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Abstract: Thermodynamics places surprisingly few fundamental constraints on
information processing. In fact, most people would argue that it imposes

only one, known as Landauer's Principle: a process erasing one bit of
information must release an amount KT In 2 of heat. It isthissimple
observation that finally led to the exorcism of Maxwell's Demon from
statistical mechanics, more than a century after he first appeared.

Ignoring the lesson implicit in this early advance, however, quantum
information theorists have been surprisingly slow to embrace erasure as a
fundamental primitive. Over the past couple of years, however, it has

become clear that a detailed understanding of how difficult it isto erase
correlations leads to a nearly compl ete synthesis and simplification of

the known results of asymptotic quantum information theory. Asit turns

out, surprisingly many of the tasks of interest, from distilling

high-quality entanglement to sending quantum data through a noisy medium
to many receivers, can be understood as variants of erasure. I'll sketch

the main ideas behind these discoveries and end with some specul ations on
what lessons the new picture might have for understanding information lossin real physical systems.
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Landauer’s Principle

Erasure: A process that, regardless of the input state,
results in output state 0

State 0

Erasing information requires a process that can reduce in uncertainty

Thermodynamic entropy of the gas is reduced by k In 2 so
amount kT In 2 of heat released to the environment.
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Gas originally at equilibrium. Demon inserts partition.

Demon uses door to allow particles to move left to right, but not right to left.

Entropy decreases.

gat pives? Stumped Maxwell, von Neumann, Brillouin, Szilard...
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Demon must process information about incoming particles.

Finite memory: he must eventually start forgetting.

N Landauer’s principle restores global increase of entropy.
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How can Bob unilaterally destroy his correlation with Alice?

What is the minimal number of particles he must discard
before the remaining state is uncorrelated?

In this case, by discarding 2 particles, Bob succeeded in
eliminating all correlations with Alice’s particle
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All purifications equivalent up to a local transformation in Charlie’s lab.

Charlie holds uncorrelated purifications of both
Alice’s particle and Bob’s remaining particles.
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Originally, her purification is held by both Bob and Charlie.

Afterwards, entirely by Charlie.

«Bob transferred his Alice entanglement to Charlie
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Time for some formulas:
How much does Bob need to send?

S Before ) Uncertainty: von Neumann entropy
A §i H(A), = H(p,) = - trl p 1og p, |

e Correlation: mutual information
(> I(A;B)p = H(A)p + I-~I(B)p - H(AB)[D

A 0 i_f and On].y if pAB s pﬁ ® pB
I(A;B),=< m for m pairs of correlated bits
| ¢ABC)® = Em for m ebits (maximal)

Final mutual information: ¢

Each qubit Bob discards has the potential
to eliminate at most 2 bits of correlation
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How does Bob choose
which qubits?

Before = -

A
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(According to the unitarily invariant measure
on the high-probability subspace of B*".)

Bob can ignore the correlation structure of his state!
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Final accounting

Investment:
Bob sends Charlie ~n[I(A;B),]/2 qubits

Rewards:
1) Charlie holds Alice’s purification
2) B and C establish ~n[I(B;C),]/2 ebits
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Final accounting

- After =
Investment: U T
Bob sends Charlie ~n[I(A;B),]/2 qubits -
Rewards: 4 X

1) Charlie holds Alice’s purification
2) B and C establish ~n[I(B;C),]/2 ebits

| Wac,) | Bs,c,cy)

OK - but what good is it?
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Entanglement distillation

Bob and Charlie share many copies of a noisy entangled state
and would like to convert it to ebits.

Only local operations and classical communication are allowed.
Forgetting protocol good but uses quantum communication

Implement quantum communication using teleportation:
Transmit 1 qubit using 2 cbits and 1 ebit.

Net rate of ebit production:
I(B;C)/2 - I(A;B)/2 = H(C)-H(BC)
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Summary

Forgetting is a basic primitive for
quantum information theory

Detailed understanding of how to do it
most efficiently

These methods are generated by
generic unitary transformations: could
be useful for understanding real physics

http:/ / arxiv.org/ abs/ quant-ph/ 0606225










