Title: Ekpyrotic Perturbations & a Holographic Big Bang

Date: May 08, 2007 11:00 AM

URL: http://pirsa.org/07050008

Abstract: TBA

Pirsa: 07050008

Ekpyrotic Perturbations and A Holographic Big Bang

- · An alternative to inflation
- Scale-invariant curvature perturbations
- Non-perturbative bounce in M theory
- · "Scale invariance from Scale Invariance"

Pirsa: 07050008 Page 2/87

Ekpyrotic Perturbations and A Holographic Big Bang

- · An alternative to inflation
- Scale-invariant curvature perturbations
- Non-perturbative bounce in M theory
- · "Scale invariance from Scale Invariance"

Pirsa: 07050008 Page 3/87

work with:

·Jean-Luc Lehners, Paul McFadden, Paul Steinhardt.

·Ben Craps,
Thomas Hertog.

Pirsa: 07050008 Page 4/87

So far, observations are consistent with a spatially flat Universe, and the simplest possible perturbations:

- · Gaussian
- · Linear, growing mode
- Adiabatic
- Scalar
- Scale-Invariant
- -as predicted by simple inflationary models,

- Assumes start in a super-dense, P=-p state: why?
- · Cosmic singularity unresolved
- Requires fine tuned potentials λ < 10⁻¹⁰

$$\rho_{\rm DE} \sim 10^{-100} \; \rho_{\rm INF}$$

- Strange empty future
- · Measure problem: canonical measure, with

random ICs ~> P(N) ~ e-3N

Gibbons+NT 2006

Inflation's most specific signature - primordial tensor modes has not yet been seen

Pirsa: 07050008

Motivations for a radical alternative

- 1. The dark energy puzzle: what is its role?
- The idea that today's universe is in a dynamical, metastable state
- 3. String and M theory must deal with the singularity: since all we see traces back to it, it is surely crucial to determining the physical selection of states.
- 4. Either time began at the singularity, or it didn't. Lets consider both options.

Pirsa: 07050008 Page 8/87

- Assumes start in a super-dense, P=-p state: why?
- Cosmic singularity unresolved
- Requires fine tuned potentials λ < 10⁻¹⁰

$$\rho_{\rm DE} \sim 10^{-100} \; \rho_{\rm INF}$$

- · Strange empty future
- · Measure problem: canonical measure, with

random ICs ~> P(N) ~ e-3N

Gibbons+NT 2006

Inflation's most specific signature - primordial tensor modes has not yet been seen

Pirsa: 07050008 Page 10/87

"THE CYCLIC UNIVERSE"

INTER-BRANE FORCE DRAWS BRANES TOGETHER, AMPLIFYING QUANTUM WRINKLES.

A TRILLION YEARS AFTER THE BANG : BRANES ARE EMPTY, FLAT AND PARALLEL.

YOU ARE HERE -Pirsa: 07050008 NERCY TAKES OVER, DRIVING ACCELERATED EXPANSION THAT BEGINS TO SPREAD OUT

TWO BRANES ENGAGE IN AN ENDLESS CYCLE OF COLLISION, REBOUND, STRETCHING, AND COLLISION ONCE AGAIN

> WRINKLED BRANES COLLIDE, CREATE SLIGHTLY NON-UNIFORM HOT PLASMA, AND REBOUND.

BRANES REACH MAXIMUM SEPARATION BUT CONTINUE TO STRETCH RAPIDLY, FILLED WITH RADIATION

RADIATION DILUTES AWAY. MATTER DOMINATES AND CLUPAGE 11/87 AROUND NON-UNIFORMITIES TO FORM GALAXIES AND STARE

Ekpyrotic perturbations

Khoury, Ovrut. Steinhardt. NT 2001

φ (radion) e.g. V=-Voe -co

Scale symm: $x^{\mu} \rightarrow e^{\lambda} x^{\mu}$, $\phi \rightarrow \phi + 2\lambda/c$, $h \rightarrow e^{2\lambda}h$ Scaling-solution: $\phi \sim t^{-1}$ kt <<1 Time delay mode: $\delta \phi \sim \phi \sim t^{-1}$ Scaling symmetry -> $\langle \delta \phi^2 \rangle \sim \hbar t^{-2} \int d^3k/k^3$

cf Massless scalar in de Sitter; scaling background soln $ds^2 = (-dt^2 + dx^2)/(Ht)^2$ scale symmetry $x^{\mu} \rightarrow \lambda x^{\mu}$ shift mode $\phi \rightarrow \phi + c$, c constant Hence, $\langle \delta \phi^2 \rangle \sim \hbar H^2 \left[d^3k/k^3 \right]$

59 = 42-29 = - 1,80

D89=-V,669

1384-1/002d

Ekpyrotic perturbations

Khoury, Ovrut, Steinhardt, NT 2001

e.g. V=-Voe-co (radion)

Scale symm: x^{μ} -> $e^{\lambda}x^{\mu}$, ϕ -> ϕ +2 λ /c, τ -> $e^{2\lambda}$ τ Scaling-solution: ϕ ~ t^{-1} [kt] <<1 Time delay mode: $\delta \phi \sim \phi$ ~ t^{-1} Scaling symmetry -> $\langle \delta \phi^2 \rangle \sim \tau$ t^{-2} d^3k/k^3

cf Massless scalar in de Sitter; scaling background soln $ds^2 = (-dt^2 + dx^2)/(Ht)^2$ scale symmetry $x^{\mu} \rightarrow \lambda x^{\mu}$ shift mode $\phi \rightarrow \phi + c$, c constant

Hence, $\langle \delta \phi^2 \rangle \sim h H^2 \left[\frac{d^3k}{k^3} \right]$

Pirsa: 07050008

Page 16/87

Now include gravity

$$ds^{2} = -dt^{2}(1 + 2\Phi) + a^{2}(t)d\mathbf{x}^{2}(1 - 2\Phi)$$

Long
$$\lambda$$
, $\delta t = \frac{\alpha_1(\mathbf{x})}{a} - \frac{\alpha_2(\mathbf{x})}{a} \int^t dt' a(t'), \quad \delta x^i = (1 + \alpha_2(\mathbf{x})) x^i$

Quasigauge modes

$$\Phi = \alpha_1(\mathbf{x}) \frac{\dot{a}}{a^2} + \alpha_2(\mathbf{x}) \left(1 - \frac{\dot{a}}{a^2} \int^t dt' a(t') \right)$$

Local time delay

Local dilatation: "Curvature pertn. R"

Expanding U

Contracting U

How can a local time delay match on to a local spatial dilation?

Creminelli et al, Lyth, Huang...

A. 5d effects near bounce (warping of 5th dimension):

Tolley et al., Battefeld et al., McFadden et al.

B. Additional light dofs in 4dET driven unstable:

Lehners McFadden Steinhardt No

Flurry of papers 2007

Lehners, McFadden, Steinhardt, NT Creminelli, Senatore Buchbinder, Khoury, Ovrut Koyama, Wands Tolley, Wesley Koyama, Mizuno, Wands

Pirsa: 07050008 Page 18/87

Now include gravity

$$ds^{2} = -dt^{2}(1 + 2\Phi) + a^{2}(t)d\mathbf{x}^{2}(1 - 2\Phi)$$

Long
$$\lambda$$
, $\delta t = \frac{\alpha_1(\mathbf{x})}{a} - \frac{\alpha_2(\mathbf{x})}{a} \int^t dt' a(t'), \qquad \delta x^i = (1 + \alpha_2(\mathbf{x})) x^i$

Quasigauge modes

$$\Phi = \alpha_1(\mathbf{x}) \frac{\dot{a}}{a^2} + \alpha_2(\mathbf{x}) \left(1 - \frac{\dot{a}}{a^2} \int^t dt' a(t') \right)$$

Local time delay

Local dilatation: "Curvature pertn. R"

Expanding U

Contracting U

How can a local time delay match on to a local spatial dilation?

Creminelli et al, Lyth, Huang...

A. 5d effects near bounce (warping of 5th dimension):

Tolley et al., Battefeld et al., McFadden et al.

B. Additional light dofs in 4dET driven unstable:

Lehners McFadden Steinhardt N

Flurry of papers 2007

Lehners, McFadden, Steinhardt, NT Creminelli, Senatore Buchbinder, Khoury, Ovrut Koyama, Wands Tolley, Wesley Koyama, Mizuno, Wands

Pirsa: 07050008 Page 20/87

Assume two scalar fields, ϕ_1 and ϕ_2 , with independent, negative, steeply flattening potentials

relative pertn

scale-invariant on long wavelengths

but this converts easily to R

Pirsa: 07050008 Page 21/87

General result:

$$\dot{\mathcal{R}} = -\frac{H}{\dot{H}}g_{IJ}(\phi)\frac{D^2\phi^I}{Dt^2}s^J + \frac{H}{\dot{H}}\frac{k^2\Psi}{a^2}$$

where the entropy perturbation is

$$s^{I} = \delta \phi^{I} - \dot{\phi}^{I} \frac{g_{JK}(\phi)\dot{\phi}^{J}\delta\phi^{K}}{g_{LM}(\phi)\dot{\phi}^{L}\dot{\phi}^{M}}$$

Pirsa: 07050008 Page 22/87

Heterotic M Theory

$$\int_{5} \left(\frac{1}{2} R - \frac{1}{2} (\partial \phi)^{2} - C e^{-2\phi} \right) - \sum_{i} \mu_{i} \int_{4} e^{-\phi}$$

Two moduli:

radion and $V_{CY} = e^{\phi}$

Both can pick up scale-invariant perts pre-bang -> entropy perts

Before and after boundary brane collision, minus brane hits zero of Hand bounces back.

Pirsa: 07555his bounce converts entropy to curvature!

General result:

$$\dot{\mathcal{R}} = -\frac{H}{\dot{H}}g_{IJ}(\phi)\frac{D^2\phi^I}{Dt^2}s^J + \frac{H}{\dot{H}}\frac{k^2\Psi}{a^2}$$

where the entropy perturbation is

$$s^{I} = \delta \phi^{I} - \dot{\phi}^{I} \frac{g_{JK}(\phi)\dot{\phi}^{J}\delta\phi^{K}}{g_{LM}(\phi)\dot{\phi}^{L}\dot{\phi}^{M}}$$

Pirsa: 07050008 Page 24/87

Heterotic M Theory

$$\int_{5} \left(\frac{1}{2} R - \frac{1}{2} (\partial \phi)^{2} - C e^{-2\phi} \right) - \sum_{i} \mu_{i} \int_{4} e^{-\phi}$$

Two moduli:

radion and V_{CY} = e⁰

Both can pick up scale-invariant perts pre-bang -> entropy perts

Before and after boundary brane collision, minus brane hits zero of Hand bounces back.

Pissa: 0775568 is bounce converts entropy to curvature!

5d solution

Lehners McFadden

Trajectory tangential to singularity

-described by a hard boundary $(\phi_2=0)$ in the 4d effective theory

Pirsa: 07050008

embedding in 5d static

Heterotic M Theory

$$\int_{5} \left(\frac{1}{2} R - \frac{1}{2} (\partial \phi)^{2} - C e^{-2\phi} \right) - \sum_{i} \mu_{i} \int_{4} e^{-\phi}$$

Two moduli:

radion and V_{CY} = e⁰

Both can pick up scale-invariant perts pre-bang -> entropy perts

Before and after boundary brane collision, minus brane hits zero of Hand bounces back.

Pissa: 0755th is bounce converts entropy to curvature!

5d solution

Lehners McFadden

Trajectory tangential to singularity

-described by a hard boundary $(\phi_2=0)$ in the 4d effective theory

Pirsa: 07050008

embedding in 5d static

Pirsa: 07050008 Page 30/87

5d solution

Lehners McFadden

Trajectory tangential to singularity

-described by a hard boundary $(\phi_2=0)$ in the 4d effective theory

Pirsa: 07050008

embedding in 5d static

M-theory model for the bang

Winding M2 branes=Strings:

Perry, Steinhardt & NT, 2004 Berman & Perry, 2006 Niz+NT 2007

Weak coupling at singularity

Classical evolution of string is regular across t=0

Calculable THBB due to string creation

BUT: what about KK modes is nonnert string states?

Pirsa: 07050008

M-theory model for the bang

Winding M2 branes=Strings:

Perry, Steinhardt & NT, 2004 Berman & Perry, 2006 Niz+NT 2007

Weak coupling at singularity

Classical evolution of string is regular across t=0

Calculable THBB due to string creation

BUT: what about KK modes
i.e. nonnert string states?

Craps, Hertog, NT

A Holographic Big Bang

 $\phi \sim \alpha r^{-2} \ln r + \beta r^{-2}$

SUSY-> a=0 no dynamics If $\alpha=\alpha(\beta)$ -> dynamics

Bulk collapses to a finite-time singularity

Hertog+Horowitz

Unstable 5d bulk

Deformed CFT on Rx53
Also unstable:

M-theory model for the bang

Winding M2 branes=Strings:

Perry, Steinhardt & NT, 2004 Berman & Perry, 2006 Niz+NT 2007

No blue-shift for winding membranes: describe perturbative string states including gravity

Weak coupling at singularity

Classical evolution of string is regular across t=0

Calculable THBB due to string creation

BUT: what about KK modes
i.e. nonnert string states?

M theory dimension

Craps, Hertog, NT

A Holographic Big Bang

 $\phi \sim \alpha r^{-2} \ln r + \beta r^{-2}$

SUSY-> a=0 no dynamics If $\alpha=\alpha(\beta)$ -> dynamics

Bulk collapses to a finite-time singularity

Hertog+Horowitz

Unstable 5d bulk

Deformed CFT on Rx53
Also unstable:

M-theory model for the bang

Winding M2 branes=Strings:

Perry, Steinhardt & NT, 2004 Berman & Perry, 2006 Niz+NT 2007

No blue-shift for winding membranes: describe perturbative string states including gravity

Weak coupling at singularity

Classical evolution of string is regular across t=0

Calculable THBB due to string creation

BUT: what about KK modes is nonnert string states?

Pirsa: 07050008

Craps, Hertog, NT

A Holographic Big Bang

IIB SUGRA on $S^5 \times AdS^5$ includes $m^2 = -4$ BF scalar

 $\phi \sim \alpha r^{-2} \ln r + \beta r^{-2}$

SUSY-> a=0 no dynamics If $\alpha=\alpha(\beta)$ -> dynamics

Bulk collapses to a finite-time singularity

Hertog+Horowitz

Unstable Pisa: 07050008 bulk

Deformed CFT on Rx53
Also unstable:

A Holographic Big Bang

Witten

 α = λ β corresponds deformation $-\lambda \phi^4$ of CFT -> instability $(\phi^2 = Tr(\phi_1^2 - \phi_2^2))$

 λ is symptotically free

 $V(\phi) = -\frac{16 \pi^2 \phi^4}{3 \ln(\phi/M)}$ $large N \rightarrow \beta fn is 1-loop$ exact, V under goodPirsa: 07050008 turbative control

Unstable CFT

coupling

extension

Pirsa: 07050008

Key Points

- * No gravity in CFT
- * Finite time singularity -> Ultralocality Quantum mechanics -> natural resolution of singularity via "self-adjoint extension"
- * Asymptotic freedom
- * Finite V₃ ~> entire background becomes quantum around singularity

A Holographic Big Bang

Witten

 α = λ β corresponds deformation $-\lambda \phi^4$ of CFT -> instability $\left(\phi^2 = Tr(\phi_1^2 - \phi_2^2)\right)$

 λ is symptotically free

 $V(\phi) = -\frac{16 \pi^2 \phi^4}{3 \ln(\phi/M)}$ $large N \rightarrow \beta fn is 1-loop$ exact, V under goodPirsa: 07050008 turbative control

Unstable CFT Conformal coupling

- * Asymptotic freedom
- * Finite V₃ ~> entire background becomes quantum around singularity
- * CFT is (nearly) scale invariant ->
 promote the control of the co

Key Points

- * No gravity in CFT
- * Finite time singularity -> Ultralocality Quantum mechanics -> natural resolution of singularity via "self-adjoint extension"
- * Asymptotic freedom
- * Finite V₃ ~> entire background becomes quantum around singularity

1. Ultralocality

$$\partial^2 \phi = -\lambda \phi^3 + \frac{1}{6} R \phi$$

zero E bg soln: $\phi = \sqrt{\frac{2}{\lambda} \frac{1}{t - t_s}}$

$$\phi = \sqrt{\frac{2}{\lambda}} \frac{1}{t - t_s}$$

subdom near sing Gen soln: $-d au^2 + h_{ij}dx_s^i dx_s^j,$

$$t=t_s(x_s)$$
 $n^{\mu} \tau$

$$h_{ij} = h_{ij}^{(0)} + 2K_{ij}\tau + K_{ik}h_{(0)}^{kl}K_{lj}\tau^{2}$$

$$h_{ij}^{(0)} \equiv \delta_{ij} - \partial_{i}t_{s}\partial_{j}t_{s}, K_{ij} \equiv \gamma\partial_{i}\partial_{j}t_{s}.$$

Expand in

Define

$$\chi = \phi^{-1}$$

$$\chi = \left(\frac{\lambda}{2}\right)^{\frac{1}{2}} \left(\tau + \frac{1}{6}K_1\tau^2 + \frac{1}{18}(K_1^2 - 3K_2)\tau^3\right)$$

$$+\frac{1}{4}(K_3-\frac{13}{18}K_2K_1+\frac{7}{54}K_1^3-\frac{1}{6}\nabla K_1)\tau^4$$

$$+ \frac{2}{9}K_1\nabla K_1 - \frac{1}{6}\nabla K_2\big)\tau^5 + C_6\tau^6 + \ldots\big) + \rho(x_s)\tau^5 + D_6\tau^6 + \ldots\big),$$

2 architeany functions: t=t (x) a(x)

Interpretation in linearized theory

$$\delta\chi(t,\mathbf{x}) = \sqrt{\frac{\lambda}{2}} \left(-t_s(\mathbf{x}) + \frac{1}{6}t^2 \nabla^2 t_s - \frac{1}{24}t^4 (\nabla^4 t_s) + \dots + \rho(\mathbf{x}_s)t^5 + \dots \right)$$

As gradients become unimportant, different spatial points decouple -> QM

Self-adjoint extension matches local time delay and energy density across singularity

1. Ultralocality

$$\partial^2 \phi = -\lambda \phi^3 + \frac{1}{6} R \phi$$

zero E bg soln: $\phi = \sqrt{\frac{2}{\lambda} \frac{1}{t - t_s}}$

$$\phi = \sqrt{\frac{2}{\lambda}} \frac{1}{t - t_s}$$

subdom near sing Gen soln: $-d au^2 + h_{ij}dx_s^i dx_s^j,$

$$t=t_s(x_s)$$
 $n^{\mu} \tau$

$$h_{ij} = h_{ij}^{(0)} + 2K_{ij}\tau + K_{ik}h_{(0)}^{kl}K_{lj}\tau^{2}$$

$$h_{ij}^{(0)} \equiv \delta_{ij} - \partial_{i}t_{s}\partial_{j}t_{s}, K_{ij} \equiv \gamma\partial_{i}\partial_{j}t_{s}.$$

Expand in

$$\tau \nabla_s$$

Define

$$\chi = \phi^{-1}$$

$$\chi = \left(\frac{\lambda}{2}\right)^{\frac{1}{2}} \left(\tau + \frac{1}{6}K_1\tau^2 + \frac{1}{18}(K_1^2 - 3K_2)\tau^3\right)$$

$$+\frac{1}{4}(K_3-\frac{13}{18}K_2K_1+\frac{7}{54}K_1^3-\frac{1}{6}\nabla K_1)\tau^4$$

$$+\frac{2}{9}K_1\nabla K_1-\frac{1}{6}\nabla K_2\big)\tau^5+C_6\tau^6+\ldots\big)+\rho(x_s)\tau^5+D_6\tau^6+\ldots\big),$$

2 arbitrary functions: t=t (x) a(x)

Interpretation in linearized theory

$$\delta\chi(t,\mathbf{x}) = \sqrt{\frac{\lambda}{2}} \left(-t_s(\mathbf{x}) + \frac{1}{6}t^2 \nabla^2 t_s - \frac{1}{24}t^4 (\nabla^4 t_s) + \dots + \rho(\mathbf{x}_s)t^5 + \dots \right)$$

As gradients become unimportant, different spatial points decouple -> QM

Self-adjoint extension matches local time delay and energy density across singularity

Page 54/87 7050008

- Linear terms in t_s and ρ completely regular (even/odd in t): match unambiguously across t=0
- 2. Nonlinear parts are then completely determined

Pirsa: 07050008 Page 55/87

- Linear terms in t_s and ρ completely regular (even/odd in t): match unambiguously across t=0
- 2. Nonlinear parts are then completely determined

Pirsa: 07050008 Page 56/87

2. WKB, SA extension

$$p_{\phi} \sim \sqrt{2(E-V)} \sim \chi^{2} \phi^{2} V_{3}$$
 WKB cond $p_{\phi}^{-2} dp_{\phi}^{*} / d\phi \sim_{1} \lambda \phi^{-3} V_{3} \sim> 0$, large ϕ

Self-Adjoint extension: Reed+Simon 70's $\Psi \sim e^{-iET} p_{\phi}^{1/2} \left(e^{i\int p_{\phi} d\phi} + e^{i\theta} e^{-i\int p_{\phi} d\phi} \right)$ $p_{\phi} \sim \phi^{2} \rightarrow |\Psi|^{2} \sim \phi^{-2} \text{ normalisable}$

Halve Hilbert space -> unitary evolution, probability lost at infinity

2. WKB, SA extension

$$p_{\phi} \sim \sqrt{2(E-V)} \sim \chi^{1/2} \phi^2 V_3$$
 WKB condn $p_{\phi}^{-2} dp_{\phi}^{*} / d\phi \sim_1 \lambda \phi^{-3} V_3 \sim> 0$, large ϕ

Self-Adjoint extension: Reed+Simon 70's $\Psi \sim e^{-iET} p_{\phi}^{1/2} \left(e^{i\int p_{\phi} d\phi} + e^{i\theta} e^{-i\int p_{\phi} d\phi} \right)$ $p_{\phi} \sim \phi^{2} \rightarrow |\Psi|^{2} \sim \phi^{-2} \text{ normalisable}$

Halve Hilbert space -> unitary evolution, probability lost at infinity

Pirsa: 07050008

Page 60/87

Large of at small time

Wavefunction may be calculated using complex classical solutions

$$p+2 i\phi |^{2} p_{0} +2 i\phi_{0} |^{2}$$

$$\Psi \sim (e^{i} S_{1} + e^{i\theta} e^{iS_{2}})$$

$$\sim e^{-(\phi^{2}/2 |^{2})} \qquad \phi < \lambda /\delta t$$

$$\sim e^{-(1/|^{2}\lambda \delta t^{2})} \phi^{-1} \cos (\phi^{3}+\theta) \phi > \lambda^{-1/2}\delta t$$

Pisa: 070 is infinite -> classical bg never exists 187

Pirsa: 07050008

Page 62/87

Large of at small time

Wavefunction may be calculated using complex classical solutions

$$p+2 i\phi |^{2} p_{0} +2 i\phi_{0} |^{2}$$

$$\Psi \sim (e^{i} S_{1} + e^{i\theta} e^{iS_{2}})$$

$$\sim e^{-(\phi^{2}/2 |^{2})} \qquad \phi < \lambda /\delta t$$

$$\sim e^{-(1/|^{2}\lambda \delta t^{2})} \phi^{-1} \cos (\phi^{3}+\theta) \phi > \lambda^{-1/2}\delta t$$

Pissi or is infinite -> classical bg never exists 63/87

But for an initially localized wavepacket, large φ tail unimportant except near singularity, $|\text{t-t}_s| \sim \lambda^{1/2} R_{AdS}$

What happens at the singularity?

Example: free particle, incoming Gaussian wavepacket hits brick wall

But for an initially localized wavepacket, large ϕ tail unimportant except near singularity, $|\text{t-t}_s| \sim \lambda^{1/2} R_{AdS}$

What happens at the singularity?

Example: free particle, incoming Gaussian wavepacket hits brick wall

The bg/flucn split in ϕ fails totally near the singularity, but $\chi_c = \langle \chi \rangle$ is convergent at large ϕ so a bg/flucn split in χ is reasonable

$$\chi = \phi^{-1} \longrightarrow \chi \partial^2 \chi - 2(\partial \chi)^2 = \lambda$$

Let
$$\chi=\langle\chi\rangle+\delta\chi$$
 \to $\ddot{\delta\chi}-4\frac{\dot{\langle\chi\rangle}}{\langle\chi\rangle}\delta\chi=-k^2\delta\chi$

But $\langle \chi \rangle$ finite for all t (QM reflection)

-> particle creation in $\delta\chi$ is exponentially suppressed in UV, i.e. for k> δt_s^{-1} ~ $\chi^{1/2}$ R $R_{Rd}^{-1/2}$

The bg/flucn split in ϕ fails totally near the singularity, but $\chi_c = \langle \chi \rangle$ is convergent at large ϕ so a bg/flucn split in χ is reasonable

$$\chi = \phi^{-1} \longrightarrow \chi \partial^2 \chi - 2(\partial \chi)^2 = \lambda$$

Let
$$\chi = \langle \chi \rangle + \delta \chi$$
 \rightarrow $\delta \ddot{\chi} - 4 \frac{\langle \dot{\chi} \rangle}{\langle \chi \rangle} \delta \chi = -k^2 \delta \chi$

But $\langle \chi \rangle$ finite for all t (QM reflection)

-> particle creation in $\delta\chi$ is exponentially suppressed in UV, i.e. for k> $\delta t_s^{-1} \sim \lambda^{1/2} R_{Rd}^{1/2}$

Initial Conditions

 $\phi \sim \lambda^{1/2} R_{AdS}^{-1}$ $t_s \sim R_{AdS}$ zero energy start

QM spreading: e.g. free pticle $\delta \phi^2 \sim \ell^2 + (\delta p/m)^2 t^2 \sim \ell^2 + (\hbar/m\ell)^2 t^2$ Minimise for given t: $\ell^2 \sim \hbar/mt$

In our case, minimal spread achieved by $\delta \phi \sim R_{AdS}$: time delay $\delta t_s \sim \lambda^{1/2} R_{AdS}$

Pirsa: 07050008 Page 78/87

Away from sing $\phi = \phi_c + \delta \phi$ is reasonable

$$S \approx \int d^4x \left(-\frac{1}{2} (\partial \phi)^2 + \lambda \phi^4 \right) \qquad \lambda = \frac{16\pi^2}{3\ln(\phi/M)} \equiv \frac{\lambda_0}{l}$$

$$\lambda = \frac{16\pi^2}{3\ln(\phi/M)} \equiv \frac{\lambda_0}{l}$$

Zero Energy soln (attractor)

$$\phi = \frac{l^{\frac{1}{2}}}{\sqrt{2\lambda_0}} \frac{1}{(-t)} \left(1 + \frac{1}{2l} - \frac{1}{4l^2} \dots \right)$$

Pertns

$$\ddot{\delta\phi} = \frac{6}{t^2} \left(1 + \frac{5}{12l} - \frac{2}{3l^2} \dots \right) \delta\phi - k^2 \delta\phi.$$

Evolve incoming modes until they become ultralocal ('frozen'), then match across

singularity using QM SA extension

3. Mode Mixing, Particle Creation

At leading order in log, no mode mixing and no particle creation. But at next order,...

Mode Evolution

$$\delta\phi^{(1)} = l^{\frac{1}{2}}f^{(1)}(kt) + l^{-\frac{1}{2}}g^{(1)}(kt) + \dots,$$

$$\delta\phi^{(2)} = l^{-\frac{1}{2}}f^{(2)}(kt) + l^{-\frac{3}{2}}g^{(2)}(kt) + \dots,$$

$$f^{(1)} = \cos kt \left(1 - \frac{3}{(kt)^2} \right) - 3 \frac{\sin kt}{kt},$$
$$f^{(2)} = \sin kt \left(1 - \frac{3}{(kt)^2} \right) + 3 \frac{\cos kt}{kt}$$

Evolve incoming pos freq mode, match across t=0, compute Bog. coefft

$$eta pprox -i rac{\pi}{\ln(k/\sqrt{\lambda}M_{
m eag})_{80/80}}$$

Particle Production

Density of created particles
$$\rho_c = \int \frac{d^3{\bf k}}{(2\pi)^3} k |\beta|^2 \sim R_{AdS}^{-4}$$

A small perturbation on V where UV cutoff kicks in

$$V_m \sim -\lambda^{-3} R_{AdS}^{-4}$$

-> \phi returns close to its original value

After N bounces

$$V(\phi_{min}) = -NR_{AdS}^{-4}$$

This falls to the point where QFT fails, after

$$N \sim \lambda_m^{-3}$$

bounces

Scale-Invariant Perturbations

"improved"

 $T_{\mu\nu}$

$$\langle \mathcal{O} \rangle \equiv \langle 0, \text{in} | \mathcal{O} | 0, \text{in} \rangle - \langle 0, \text{out} | \mathcal{O} | 0, \text{out} \rangle$$

$$\langle \delta T_{00}(r, t) \delta T_{00}(0, t) \rangle \sim \frac{1}{\ln^2 (1/Mr)} \frac{1}{t^2 r^6}$$

$$\langle \delta T_{0i}(r, t) \delta T_{0i}(0, t) \rangle \sim \frac{1}{\ln^2 (1/Mr)} \left(\frac{1}{t^2 r^6} + \frac{1}{t^4 r^4} \right)$$

$$\langle \delta \bar{T}_{ij}(r, t) \delta \bar{T}_{ij}(0, t) \rangle \sim \frac{1}{\ln^2 (1/Mr)} \frac{1}{t^6 r^2}$$

i.e.

$$\langle \frac{\delta \rho(r,t)}{P+\rho} \frac{\delta \rho(0,t)}{P+\rho} \rangle \sim \frac{1}{\ln^2(1/Mr)\ln(1/Mt)} f(r/t)$$

These will determine bulk correlators and

Pissi: 07/1002 persurbations

Page 82/87

Amplitude ~ λ^3 naturally small Tilt: red, from running of λ Gaussian (NG ~ λ) Scalar, Adiabatic

Pirsa: 07050008 Page 83/87

Scale-Invariant Perturbations

"improved"

 $T_{\mu\nu}$

$$\langle \mathcal{O} \rangle \equiv \langle 0, \text{in} | \mathcal{O} | 0, \text{in} \rangle - \langle 0, \text{out} | \mathcal{O} | 0, \text{out} \rangle$$

$$\langle \delta T_{00}(r, t) \delta T_{00}(0, t) \rangle \sim \frac{1}{\ln^2 (1/Mr)} \frac{1}{t^2 r^6}$$

$$\langle \delta T_{0i}(r, t) \delta T_{0i}(0, t) \rangle \sim \frac{1}{\ln^2 (1/Mr)} \left(\frac{1}{t^2 r^6} + \frac{1}{t^4 r^4} \right)$$

$$\langle \delta \bar{T}_{ij}(r, t) \delta \bar{T}_{ij}(0, t) \rangle \sim \frac{1}{\ln^2 (1/Mr)} \frac{1}{t^6 r^2}$$

i.e.

$$\langle \frac{\delta \rho(r,t)}{P+\rho} \frac{\delta \rho(0,t)}{P+\rho} \rangle \sim \frac{1}{\ln^2(1/Mr)\ln(1/Mt)} f(r/t)$$

These will determine bulk correlators and

Pissi: 07/Prence cosmological perturbations

Page 84/87

Amplitude ~ λ^3 naturally small Tilt: red, from running of λ Gaussian (NG ~ λ) Scalar, Adiabatic

Pirsa: 07050008 Page 85/87

- Finite density of radiation produced
- GLASS perturbations without tuning

In progress:

- Translation of perturbations into bulk
- Model with 4d bulk, 3d CFT
- Glue onto positive dark energy phase to get realistic cyclic model

Pirsa: 07050008 Page 86/87

Summary

- * The cyclic model is (an attempt at) a more complete cosmological model than inflation, incorporating dark energy, dealing with singularity
- * Possible to generate realistic curvature perturbations before the bang, even within 4dET
- * Main phenomenological difference: inflation -> scale-invariant tensors

Page 87/87