.F.Liao)
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e .

% le-flux tubes in QGP?

(with J.F.Liao)
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Dual superconductivity as a confinement
mechanism (iooft, Mandeisiam 1980's) =>

monopole condensation at T<Te¢ =>
electric flux tubes dual to Abrikosov vortices
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* le-flux tubes in QGP?

(with J.F.Liao)

—
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Dual superconductivity as a confinement
mechanism (i-ooft, Mandelstam 1980's) =>

monopole condensation at T<Te¢ =>
electric flux tubes dual to Abrikosov vortices

Butat [>TC (uncondenced) MQPs do the
same! Due to Lorentz force MQPs are
reflected from a region with E field =>

pressure => flux tubes compression
In plasma



* le-flux tubes in QGP?

(with J.F.Liao)
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Dual superconductivity as a confinement
mechanism (iooft, Mandelstam 1980's) =>

monopole condensation atT<Te =>
electric flux tubes dual to Abrikosov vortices

Butat [>TC (uncondenced) MQPs do the
same! Due to Lorentz force MQPs are
reflected from a region with E field =>

pressure => flux tubes compression
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Bose-Einstein condensation of strongly
Interacting particles (=monopoles)
(with M.Cristoforetti, Trento)

« Feynman theory for liquid He4: divergent polygons
BEC if y=exp(-S)>yc =.16 or so (1/Nnaighbours)

We calculated " " instantons” for Iparticles ,:' ; ;I !
jumping paths in a liquid and Ve ' o !
solid He4 incuding realistic atomic - . AR,

potentials: no supersolid phase ?

For charged Bose gas (monopoles) the action for
the jump can be calculated similarly

Marco is doing Path Integral simulations with
peitfititations numerically, to better define page 70186
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Dual superconductivity as a confinement
mechanism (i+ooft, Mandelsiam 1980's) =>

monopole condensation at T<Te =>
electric flux tubes dual to Abrikosov vortices

Butat [>TC (uncondenced) MQPs do the
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Bose-Einstein condensation of strongly
Interacting particles (=monopoles)
(with M.Cristoforetti, Trento)

 Feynman theory for liquid He4: divergent polygons
BEC if y=exp(-S)>yc =.16 or so (1/Nnaighbours)

We calculated " " instantons” for Iparticles ,:' . ;’ )
jumping paths in a liquid and Y ' . !
solid He4 incuding realistic atomic o i e

potentials: no supersolid phase ?

For charged Bose gas (monopoles) the action for
the jump can be calculated similarly

Marco is doing Path Integral simulations with
peitfititations numerically, to better define page 73186
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A gift by the siring theorists:
AdS/CFT correspondence,
the only way to calculate at VERY
strong coupling

¢ The N=4 SUSY Yang Mills gauge theory is conformal (CFT) (the
coupling does not run). At finite T it is a QGP phase at ANY coupling.
If it is weak it is like high-T QCD => gas of quasiparticles. What is it
like when the coupling gets strong )\ = ¢°N, > 17

e AdS/CFT correspondence by Maldacena turned the strongly coupled

gauge theories to a classical problem of gravity in 10 dimensions
o Example: a modified Coulomb’s law (by «+—+ bme o+ o

Maldacena) - :
V(L) =— 4w VA “Sane ;

B Boriaesy b
¢-Decomes a sreened potential at finite T e
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