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Abstract: Inelastic collisions occur in Bose-Einstein condensates, in some cases, producing particle loss in the system. Nevertheless, these processes
have not been studied in the case when particles do not escape the trap. We show that such inelastic processes are relevant in quantum properties of
the system such as the evolution of the relative population and entanglement. Moreover, including inelastic terms in the models of multimode
condensates allows for an exact analytical solution.A
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N atoms with two internal degrees
of freedom
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N atoms with two internal degrees In the two-mode approximation
of freedom
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N atoms with two internal degrees In the two-mode approximation
of freedom

4

/Ground state —e

N =a'a+b'b
e

Y

exited state %

Relative population:. m = ata—b'b
Main interactions:

Interaction with a laser
Josephson-type interaction

ab’ Ground to excited state
a'b Excited to ground state
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N atoms with two internal degrees In the two-mode approximation
of freedom

- * /Ground state e
N =a'a+b'b
\\‘exited sthate &

Relative population:. m = ala—b'b
Main interactions:

Interaction with a laser Two body elastic collisions

Josephson-type interaction Pt
a'aa’a

: .
ab' Ground to excited state b]t bbf b

a'b Excited to ground state
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N atoms with two internal degrees In the two-mode approximation
of freedom

. v /Gruund state —e
N =ala+b'b
\\‘exited state &
Relative population:. m = atla—b'b
Main interactions:
Interaction with a laser RN SO el Sl S e

Josephson-type interaction

ab’ Ground to excited state =
a'b Excited to ground state '
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Two body elastic collisions

-
= Number of particles in each
mode: conserved

b bbb a'b'ab
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Josphson-type interaction:

Tunneling barrier

ab’ Ground to excited state
a'’b Excited to ground state

Two body elastic collisions

: : a
In the region where the wave functions

overiap:
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Interaction with laser/iunnelin barrier

Free energy particles in the trap _ _
Josphson-type ineraction

\ \

Hy = wqa'a+ w,b'b+ Ae®a’b+ e "Pabl)
+ U,a’a’aa +Uyb bbb + U ,a’ b ab.

R
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Interaction with laser/iunnelin barrier

Free energy particles in the trap _ ;
Josphson-type ineraction

\ \

Hy = wqa'a+ w,b'b+ Me®a’b+ e *Pabl)
+ U,a"a"aa +Uyb"bTHb + U, ,a" b ab.

A

Elastic collisions
Ap = QN +UN?
= Qa'a+b'b) +U(a"a’aa + bT bbb + 2a"b' ab)
We = Q4+ 0w U = U, =Uy
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Hiwo = dw(a'a —b'b) + Ne®a'b + e “ab")

+ Ua'bTab

G. J. Milburn, J. Corney, E. M. Wright. and D. F. Walls. Phys. Rev. A 55, 4318 (1997).
J. L. Cirac, M. Lewenstein. K. Mlmer. and P. Zoller, Phys. Rev. A 57, 1208 (1998).
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Free energy particles in the trap

\ . .
Hiwo = dw(a'a —b'b) + )\(ewcgb + e qb')

Interaction with laser/tunnelin barris

= = U aTbTab Josphson-type interaction

G. J. Milburn, J. Corney, E. M. Wright. and D. F. Walls. Phys. Rev. A 55, 4318 (1997).
J. L. Cirac, M. Lewenstein. K. Mlmer. and P. Zoller, Phyvs. Rev. A 57, 1208 (1998).
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Free energy particles in the trap

\ . :
Hiwo = dw(a'a —b'b) + )\(ew({]tb + e qb')

Elastic collisions

Interaction with laser/tunnelin barrie

‘|> U aTbTab Josphson-type interaction

G. J. Milburn, J. Corney, E. M. Wright. and D. F. Walls. Phys. Rev. A 55. 4318 (1997).
J. L. Cirac, M. Lewenstein. K. Mlmer. and P. Zoller, Phyvs. Rev. A 57, 1208 (1998).

No analytical solution

Hamiltonian diagonalized exactly by numerical means
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Ground state and first excited state found by Bethe ansatz
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Particles change internal state
after the collision
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In the overlapping region two
particles from one well collide and
one or both of then end up in the
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Complicate the Hamiltonian?

a'a'bb

: - In the overlapping region two
Particles change internal state particles from one well collide and

after the collision one or both of then end up in the
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Inelastic collisions are well known to occur in BECS: Particle loss!!

* Background collisions

-Three body recombination: Three particles collide forming a molecule
which is no longer trapped by the potential

-The internal degree of freedom is changed by then collision to a state
not trapped by the potential

‘Spin-exchange: particle change internal state after collision: If
recombination energy larger that trap potential the particle is lost.

‘Dipole-relaxation: particles change internal state during interaction
due to dipole moment: Excess of energy transforms into momentum
which can make particle escape the trap.
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But what happens if the excess energy is not enough for the particle to
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This has not been studied, because

theoretically: problem seems even harder

experimentally: they don't give rise to particle loss

How can these processes be observed?

What are their effects in the system?
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Free energy particles in the trap Josphson-type interaction
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Analytical solution!!!
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Our model in the case of a few number of particles:
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Consider the Hamiltonian

Hy = Ai(a’a—b'b) + As(a’a — b'b)?
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Consider the Hamiltonian
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IN.m) eigenstates
m = a'a—b'b relative population m=-N....N

U = efa’b—¢"ab’  TwWO-mode displacement operator £=—2e"
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Consider the Hamiltonian

Ho = Ai(a’a—b'd) + As(a’a — b'b)?

IN.m) eigenstates

m = ﬂfﬂ = bi.b relative population m=—N....N
U — efa’b—¢"ab’  Two-mode displacement operator & = et

If the parameters satisfv

dw = (Ajcos8)/2.
(A;sinf)/2
U = Ax(1 —3cos’0)/4,
o — oty
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Consider the Hamiltonian

Ho = Ai(a’a—b'd) + As(a’a — b'b)?

IN.m) eigenstates

m = a'a—bib relative population m=-—N,...N
U — efa'b—¢"abl  Two-mode displacement operator & = et

If the parameters satisfy H, = UH,U?

dw = (Ajcos8)/2.
A = (A1sind)/2 U T|N , m) Solution to H:
U = A>(1—3cos?0)/4,
i = (AzcosOsind)/2,
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Elastic scattering rate
Energy difference between modes

Laser or barrier coupling
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Consider the Hamiltonian

Ho = Ai(a’a—b'd) + As(a’a — b'b)?

IN.m) eigenstates

m = a'a—bb relative population m=—N,...N
U — efa’b—¢"ab’  Two-mode displacement operator & = et

If the parameters satisfy H, = UH,U'

dw = (Apcos8)/2,
A = (A1sing)/2 UT|N, m) Solution to H:
U = A>(1 —3cos®0)/4,
p = (Aszcosfsinfd)/2,
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There are three free parameters

dw = (Ajcosf)/2, Inelastic collisions depend on:

A = (A;sinf)/2 Elastic scattering rate

U = A1~ 30?52 0)/4. Energy difference between modes
i : Ej: zi(:f;)l;f) /2, Laser or barrier coupling

-The inelastic process is induced by the Josephson-Type
interaction.
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There are three free parameters

dw = (Ajcosh)/2, Inelastic collisions depend on:

A = (Arsin6)/2 Elastic scattering rate

i = A1~ 30?52 0)/4. Energy difference between modes
i : Ejz :;:26;)1;1;)/ 2’ Laser or barrier coupling

-The inelastic process is induced by the Josephson-Type
interaction.
-It is possible to meet conditions experimentally.

-We have all the physics in this parameter subspace, the full
spectrum.
-For solutions outside the parameter space: perturbation theory.
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There are three free parameters

dw = (Ajcosh)/2, Inelastic collisions depend on:

A = (A;sin6)/2 Elastic scattering rate

U = A1~ 3“?’52 9)/4. Energy difference between modes
i i Ejz ::26;’)1;1;)/ L Laser or barrier coupling

-The inelastic process is induced by the Josephson-Type
interaction.
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There are three free parameters

dw = (Ajcosf)/2, Inelastic collisions depend on:

A = (A;sind)/2 Elastic scattering rate

U = Ax(1- 3'3?52 9)/4. Energy difference between modes
i : Ejz :i{):f;;;f)/ % Laser or barrier coupling

-The inelastic process is induced by the Josephson-Type
interaction.

-It is possible to meet conditions experimentally.

-We have all the physics in this parameter subspace, the full
spectrum.

-For solutions outside the parameter space: perturbation theory.
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Effects of inelastic collisions
in the two-mode BEC
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There are three free parameters

dw = (Ajcosf)/2, Inelastic collisions depend on:
A = (A;sinf)/2 Elastic scattering rate
U = Ay(1—3cos’6)/4. Energy difference between modes
po= (4 Cf’sf )2, Laser or barrier coupling
A = (Assin®0)/4.

-The inelastic process is induced by the Josephson-Type

interaction.
-It is possible to meet conditions experimentally.

-We have all the physics in this parameter subspace, the full
spectrum.
-For solutions outside the parameter space: perturbation theory.
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Effects of inelastic collisions
in the two-mode BEC
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There are three free parameters

dw = (Ajcosf)/2, Inelastic collisions depend on:

A = (A;sind)/2 Elastic scattering rate

U = Ap{l— 3“?52 0)/4. Energy difference between modes
K i Ejz :29;;7:.) = Laser or barrier coupling

-The inelastic process is induced by the Josephson-Type

interaction.
-It is possible to meet conditions experimentally.

-We have all the physics in this parameter subspace, the full
spectrum.
-For solutions outside the parameter space: perturbation theory.
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Effects of inelastic collisions
in the two-mode BEC
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The ground state U|N.mg) is now trivially found
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The ground state U|N.mg) is now trivially found

by minimizing £,,, with respect tom. &, = Aym + Aom?
As >0 Ay <0

mg = —Ay/(242) mg=Nif Ay <0

mo=—AN/lAal i | — A1/(245)] > N mp=—N A >8
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Consider

The ground state U|N.mg) is now trivially found

by minimizing £,,, with respect tom. &, = Aym + A>m?
A2 >0 As < 0

me = —A1/(243) mog =N if A; <0

mo=—AN/|A1l  if | — A1/(242)] > N mg=—N 43 >0

U|N.—N) Found before to describe well the behavior of the condensate!

Pirsa: 07050005 CO, he rent state Page 92/143



Starting with the state U|N, —N)

(m u=0, A=0
40

20

10 20

Canonical model: no inelastic collisions
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Consider

The ground state U|N.mg) is now trivially found

by minimizing £,,, with respect tom. &, = A;ym + A>m?

A2:>O A < 0

mg = —A1/(242) mg=NifA <0

mo=—AN/lAal | — A1/(245)] > N my=—N Ay>8

U|N.—N) Found before to describe well the behavior of the condensate!
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(m u=0, A=0
40

20

10 20

Canonical model: no inelastic collisions
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Our model: with inelastic collisions:

Numerical solution

(my 1=0.064, A=0.0089 (nmp u=0.12, A=0.066
40
20
i +
10 W 20
~20
40

Inelastic collisions have an important effect in the evolution
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Analytical solution

N N
(a'a —b'b) = cos8Y m|C,[* —sind Y CCpu1Lm
-N

—N+1

Ly = cos(@0+ (Em—1 — En)t)(N(N +1) —m(m — 1))

(mp u=0.053, A=0.12

10
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Analytical solution

N N
(a'a—bib) = cos8) m|Cp|* —sin® Y CnCrm_1Lm
-N

—N+1

L = cos(¢+ (Em-1— Em) )(N(N +1) —m(m — 1))

(m u=0.053. A=0.12
40 We can predict the collapse time
20 and periodicity of the pattern
10 P 7 ; t, = (2n + 1)7/(24)
-20

—40 (—A; — A2(2m — 1))ty = 22,
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Analytical solution

N N
(a'a —bb) = cos@Y m|Cpf> —sind Y CmCpn1Lm
-N —N41

L. = cos(¢+ (Em_1 — Em)t)(N(N + 1) — m(m — 1))

(m u=0.053, A=0.12
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Analytical solution

N N
(a'a —bib) = c0s0Y m|Cpn* —sin® Y CnCrn_iLm
-N

—N+1

Ly = cos(o+ (Em—1 — Em) t)(N(N +1) —m(m — 1))

(m) u=0.053, A=0.12
40 We can predict the collapse time
20 and periodicity of the pattern
10 t 7 ’ t, = (2n + 1)7/(242)
=20

= (— Ay — An(@hi— 1)ty = Zaviss,
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a;=49 a,.pr=I1

;“] -
m. -
_2n E 5 10 15 20
= 30 -
(a)

a;=(59/2) a,,pr=4

40
20
-20 t 5 10 15 20
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a;=49 a,,pr=1

_m. -
m. -
T 3 10 15 20
= 0 -
(a)

a;=(59/2) a,,pr=4
4
20
-0 t | o 5 10 15 20
(d} Page 103/143
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a;=49 a,.pr=I1

_-m -
m -
L B s 10 IS 2
= 30 3
(a)

a;=(59/2) a,,pr=4
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J. L Cirac, M. Lewenstein, K. Molmer and P. Zoller, Phys. Rev. A 57, 1208 (1998).

Ground state of the two-mode BEC is a cat state under certain circumstances
Cat state: probability distribution for the number state is binomial

WN=0.95, | 3/N=0.992
j el
) /N=0. ' - A/N=0.99 | ﬂ
AT
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a;=49 a,,pr=1

40 F
m -
el 5 10 15 20
-4 §F
(a)

a;=(59/2) a,,pr=4

-2 t 5 10 15 20
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Analytical solution

N N
(a'a —bb) = cos8Y m|Cpl> —sind Y CCpn1Lm
-N

—N+1

L. = cos(o+ (Em—1 — Em)t)(N(N +1) —m(m — 1))

(my u=0.053, A=0.12
40 We can predict the collapse time
20 and periodicity of the pattern
10 t 7 } t, = (2n + 1)7/(242)
-20

—40 (—A; — Ag(2m — 1))ty = 2m,,,
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J. L Cirac, M. Lewenstein, K. Molmer and P. Zoller, Phys. Rev. A 57, 1208 (1998).

Ground state of the two-mode BEC is a cat state under certain circumstances

Cat state: probability distribution for the number state is binomial

JN=09%, ' A/N=0.992
Rl |
WN=0.96, | AN=0.99 | )
JV\

irsa: 07050005 Page 108/143

0 500 1000 0 5000 10000



J. L. Cirac, M. Lewenstein, K. Molmer and P. Zoller, Phys. Rev. A 57, 1208 (1998).

Ground state of the two-mode BEC is a cat state under certain circumstances

Cat state: probability distribution for the number state is binomial

JN=0.95 ' A/N=0.992
j Rl |
2/N=0. ' - UN=099 | |
JAVAN
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J. L Cirac, M. Lewenstein, K. Molmer and P. Zoller. Phys. Rev. A 57, 1208 (1998).

Ground state of the two-mode BEC is a cat state under certain circumstances

Cat state: probability distribution for the number state is binomial
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S(Pa) = _-tT(Pa lOgQ (:Pu)) =S Z mldgxg,m(—a)lz 10g2 |d£u,m(9)|2

AN | = \/ g mz)f_:]}v == cos(6/2)" ™ sin(6/2)" ~™
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S(pa) = —tr(palogy(pa)) = - mldY, ..(0)]?log, |dY, .. (0)]

!

3
Particle Number
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S(pa) = —tr(palog,(ps)) = —> m|dy, ..(0)]*log, |dY, ..(0)?

|d§.m[2 = \/(N T mz)ﬁ;\f . Eos(&/g)N+m sin(f?/?]N-m

E5
Particle Number

T =30 10n-10

Maximally entangled states:

Large N, collision rate comparable to the natural frequency.

wkapsge laser coupling with small detuning, or Page 115/143



m=0

a=n/2
- '_‘_...pwr" [T —— -'..IW'!‘I'H""H-

g
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Generalizations
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Higher order Hamiltonians

H =UTHyU
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Higher order Hamiltonians

3-body elastic and inelastic collisions

H =UTHyU /

Hy = Ai(a’a—b'b) + Ax(a'a — b'b)% + Az(a’a — b'b)?
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ERERES aaiE R S a——r 3-body elastic and inelastic collisions
H =U'HyU /
Hy = Aj(a’a—b'b) + Ax(a'a — b'b)% + Az(a’a — b'b)?
n-body elastic and inelastic collisions

Hy = Y An(a’a—b'b)"
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SRR G =, 3-body elastic and inelastic collisions

H =UTHyU /

Hy = Aj(a’a—b'b) + Ax(a’a — b'b)? + Az(a’a — b'b)?
n-body elastic and inelastic collisions

Hy = Y Au(a’a—bib)"

n-body collisions are present in the coldest phases of the BEC where
‘Bati¢le densities are high Page 121/143



I ¥ QRSN B 3-body elastic and inelastic collisions

H=U"Hy,U /

Hy = Ai(a’a—b'b) + Ax(a’a — b'b)? + Az(a’a — b'b)>
n-body elastic and inelastic collisions

Hy = ) An(a’a—b'b)"

Ut | 1, m) Exact analytical solution

n-body collisions are present in the coldest phases of the BEC where
ilﬁ%& densities are I'“gh Page 122/143



Two-mode BEC SU(2) L = ala— b6 Schwinger

F—=ils J. —abt representation
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Two-mode BEC SU(2) J, = afa — bib Schwinger

E =@t J_ —abl representation
N-mode BEC SU(N)
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Two-mode BEC SU(2) L = ala— b6 Schwinger

- .
J. =adb J_ = abf representation

N-mode BEC SU(N)

3-mode BEC SU(3)

Hy = Z(An(a*a —b'b+ cfc':) - - Bn(afa +b'b— CJ‘C))“
= S e

Diagonal generators
IF = eiﬂa?beicﬁb'fceiaatc

L
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The model also can be used to describe the n-body interaction of N spin-
1/2 particles interacting with a laser

(a generalization of the Lipkin-Meshkov-Glick model with analytical
solution)

B =UHU=Y AU LU) [ = ¢idJxgity
Ty
f Tily
|
TTTl

System useful in the implementation of quantum computation
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Two-mode BEC SU(2) I —ala—3i§ Schwinger

> :
J. =a'db J_ = abf representation

N-mode BEC SU(N)

3-mode BEC SU(3)

Ho = Y (Au(afa— b0+ ¢fe) + Bu(afa + bTb — cfe))”
= = e
Diagonal generators

e

- -l- ¥ 1' .
I etﬂa beuﬁb cezaa

v
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The model also can be used to describe the n-body interaction of N spin-
1/2 particles interacting with a laser

(a generalization of the Lipkin-Meshkov-Glick model with analytical
solution)

B =UHU =Y AWLUY [ = ¢idTeibly
[
LT 1 : llﬁT
!
lTTTll |

System useful in the implementation of quantum computation
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. Constructed multimode BECs models with exact analytical solution

irsa: 07050005 Page 129/143



. Constructed multimode BECs models with exact analytical solution

. Studied many-body properties analytically
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. Constructed multimode BECs models with exact analytical solution

. Studied many-body properties analytically

. Including inelastic collisions makes problem simpler, not harder!
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Constructed multimode BECs models with exact analytical solution

Studied many-body properties analytically
Including inelastic collisions makes problem simpler, not harder!

Showed generalization to multiparticle interactions
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. Constructed multimode BECs models with exact analytical solution

. Studied many-body properties analytically
. Including inelastic collisions makes problem simpler, not harder!

. Showed generalization to multiparticle interactions

. Experimental comparison to canonical two-mode BEC
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. Constructed multimode BECs models with exact analytical solution

. Studied many-body properties analytically
. Including inelastic collisions makes problem simpler, not harder!

. Showed generalization to multiparticle interactions

. Experimental comparison to canonical two-mode BEC
. Study properties of the three mode BEC
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. Constructed multimode BECs models with exact analytical solution

. Studied many-body properties analytically
. Including inelastic collisions makes problem simpler, not harder!

. Showed generalization to multiparticle interactions

. Experimental comparison to canonical two-mode BEC
. Study properties of the three mode BEC
. Study effect of multiparticle interactions
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. Constructed multimode BECs models with exact analytical solution

. Studied many-body properties analytically
. Including inelastic collisions makes problem simpler, not harder!

. Showed generalization to multiparticle interactions

Experimental comparison to canonical two-mode BEC
Study properties of the three mode BEC

Study effect of multiparticle interactions

Study particle loss as a decoherence process
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Starting with the state U|N, —N)

(m u=0, A=0
40

20

10 20

Canonical model: no inelastic collisions
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Our model: with inelastic collisions:

Numerical solution

(m) 1=0.064, A=0.0089 (m u=0.12, A=0.066
40
20
- +
0 ¥ 20
~20
40

Inelastic collisions have an important effect in the evolution
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Starting with the state U|N, —N)

(ﬂj u=0, A=0
40

20

10 20

Canonical model: no inelastic collisions
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Analytical solution

N N
(a'a —b'b) = cos@Y m|Cnuf> —sind Y ConCpn1Lm
-N

—N+1

Ly, = cos(o+ (Em-1— Em) )(N(N +1) —m(m — 1))

(my u=0.053, A=0.12

10
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Starting with the state U|N, —N)

(m u=0, A=0
40

20

10 20

Canonical model: no inelastic collisions
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Our model: with inelastic collisions:

Numerical solution

(m) 1=0.064, A=0.0089 (nmp u=0.12, A=0.066
e |
20
'l 4+
0 ¥ 20
~20
_40

Inelastic collisions have an important effect in the evolution
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Analytical solution

(mp

40
20

N N
(a'a —b'b) = cos8Y m|C,f* —sind Y CpuCpu1Lm
-N —N+1

Ly, = cos(0+ (Em-1 — En)t)(N(N +1) —m(m — 1))

u=0.053, A=0.12

10 - | *}t
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