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Motivation

» The AdS/CFT correspondence provides a unique method to
approach the mysteries of black holes: the singularity, the
horizon, their evaporation.

» From a traditional gravitational perspective, we have next to
no handle on quantum gravity effects.

» AdS/CFT conjectures that black hole physics should be
completely describable by a well defined dual finite
temperature field theory.

» However, the black hole is described by the field theory at
strong coupling, whereas what is computationally accessible is
the weakly coupled theory. It is therefore critical to understand
the behaviour of the theory as a function of coupling.
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Outline

» The AdAS/CFT correspondence in a nutshell

» Phase structure of N' =4 SYM theory

» The Polyakov loop as an order parameter.
» Including the (six) scalar fields.

» Joint eigenvalue distributions

» Low temperature: S' x S°.
» Intermediate temperatures: S° ellipsoid.

—

» A new second order transition: S° — S°.
» Geometrical speculations

» Conclusions and implications
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AdS/CFT in a nutshell

Maldacena (1997) + 4000 or so papers

» The superselection sector of |IB string theory on geometries
that asymptote to AdSs x S is equivalent to A" = 4 Super
Yang-Mills theory on the ‘boundary’ R x S°.

» A particularly tractable limit of the correspondence is the 't
Hooft N — ~c limit. In field theory N is the rank of the
SU(N) gauge group. In string theory N ~ 1/g,, so we can
neglect string interactions.

» The 't Hooft coupling of the field theory, A = g7,,N, is a free
dimensionless parameter. In string theory A\ ~ (Rays/L:)*.
Large A implies that the AdS curvature is small and we can
use classical supergravity (Einstein gravity + some extra

fields).
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Phase structure of ' = 4 SYM theory on S> x St
Hawking-Page (1983), Witten (1998), Sundborg (1999), Aharony et al. (2003) . ..

» Parameters: 't Hooft coupling A and temperature T.

A
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Phase structure of ' = 4 SYM theory on S> x S?
Hawking-Page (1983), Witten (1998), Sundborg (1999), Aharony et al. (2003) ...

» Parameters: 't Hooft coupling A and temperature T.
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0 =
0

A

» Interpolation from strong to weak coupling?

» e.g. how similar are black holes and weakly coupled plasmas?
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Current framework: Polyakov loops
Aharony et al. (2003), Alvarez-Gaume et al. (2005) ...

» [he order parameter for these transitions is the large N
eigenvalue distribution of the Polyakov loop

U = Pef__cf:hzq{} dr '

» In practice, people study the eigenvalue distribution of the
spatially homogeneous and time independent mode of FAo.
The eigenvalues ¢, take values on a circle of radius 27, and
become the distribution p(#) in the large N limit.

» 'Deconfinement’: separates uniform vs. non uniform.

» Gross-Witten': separates gapped vs. non gapped.
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Including scalar fields
Hollowood-Kumar-Naqvi (2006), Hartnoll-Kumar (2006)

» At low and intermediate temperature, the six scalar fields &~
have a conformal mass term whereas Ag is classically
massless. Sensible to integrate out the scalars.

» At higher temperatures, RT ~ A\~ '/2, the one loop mass of
Ag is comparable to that of the scalars. We will allow for
condensates of Ag and &7,

» Integrate out the off diagonal modes to obtain an effective
potential for the respective eigenvalues {Hp}gzl and {r_:-tr;}g:l.
This truncation to commuting VEVs is consistent.

» Strategy:

» Compute one loop effective potential S [6. ;:r‘r].
» Solve for the joint eigenvalue distribution of {#,. r.':')é}.
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Aside: scalars and emergent geometry
Berenstein (2005)

» A very similar effective potential has been conjectured
recently to describe the 1/8™" BPS sector of ' = 4 SYM
theory at zero temperature and strong coupling.

» Berenstein considers a matrix model for the six scalar fields of
the theory

S=3" 82— 53 logld, — b,
p

pP#q

» In the ground state of this model, the eigenvalues form an S°.
This is to be identified with the S° in the dual geometry.
» The geometry dual to an operator trO is to be obtained by
solving the model
trOe > .
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Summary of results
Giirsoy-Hartnoll-Hollowood-Kumar (2007)

A
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IR "
1
Vi u': x Big Black Hole
e
s 4 0\
T _.- Hawking—Page 3
Hagedorn T J =
0.38 [~ N w
\____
Sx§’ Thermal AdS
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The one loop effective potential
Hollowood-Kumar-Naqvi (2006)

N
Seil01.0] = BR7? Z¢p+sﬁl +st1.
Where
N : .
3D ,g| + 16
5{11) — Z (3 Ch(@pq) — log [sinh - Pq|2 =
g.ag=1

L Z 2(2+3)(2(+1)log |1 —e 3\ (E+12 R +-dipqg +ipq
(=0

)

S =3 (8C(dpg)

p.q=1

s Y o oD
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The one loop effective potential

Hollowood-Kumar-Naqvi (2006)
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Comments on the action + validity

>

>

>
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Weak coupling: A < 1 .

Stay away from nonperturbative magnetic scale:

R<(DT) = TR< AL

B|@pql +ibpq
5

A crucial term is the ‘'measure factor' log ‘sinh

This causes the eigenvalues to repel each other in all seven

directions. This repulsion will be balanced by an anisotropic
mass term.

We are integrating out the higher harmonics on S°. The
masses of these modes are not parametrically separated from
the homogeneous modes we keep. True dynamics may be
more complicated. Need to start somewhere!

Define x, = 3¢ .
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The one loop effective potential
Hollowood-Kumar-Naqvi (2006)
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The one loop effective potential
Hollowood-Kumar-Naqvi (2006)
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The one loop effective potential
Hollowood-Kumar-Naqvi (2006)
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Comments on the action + validity
» Weak coupling: A < 1 .
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R<RT)y1= TR« .

. . i ! ¥ j.| ¢pq| _l_’-HJDE?
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Weak coupling: A << 1 .

Stay away from nonperturbative magnetic scale:

Re (AT '= TR

7 - i . 3 (;b +if
A crucial term is the ‘measure factor’ log ‘smh | ‘”‘-’_L -
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directions. This repulsion will be balanced by an anisotropic
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Low and intermediate temperatures

» For RT < A\~ 1/?, expect condensate of scalars will be small
compared to the ¢, condensate.

» Set x, = Ax, and expand the action in the A. Find
S = \°5O)(g) + A (5(1}(9. %) + sz_mp(e)) + O()\?)

» Thus the &, distribution is determined independently of the x,
to leading order. This is the distribution, p(#), found by
Aharony et al. Recall: p(#) uniform below the Hagedorn
transition, gapped above the transition.

» Given p(#), need to minimise S()(#.%) to find p(f.x).
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Low and intermediate temperatures

> == . .
» For RT << \™'/%, expect condensate of scalars will be small
compared to the ¢, condensate.

» Set x, = Ax, and expand the action in the A. Find
S — X950} (@) - X (5(1 (0. %) Sttoos ')) +O(?) |

» Thus the 6, distribution is determined independently of the x,
to leading order This is the distribution, p(#), found by
Aharony et al. Recall: p(#) uniform below the Hagedorn
transition, gapped above the transition.

» Given p(d), need to minimise S(1)(#.x%) to find p(6.%).
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Low and intermediate temperatures

> == F 42, .
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» Continuum limit as N — ~

N
1
NZ —F /dGXdHIJ(X 9) = ].
p—1
» Action becomes
1 ” "
NES(” — :2TR/d9d65E,_;(H.i)§x\2

— T / do d°% d°%’ p(0.%)p(6.%)|x — X| .

» Preservation of SO(6)r symmetry requires

p(8)3(I%] = r(6))
%[5Vol S5

ol x) =
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» Continuum limit as N — ~
1 N
NZ — /dﬁxdﬁp(x.ﬁ) =1.
=k

» Action becomes

1
N2

s — :2TR/d9dﬁ>?,_;(9.i);i\2

- :/de d°% d°%’ p(6.%)p(0.X)|x — X| .

» Preservation of SO(6)r symmetry requires
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%[5Vol S5

p(6,x) =
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» Continuum limit as N — ~
1 N
NZ —/df’xdep(x.m =1.
p—1

» Action becomes

N,,S“ = ,.—.2TR/d9d652,_a(H.i)§i\2

- /dH d%% d®% p(6,%)p(6. %)% — X .

» Preservation of SO(6)r symmetry requires

f_::(ﬁ')d(.i‘ = r(H)) +

A0 X) = T 3 5Vel 53
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» Find the solution

2048 1
g = (6
)= gan,2 gy V)

» Below the transition, p(#) uniform (i.e. constant) and hence
full solution: S* x S°.

» Above the transition, p(#) is gapped, and hence full solution is
topologically: S°.

» At temperatures well above the transition, 1 < RT < A\~ V/?,
can show that p(4) = 4x(TR)? \/95 — 62, which implies the

full solution is an ellipsoid

740452

2y 2 392 _ 1
3 x 20AZeRT - © 2T Uy =1
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» Find the solution

2048 1
#) = (6
= g2 py V)

» Below the transition, p(#) uniform (i.e. constant) and hence
full solution: S* x 5>,

» Above the transition, p(#) is gapped, and hence full solution is
topologically: S°.

» At temperatures well above the transition, 1 < RT < A\~ 1/?,
can show that p(4) = 4x(TR)3 \/95 — 62, which implies the

full solution is an ellipsoid

740452

2 Fz 3H2 — ]
3 x J0AERT" T URpE =1
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» Find the solution

2048 1
) = (6
g ey

» Below the transition, p(#) uniform (i.e. constant) and hence
full solution: S* x 5>,

» Above the transition, p(#) is gapped, and hence full solution is
topologically: S°.

» At temperatures well above the transition, 1 < RT < A\~ 1/?,
can show that p(4) = 4x(TR)> \/95 — 62, which implies the
full solution is an ellipsoid

740452
8 x 20482)\2RT

x* +27%(TR)*#° =1 .
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to

obtain
N 1 N

Strz1 =N _ (Plx,]> + Q67) — 5 > log (|xpgl” + 65,) -
p=1 pg=1

» Which gives equations of motion

- 6./ Fo / / (X—X;)
Px—/d x d@" p(x',0") x— X210 —0)
60— 6

Qs 6.1 H-f_ er
Qb /dxd_ p(xX, )\x—xf;2+(e—ef)2'

» Need to solve these numerically! (simple Monte Carlo).
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to
obtain

N N
o ton o -
STR’_‘.::E:»I e NZ (P‘XP‘_ 5 3 QHJD) N 5 Z |Dg (‘XPCIQ & ng) .

p=1 pqg=1

» Which gives equations of motion

=y ] 6./ A S .Y (x_xf)
Px_/dxdh* e
0 —6

i 6.1 H-f_ rHr
Qb /dxd_ P ) (e

» Need to solve these numerically! (simple Monte Carlo).
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to
obtain

N
B anmy ) S
Stre1 =N (Pxs|* + Q63) — 3 )  log (|xpql® + 05,) -

» Which gives equations of motion

=, 1 6./ A A Y (}(—}(f)
Px—/d x' d# p(x,8) x— X210 —0)
H—6

0 — ‘ 6./ g I-Hf |
Q /dxd. o

» Need to solve these numerically! (simple Monte Carlo).
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High temperatures

» At high temperatures RT ~ \~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to

obtain
N 1 N
STR>1 = NZ (P|x,| QHE) —3 Z log (|Xpgl? —|—H§q)
p=1 pg=1
» Which gives equations of motion
x — x')
Px = | d°x' d#' p(X,& ( |
x= [ 45 40 o )
0—6

0 — 6./ Hr_ I-Hf |
Q! /dx do’ p(x )\x—x’;2+(H—H’)2'

» Need to solve these numerically! (simple Monte Carlo).
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to

obtain
N N

StrRs1 =N (P|x,|* + Q82) — Z og (|xpql” + 654) -
p=1 g=1

» Which gives equations of motion
‘ | | x — x')
Px— [ d% d@ p{x. & ( ,
60— 6

0 — 6. 7/ H-r} I-HI |
Q! /dxd. p(x )‘x_x,,2+(9_ef)2_

» Need to solve these numerically! (simple Monte Carlo).
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High temperature solutions

1.2
o
0.8
fir) 0.6
0.4
0.2
EE: G:—i 'Dl.ﬁ U'I.S l 1:2

I

» The solutions appear to be ellipsoids to a high degree of
accuracy. We don't know the eigenvalue density explicitly.
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High temperature solutions

0.2 04 0.6 0.8 1 1.2
T

» The solutions appear to be ellipsoids to a high degree of
accuracy. We don't know the eigenvalue density explicitly.
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to

obtain
N N
Strs1 =N (P> + Q63) — Z og (|xpq|* + 05q) -
_p:l q:
» Which gives equations of motion
] | | x — Xx')
Px = | d°x' d&' p(X,& ( |
60— 6

cma;ﬁ/kﬁxfdwfwxﬂﬂﬂ

x — X2+ (0 — 0)2

» Need to solve these numerically! (simple Monte Carlo).
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High temperature solutions

0.8
fir) 0.6 |
04t

0.2

0.2 04 0.6 0.8 1 1.2
=

» The solutions appear to be ellipsoids to a high degree of
accuracy. We don't know the eigenvalue density explicitly.
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to
obtain

N N
5 | 1 - _
Strs: =N E (P|xp|” + QHE) -5 E log (|%pq| + ng) .
pg=1

p=1

» Which gives equations of motion

e 6./ A B Y (x_xf)
Px—t/'d x' d# p(x,8) x— X2 (0—0)
H—6

0 — 6./ Hr_ I-Hf |
Q! /dxd. p(x )\x—x’:2+(9—6”)2

» Need to solve these numerically! (simple Monte Carlo).
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High temperature solutions

1.2
13
0.8 ¢
fir) 0.6 I
0.4
0.2
0.2 0.4 0.6 0.8 1 1.2

T

» The solutions appear to be ellipsoids to a high degree of
accuracy. We don't know the eigenvalue density explicitly.
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to
obtain

N N
5 | 1 |
StRs1 =N E (P‘xp‘g 02 QHE) e Z log (‘qu:z T Hf’q) '
pg=1

p=1

» Which gives equations of motion

. i 6./ r ¢ ol (X—X’I)
Px—/d x' df" p(x',0") x—XZ1(0—0)
60— 6

o= [ d° do’ p(x. 8 .
Q j X J“(x ) ‘X—XNE—F(H—H#)E

» Need to solve these numerically! (simple Monte Carlo).
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High temperature solutions

0.8 f
Iil"ll G.ﬁ |

0.4t

0.2t

0.2 04 0.6 0.8 1 1.2
r

» The solutions appear to be ellipsoids to a high degree of
accuracy. We don't know the eigenvalue density explicitly.
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» As well as the ellipsoids, there is also an S° solution, where
the ¢ eigenvalues are fully collapsed: p(#) = o(#). Interesting
to compare the actions

S/N"2

B s ®
ot o *
08} /e

06

4
I~ | |
= e e O B e e e B S S

3 10 | ol 15 17.5

P/Q

ok

I [
LA |

» The S° ellipsoids have lower action than the S°. However, the
two actions seem to be approaching each other...
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High temperature solutions

fir) 0.6 |

0.4+

0.2 04 0.6 0.8 1 1.2
8

» The solutions appear to be ellipsoids to a high degree of
accuracy. We don't know the eigenvalue density explicitly.
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High temperatures

» At high temperatures RT ~ A\~1/2, the previous expansion
breaks down. Instead, expand the action for RT > 1 to

obtain
N 1 N
Stre1 =N (Plx,|> + Q62) — 5 ) log (|xpql® + 654) -
p—1 pg=1
» Which gives equations of motion
x — x')
Px = | d°x’ d&' p(xX, € ( _ ,
/ ) e -7
60— 6

0 — 6./ Hr_ rle |
Q! /dxd. p(x )\x—x“zqt(b’—ﬁf)z

» Need to solve these numerically! (simple Monte Carlo).
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» As well as the ellipsoids, there is also an S° solution, where
the ¢ eigenvalues are fully collapsed: p(6) = o(¢). Interesting
to compare the actions

S/NA2

[ s @
0 "
U_E:.

LA
=2 |
=

73 10 | ol 15 | 5

P/Q

= [
LA |
A

» The S° ellipsoids have lower action than the S°. However, the
two actions seem to be approaching each other...
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» We can zoom in to see the crossover

0.65 =i
f | »
0.6 | ~ :
| )
0.55 | . e
SIN"Z & 5 ‘.‘.‘..'.-a'
045 -
04t ™
.q' ) ; : ; ) ; ) ; . ; : ) ) . : : ) ) : ) . ) ) ! E
0.7 0.8 0.9 1 1.1 1.2
P/Q
» |t is also instructive to see the distributions
i Ifl'. 0.6 0.6
0 035 05
N
1 § 0.4 0.4
fir) firi firs
0.3 0.3 03¢
02 gz 0D2E
01 0.1 \ D1E
I . . . . . . P
g2 0.4 a6 08 0z 04 0.6 0.8 02 0.4 .6 02
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Pirsa: 07050026

» We can zoom in to see the crossover

0.65
: —
0.6 | ;
& L] ]
0.55 , i-'i;;
S/NA2 05 _ ..'.‘" _
1 ‘..,-‘" :
0.45 | - :
oaf {
.q- . ) ) . ) ; ) ; . ; ) ) ) \ . : ) ) ) ) ) ) ) I.
0.7 0.8 0.9 1 1.1 2
P/Q

It is also instructive to see the distributions

]
0.6 06k
1] 05
%
04 04
f-I' fl:'l

0.3 03

02 02

0.1 o1} \

E : : :
02 0.4 0.6 08 {2 0 0.6 0ng
i T

ot

0.6
03
0.4
03k
02
0.1
: . P
04 0.8 0.8

I'Page 135/179




Strings seminar Perimeter Institute

» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

‘qu‘z

N N o, o R
- = 1 06, — 06,)°
0(2)5 — QN E ’-.}(_’)Ea - 5 E | ( P G‘) ‘
p=1 pPg=1

2

W 4=

» The solution can be seen to develop a zero mode at @ =
This corresponds to RT = \~V/2.

» A similar argument shows analytically that if the # direction of

the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~/
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

| Xpq|?

N N _ .
. . 9 1 06, — 06 2
{‘}(2)5 - QN E r.*Q; - E E | ( P G') ‘
p=1 Pg=1

L

» The solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\ 1/2,

W

» A similar argument shows analytically that if the # direction of
the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2
g% 5
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» We can zoom in to see the crossover

0.65
: ; »
0.6 5 — 5
B L ]
0.55 | ;i";;
—— I i ]
SN2 g5 ‘....#.-"
0.45 | o :
04f ~
.q" I ) : ) ; : ; . ; : : : . : ) ) ) ) ) . . E
0.7 0.8 0.9 1 1.1 1.2
P/Q
It is also instructive to see the distributions
0.6 [ 06k 0.6
03 03F 0.5
%»
W 04F 04
firi fir firs
03 03 F 0.3
02 D.ZE 0.2
0.1 01} \ 0.1
J : - i i A
G2 04 0.6 08 0> 04 0.6 0s 0.4 0.6 038
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

[ Xpq|°

N N - —
- _ ]. )H = f)H il
p=1 pg—=1

W =

2

» T he solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\~ V/2,

» A similar argument shows analytically that if the # direction of

the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2

g C
S §°
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» We can zoom in to see the crossover

0.65
f ; »]
0.6 C e .
L L ]
0.55 | b :
o i o 1
SN st ‘.'.‘.,.-'" :
0.45 = :
oaf ;
.q'- : ) ) . ) : ) ; . ; : ; : \ . ) ) ) ) ) : ) ) I.
0.7 0.8 0.9 1 1.1 1.2
P/Q

» It is also instructive to see the distributions

]
0.6 06F
03 05
‘ 5
o4 04}
firi fir) [
0.3 0.3
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

| Xpq|?

N N e e
£ _ ]. {)H — f}H i
p=1 pg=1

W 4=

P

» [ he solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\~ V2,

» A similar argument shows analytically that if the # direction of
the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ Y/2;
g8, g5
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» [he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

| Xpq|°

N N ., o
% .. ]. {_')H = f)H i
(IS =QNY o0 —5 ) s
p=1 pg=1

|

33

» T he solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\~ 1/2.

» A similar argument shows analytically that if the # direction of

the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

‘qu‘z

N N o, S
= = 1 00, — 00,)°
0{2)5 — QN E 4,_-}QFZ) ) 5 E | ( p G‘) ‘

p=1 pg=1

» [ he solution can be seen to develop a zero mode at @ = %P.
This corresponds to RT = A\~ V2,

» A similar argument shows analytically that if the # direction of

the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2

6 -y
S
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

N N - .
= ..M 1 {)H — f\)H 2
0{2)5 = QN E r.‘PQE — E E _ ( - G‘) .
pg=1

P [Xpq?

2

W=

» The solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\ V/2.

» A similar argument shows analytically that if the # direction of
the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2
50— 8
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» \We can zoom in to see the crossover

0.65
f | »
0.6 § i ]
L L ]
0.55¢ ,iiii;;
A o
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0.45 | -
04f ~
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0.7 0.8 0.9 1 1.1 1.2
P/Q
» |t is also instructive to see the distributions
0.6. 06} 0.6t
0.5 05t 0.5
‘ i L
04 0.4 f 04t
fir) firs firs
0.3 0.3 0.3t
0z 0z 02k
0.1 0.1 \ 0.1F
G2 0.4 06 08 0.z 04 0.6 0.8 02 0.4 06 09
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

N N e —
= _.n ]. 4.’)(7’ — f\)H i~
0(2)5 — QN E f.*e; S 5 E _ ( = {?) .
p=1 pg=1

‘qu‘z

W | P

>

» The solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\~ V/2,

» A similar argument shows analytically that if the # direction of
the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2
56 _— 55
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» We can zoom in to see the crossover

0.65
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» It is also instructive to see the distributions
0.6. 06k 0.6}
0 05} 0.3
‘ i
04 0.4 04
fir) fir) firi
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02 02 b 0t
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

| Xpq|°

N N e —
= Y ]. {:)H = f\)H i
0(2)5 - QN E {595 i 5 E | ( P {?) ‘
p=1 Pg=1

W |

.

» [ he solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\~ V2,

» A similar argument shows analytically that if the # direction of
the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2

6 C
5" —» 8
Pirsa: 07050026 Page 157/179






Strings seminar Perimeter Institute

Summary of results
Giirsoy-Hartnoll-Hollowood-Kumar (2007)

Sf_‘-
TR '
¢| i
TR Big Black Hole
s° o\
T _' x‘-__ Hawking—Page 3
Hagedorn x / f 8
0.38 | \ /
\“»______
SxS Thermal AdS
0 Z
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Summary of results
Giirsoy-Hartnoll-Hollowood-Kumar (2007)

A

S 3
TR |
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s Big Black Hole
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S° T 9\
Tl W \'-._ Hawking—Page 3
I s izl
b 2
Hagedorn T / =
0.38 | \
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» [ he numerics don't tell us whether the transition is first or
second order, or indeed whether there is a crossover at all.

» Consider the stability of the S° solution. The action for
quadratic fluctuations in 06, is

| Xpq|?

N N o, o
5 S, ]. {:}H — f)H i
fﬁ(z)SzQNE :ﬂg;_z 2: ( p q) ‘
p=1 pg=1

W |

2

» The solution can be seen to develop a zero mode at @ =
This corresponds to RT = A\~ 1/2,

» A similar argument shows analytically that if the # direction of

the S° solution is to collapse, it must do so at this point.

» Strongly suggests a second order transition at RT = A~ /2
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Geometrical speculations

» At zero temperature, the S° in the eigenvalue distribution is
interpreted as the S° in the dual spacetime: AdSs x S°.

» The S in our St x S° is naturally interpreted as the thermal
circle in Euclidean thermal AdSs (in fact it's the "T-dual’).

» What about the S® and S° phases? It would be nice to
associate the disappearance of the product S* factor with the
formation of a horizon (Euclidean cigar).

» The S° is reminiscent of the near horizon geometry of
localised D2 branes. Indeed, this is what we might expect if
we take the T-duality along the thermal circle seriously.
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Geometrical speculations

» At zero temperature, the S° in the eigenvalue distribution is
interpreted as the S° in the dual spacetime: AdSs x S°.

» The S in our S x S° is naturally interpreted as the thermal
circle in Euclidean thermal AdSs (in fact it's the "T-dual’).

» What about the S°® and S° phases? It would be nice to
associate the disappearance of the product S* factor with the
formation of a horizon (Euclidean cigar).

» The S° is reminiscent of the near horizon geometry of
localised D2 branes. Indeed, this is what we might expect if
we take the T-duality along the thermal circle seriously.
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Conclusions and implications

» Finite temperature " =4 SYM theory on S may be
described by a joint eigenvalue distribution for Ag and ®~.

» Different phases are associated with different eigenvalue

topologies. At the weak coupling Hagedorn transition:
Sty 5% 89

» In the high temperature phase there is a second order
transition separating weak and strong coupling regimes:

59—

» One implication: suppose we want to trace the AdS big black
hole saddle (the S°?) to weak coupling (c.f. Fidkowski-

-Hubeny-Kleban-Shenker '03). This is possible, but the saddle
Is a local maximum at very weak coupling.
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Summary of results
Giirsoy-Hartnoll-Hollowood-Kumar (2007)
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Conclusions and implications

» Finite temperature " = 4 SYM theory on S may be
described by a joint eigenvalue distribution for Ag and &7,

» Different phases are associated with different eigenvalue
topologies. At the weak coupling Hagedorn transition:

Sl x §% - S°,

» In the high temperature phase there is a second order
transition separating weak and strong coupling regimes:

L

» One implication: suppose we want to trace the AdS big black
hole saddle (the S°?) to weak coupling (c.f. Fidkowski-

-Hubeny-Kleban-Shenker '03). This is possible, but the saddle
is a local maximum at very weak coupling.
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Conclusions and implications

» Finite temperature A" = 4 SYM theory on S may be
described by a joint eigenvalue distribution for Ag and ®”.

» Different phases are associated with different eigenvalue
topologies. At the weak coupling Hagedorn transition:

Sl x S S5,

» In the high temperature phase there is a second order
transition separating weak and strong coupling regimes:

S — 5

» One implication: suppose we want to trace the AdS big black
hole saddle (the 5°?) to weak coupling (c.f. Fidkowski-

-Hubeny-Kleban-Shenker '03). This is possible, but the saddle
is a local maximum at very weak coupling.
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Conclusions and implications

» Finite temperature " =4 SYM theory on S may be
described by a joint eigenvalue distribution for Ag and &7,

» Different phases are associated with different eigenvalue
topologies. At the weak coupling Hagedorn transition:

Ssly s> 8%

» In the high temperature phase there is a second order
transition separating weak and strong coupling regimes:

5.

» One implication: suppose we want to trace the AdS big black
hole saddle (the S°?) to weak coupling (c.f. Fidkowski-

-Hubeny-Kleban-Shenker '03). This is possible, but the saddle
is a local maximum at very weak coupling.
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Summary of results
Giirsoy-Hartnoll-Hollowood-Kumar (2007)
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Conclusions and implications

» Finite temperature A" = 4 SYM theory on S° may be
described by a joint eigenvalue distribution for Ag and ®”.

» Different phases are associated with different eigenvalue

topologies. At the weak coupling Hagedorn transition:
o O

» In the high temperature phase there is a second order
transition separating weak and strong coupling regimes:

5% — 5>

» One implication: suppose we want to trace the AdS big black
hole saddle (the S°?) to weak coupling (c.f. Fidkowski-

-Hubeny-Kleban-Shenker '03). This is possible, but the saddle
is a local maximum at very weak coupling.
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