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Abstract: We give a communication problem between two players, Alice and Bob, that can be solved by Alice sending a guantum message to Bob,
for which any classical interactive protocol requires exponentially more communication.
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» Alice sends to Bob the superposition of the indices in the last
row

» Bob projects the state to the content of one of the columns,

then applies the Hadamard transform and measures in the
computational basis
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Claim
Assume that a protocol of cost k solves the original problem with

small error. Then another protocol of similar cost solves the
1 x 1-version with probabfh'ty% with small error.
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Open problems

» Is it possible to find a functional problem that requires
exponentially more expensive protocol in R than in Q*?

How about simultaneous protocols?

» Generally speaking, give a separation that would logically
imply as many known results as possible.
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