Title: Random Observations in the Landscape

Date: May 20, 2007 03:00 PM

URL: http://pirsa.org/07050043

Abstract:

Random Observa Starting Speech Recognition Uscape

Vitaly Vanchurin

Arnold Sommerfeld Center for Theoretical Physics University of Munich, Germany

Random Observations in the Landscape

B

Vitaly Vanchurin

Arnold Sommerfeld Center for Theoretical Physics University of Munich, Germany

Random Observations in the Landscape

Vitaly Vanchurin

Arnold Sommerfeld Center for Theoretical Physics University of Munich, Germany

Random Observations in the Landscape

Vitaly Vanchurin

Arnold Sommerfeld Center for Theoretical Physics University of Munich, Germany

Introduction

Inflation:

- explains homogeneity, isotropy, flatness, etc.
 [Starobinsky (1980), Guth (1981), Linde(1982), ...]
- "generically" is eternal
 [Vilenkin (1983), Linde (1986), ...]
- the "measure" problem [Linde, Linde, Mezhlumian (1996), Vanchurin, Vilenkin, Winitzki (2000), ...]

String theory:

- huge number of distinct vacua $N \sim 10^{500}$ 10^{1000}
- landscape picture of universe [Bousso & Polchinski (2000), Susskind (2003), Douglas (2003), ...]

A paradox of eternal inflation:

- Semi-eternal inflation
- => We are at some finite distance T
- => Slice the space-time: (0, T], (T, 2T], (2T, 3T], ...

Why are we so atypical? Why do we live so close to the origin? Why T is so small?

A paradox of eternal inflation:

- => Semi-eternal inflation
- => We are at some finite distance T
- => Slice the space-time:

(0, T], (T, 2T], (2T, 3T], ...

Why are we so atypical? Why do we live so close to the origin? Why T is so small?

Vilenkin:

"All observers have the same problem."

A paradox of eternal inflation:

- => Semi-eternal inflation
- => We are at some finite distance T
- => Slice the space-time:

(0, T], (T, 2T], (2T, 3T], ...

Why are we so atypical? Why do we live so close to the origin? Why T is so small?

Vilenkin:

"All observers have the same problem."

Mukhanov:

"Inflation is not semi-eternal."

A paradox of eternal inflation:

- => Semi-eternal inflation
- > We are at some finite distance T
- => Slice the space-time:

Why are we so atypical? Why do we live so close to the origin? Why T is so small?

Vilenkin:

"All observers have the same problem."

Mukhanov:

"Inflation is not semi-eternal."

Myself:

"Typical observers do not exist."

Anthropic principle (cont'd)

Mediocrity principle:

"We observe, what a typical (random) observer would observe"

1) Major problem: It is not possible to pick a random object from a countable set! Consider a set of Natural numbers: $\{1, 2, 3, ...\}$. Let p(n) be the probability of choosing n.

If P(n) = const for all n, then

$$\sum_{n=1}^{\infty} P(n) = 0 \text{ if const} = 0 \\ \infty \text{ if const} \neq 0$$

On the other hand $\sum_{n=1}^{\infty} P(n)$ must be normalized to 1. A random observer is ill-defined.

Anthropic principle (cont'd)

Mediocrity principle:

"We observe, what a typical (random) observer would observe"

1) Major problem: It is not possible to pick a random object from a countable set! Consider a set of Natural numbers: $\{1, 2, 3, ...\}$. Let P(n) be the probability of choosing n. If P(n)=const for all n, then

 $\sum_{n=1}^{\infty} P(n) = 0 \text{ if const} = 0 \\ \infty \text{ if const} \neq 0$

On the other hand $\sum_{n=1}^{\infty} P(n)$ must be normalized to 1. A random observer is ill-defined.

2) Minor problem: Not interested in observers, but in observations, which is not always the same.

Possible "solutions":

- Define a generalized random observer (or observation), as a random observer (or observation) out of the first n observers (or observations), from an unbiased series of observers, for large enough n.
- 2) Define a generalized anthropic principle:

"We observe a (generalized) random observation."

Anthropic principle (cont'd)

Mediocrity principle:

"We observe, what a typical (random) observer would observe"

1) Major problem: It is not possible to pick a random object from a countable set! Consider a set of Natural numbers: $\{1, 2, 3, ...\}$. Let P(n) be the probability of choosing n. If P(n)=const for all n, then

 $\sum_{n=1}^{\infty} P(n) = 0 \text{ if const} = 0 \\ \infty \text{ if const} \neq 0$

On the other hand $\sum_{n=1}^{\infty} P(n)$ must be normalized to 1. A random observer is ill-defined.

2) Minor problem: Not interested in observers, but in observations, which is not always the same.

Possible "solutions":

- 1) Define a generalized random observer (or observation), as a random observer (or observation) out of the first n observers (or observations), from an *unbiased* series of observers, for large enough n.
- 2) Define a generalized anthropic principle:

"We observe a (generalized) random observation."

Two approaches to define a generalized observation:

- 1) Global approach: Choose a single realization of initial conditions [Vilenkin, Linde, ...]
- 2) Local approach: Consider many worldlines (one for each realization of IC) [Bousso,...]

Pirsa: 07050043

Page 15/35

Global approach

Consider three stochastic processes that generate:

(eternally inflating space-time)

1) Geometry: $G^{3,1}$ 2) Content: $C:G^{3,1} \to \mathbb{R}$ 3) Observations: $O:\mathbb{N} \to G^{3,1} \times G^{3,1}$ (varying fundamental constants (e.g. Λ)

(maybe correlated with G and C)

Questions: What is a (generalized) random observation?

Geometry:

Geometry+Content:

Geometry+Content+Observers:

Euclidean space: Consider 2D painted in black and white:

$$C:\mathbb{R}^2 \to [0,1]$$

Define an infinite set of isolated points (red dots):

What is the probability of a randomly chosen point to be white?

- Not known.
- Not known, even if C maps everything to [0]

Page 17/35

Euclidean space: Consider 2D painted in black and white:

$$C:\mathbb{R}^2 \to [0,1]$$

Define an infinite set of isolated points (red dots):

What is the probability of a randomly chosen point to be white?

- Not known.
- Not known, even if C maps everything to [0]

Define a generalized random point by spherical ordering.

f the limit exists, then one should also prove that it is unique.

Euclidean space: Consider 2D painted in black and white:

$$C:\mathbb{R}^2 \to [0,1]$$

Define an infinite set of isolated points (red dots):

What is the probability of a randomly chosen point to be white?

- Not known.
- Not known, even if C maps everything to [0]

Define a generalized random point by spherical ordering.

f the limit exists, then one should also prove that it is unique.

Minkowski and de-Sitter space-times:

I volume on finite proper distance is infinite opherical ordering of observers is ill-defined

Page 19/35

Euclidean space: Consider 2D painted in black and white:

$$C:\mathbb{R}^2 \to [0,1]$$

Define an infinite set of isolated points (red dots):

What is the probability of a randomly chosen point to be white?

- Not known.
- Not known, even if C maps everything to [0]

Define a generalized random point by spherical ordering.

f the limit exists, then one should also prove that it is unique.

Minkowski and de-Sitter space-times:

volume on finite proper distance is infinite spherical ordering of observers is ill-defined

Eternal inflation:

- 1+1D landscape models with at least one AdS vacua
- generic time-like geodesic has a finite proper length
- eternal geodesics always exist and have a unique statistic

Euclidean space: Consider 2D painted in black and white:

$$C:\mathbb{R}^2 \to [0,1]$$

Define an infinite set of isolated points (red dots):

What is the probability of a randomly chosen point to be white?

- Not known.
- Not known, even if C maps everything to [0]

Define a generalized random point by spherical ordering.

f the limit exists, then one should also prove that it is unique.

Minkowski and de-Sitter space-times:

volume on finite proper distance is infinite pherical ordering of observers is ill-defined

Eternal inflation:

- · 1+1D landscape models with at least one AdS vacua
- generic time-like geodesic has a finite proper length
- eternal geodesics always exist and have a unique statistic

In 3+1D the spherical ordering of observations could be well defined if we require a finite time Δ for an observation!

Spherical measure

In a pure de-Sitter:

$$ds^2 = -dt^2 + e^{2Ht}(dr^2 + r^2 d\Omega^2)$$

Tunneling rate per unit time t is given by:

$$\kappa_{ij} = \frac{4\pi}{3} H_j^{-3} \Gamma_{ij}$$

The bubbles nucleation rate is

 $\Gamma_{ij} = A_{ij} e^{-\Gamma_{ij} - S_{ij}}$

where

$$S_i = \pi H_i^{-2}$$

is the Gibbons-Hawking entropy, I_{ij} is the instanton action and A_{ij} is a prefactor.

Matrix of probability currents:

$$M_{ij} = \kappa_{ij} - \delta_{ij} \sum_{r=1}^{N} \kappa_{rj}$$

The magnitude of K_{ij} is the same for all geodesic observers, but the tunneling rate per unit proper time τ varies [Garriga, Guth, Vilenkin (2006)]:

$$M_{ij}(v) = (\kappa_{ij} - \delta_{ij} \sum_{r=1}^{N} \kappa_{rj}) (1 - v^2)^{\frac{-1}{2}}$$

Is the spherical measure well defined?

- 1) in 1+1D the 2-volume is finite, thus the procedure is well defined
- 2) in 3+1D and fractal dimension of eternal set less than 2 the 4-volume is also finite
- 3) in 3+1D and fractal dimension of eternal set greater or equal to 2:
 - a) the spherical ordering of observers is ill-defined
 - b) the spherical ordering of observations

Write down the evolution equation: $\frac{d\vec{p}^{\text{vol}}}{dt} = (M(v) + 3H)\vec{p}^{\text{vol}}$

For large enough velocity, the largest eigenvalue is negative: $\vec{p}^{\text{vol}}(t) = \vec{s} \, e^{-\lambda t}$

Inflation is not eternal for highly boosted observers!

The distribution of observations must be counted in three steps (volume => bubbles => observations)

1) Volume distribution:
$$\frac{d\vec{p}^{\text{vol}}}{dt} = M\vec{p}^{\text{vol}} + 3H\vec{p}^{\text{vol}} \implies \vec{p}^{\text{vol}}(t) = \vec{s}e^{3(H)t}$$

Total count of Boltzmann observations:
$$p_{i}^{bolts}(t) = \frac{1}{3\langle H \rangle} b_{i} s_{i} e^{3\langle H \rangle t}$$

b_i is the probability for Boltzmann civilizations to form per unit time per unit volume)

2) Frequency of bubbles:
$$\vec{p}^{frq} = \kappa \vec{p}^{vol} \implies \vec{p}^{frq}(t) = \kappa \vec{s} e^{3(H)t}$$

3) Distribution of observations:

$$p_{i}^{obs}(t) = \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \sum_{r=1}^{N} \kappa_{ir} s_{r} e^{3(H)t_{0}} \frac{4\pi l_{i} e^{3N_{i} + 2H_{i}\tau}}{H_{r}^{2}} d\tau dt_{0}$$

where

 l_i is the probability for life to evolve and to live long enough to preform an observation

 t_i is the time of slow roll

 N_i is the number of e-foldings of slow-roll

With two assumptions:

- 1) time of slow roll is negligible t_i (in general not true)
- 2) life can only exist in vacua with small cosmological constant: $H_i \ll \langle H \rangle$ for all $l_i \neq 0$

The total count of observations is given by:

$$p_i^{obs}(t) - \frac{4\pi l_i e^{3N_t}}{3\langle H \rangle (3\langle H \rangle - 2H_i)} \sum_{r=1}^{N} \frac{\kappa_{ir} S_r}{H_*^2} e^{3\langle H \rangle t}$$

Pirsa: 07050043 Page 26/35

With two assumptions:

- 1) time of slow roll is negligible t_i (in general not true)
- 2) life can only exist in vacua with small cosmological constant: $H_i \ll \langle H \rangle$ for all $l_i \neq 0$

The total count of observations is given by:

$$p_i^{obs}(t) - \frac{4\pi l_i e^{3N_t}}{3\langle H \rangle (3\langle H \rangle - 2H_i)} \sum_{r=1}^{N} \frac{\kappa_{ir} S_r}{H_r^2} e^{3\langle H \rangle t}$$

One can include the collisions of bubbles, which leads to modifications of $H_t \rightarrow \tilde{H}_i$

The asymptotic distribution of observations:

$$p_i^{obs} \propto \frac{l_i e^{3N_i}}{3\langle H \rangle - 2\tilde{H}_i} \sum_{r=1}^N \frac{\kappa_{ir} S_r}{H_r^2}$$

With two assumptions:

- 1) time of slow roll is negligible t_i (in general not true)
- 2) life can only exist in vacua with small cosmological constant: $H_i \ll \langle H \rangle$ for all $l_i \neq 0$

The total count of observations is given by:

$$p_i^{obs}(t) - \frac{4\pi l_i e^{3N_t}}{3\langle H \rangle (3\langle H \rangle - 2H_i)} \sum_{r=1}^{N} \frac{\kappa_{ir} S_r}{H_r^2} e^{3\langle H \rangle t}$$

One can include the collisions of bubbles, which leads to modifications of $H_t \rightarrow \tilde{H}_i$

The asymptotic distribution of observations:

$$p_i^{obs} \propto \frac{l_i e^{3N_i}}{3\langle H \rangle - 2\tilde{H}_i} \sum_{r=1}^N \frac{\kappa_{ir} S_r}{H_r^2}$$

Anthropic constrains on the landscape:

1)
$$H_i \ll \langle H \rangle$$
 for all $l_i \neq 0$

2)
$$\sum_{r=1}^{N} b_i s_i < \sum_{r=1}^{N} \frac{4\pi l_i e^{3N_i}}{3\langle H \rangle - 2\tilde{H}_i} \sum_{r=1}^{N} \frac{\kappa_{ir} s_r}{H_r^2}$$

Local approach

$$T_{ij} = \frac{\kappa_{ij}}{\sum_{r=1}^{N} \kappa_{ri}}$$
 - relative transition rates

$$W_{ij} = \delta_{ij} I_i$$
 - "Weinberg" matrix

What is the probability to find yourself in a given vacua?

The answer is not unique and depends on

- initial conditions
- ensemble of observers

Treat bubbles equally [Bousso (2006)]:

$$p_{bubbles} \propto W(I-T)^{-1} T p_0$$

Freat geodesics equally:

$$p_{qeodesics} \propto W N[(I-T)^{-1} T] p_0$$

Freat observers equally:

$$p_{\text{observers}} \propto N \lceil W (I-T)^{-1} T \rceil p_0$$

The "Sleeping Beauty" problem [Elga & Lewis]:

Beauty is put to sleep. A fair coin is tossed.

If the coin falls heads: She is awakened and put to sleep again.

If the coin falls tails:
She is awakened and put to sleep again.
She is administered a memory-erasing drug.
She is awakened and put to sleep again.

She knows all this!

When she awakes, what should her credence be that the coin fell heads?

Pirsa: 07050043 Page 30/35

Local approach

$$T_{ij} = \frac{\kappa_{ij}}{\sum_{r=1}^{N} \kappa_{rj}}$$
 - relative transition rates

$$W_{ij} = \delta_{ij} I_i$$
 - "Weinberg" matrix

What is the probability to find yourself in a given vacua?

The answer is not unique and depends on

- initial conditions
- ensemble of observers

Freat bubbles equally [Bousso (2006)]:

$$p_{bubbles} \propto W(I-T)^{-1} T p_0$$

Freat geodesics equally:

$$p_{qeodesics} \propto W N[(I-T)^{-1} T] p_0$$

Freat observers equally:

$$P_{\text{irsa: 07050043}} p_{\text{observers}} \propto N [W(I-T)^{-1} T] p_0$$

The "Sleeping Beauty" problem [Elga & Lewis]:

Beauty is put to sleep. A fair coin is tossed.

If the coin falls heads: She is awakened and put to sleep again.

If the coin falls tails:
She is awakened and put to sleep again.
She is administered a memory-erasing drug.
She is awakened and put to sleep again.

She knows all this!

When she awakes, what should her credence be that the coin fell heads?

Pirsa: 07050043 Page 32/35

The "Sleeping Beauty" problem [Elga & Lewis]:

Beauty is put to sleep. A fair coin is tossed.

If the coin falls heads: She is awakened and put to sleep again.

If the coin falls tails:
She is awakened and put to sleep again.
She is administered a memory-erasing drug.
She is awakened and put to sleep again.

She knows all this!

When she awakes, what should her credence be that the coin fell heads?

Elga: 1/3

Lewis: 1/2

The "Sleeping Beauty" problem [Elga & Lewis]:

Beauty is put to sleep. A fair coin is tossed.

If the coin falls heads: She is awakened and put to sleep again.

If the coin falls tails:
She is awakened and put to sleep again.
She is administered a memory-erasing drug.
She is awakened and put to sleep again.

She knows all this!

When she awakes, what should her credence be that the coin fell heads?

Elga:
$$1/3 => Bousso is right => p \propto W(I-T)^{-1}T p_0$$

Lewis:
$$1/2 \Rightarrow I$$
 am right $\Rightarrow p \propto N[W(I-T)^{-1}T]p_0$

Conclusion:

Random observers do not exist, or otherwise problems and paradoxes

Generalized anthropic principle:

"We observe a (generalized) random observation"

Three-steps formalism for calculating probabilities:

1) volume distribution => 2) frequency of bubbles => 3) distribution of observations

Spherical measure:

- is well defined ordering of observations for some models
- the only ordering invariant under the Lorentz transformation
- the measure is independent of the choice of a reference point

Local approach:

- depends on the initial conditions
- ambiguous choice of the ensemble