Title: Classical interaction cannot replace a quantum message

Date: Mar 21, 2007 04:00 PM

URL: http://pirsa.org/07030026

Abstract: We give a communication problem between two players, Alice and Bob, that can be solved by Alice sending a quantum message to Bob, for which any classical interactive protocol requires exponentially more communication.

Pirsa: 07030026 Page 1/75

- Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice

- Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice

- ► Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
- Bob produces an answer

- ► Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
 - . . .
- Bob produces an answer

Multi-Round Communication:

- ► Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
 - . . .
- Bob produces an answer

Page 7/75

- ► Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
 - . . .
- Bob produces an answer

Communication complexity: one-way communication

One-Way Communication:

- ► Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
- Bob produces an answer

- ► Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
 - . . .
- Bob produces an answer

Communication complexity: one-way communication

One-Way Communication:

- ► Alice receives x and Bob receives y
- Alice sends a message to Bob
- Bob sends a message to Alice
- Bob produces an answer

- ► Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- Bounded-error protocols, Q² vs. R², for a relation.

- ► Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- Kempe: Kerenidis, Raz. and de Wolf, 20071

- ▶ Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- ▶ Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- Bounded-error protocols, Q¹ vs. R¹, for a function (Gavinsky, Kempe, Kerenidis, Raz, and de Wolf, 2007)

- ▶ Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- ▶ Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- ▶ Bounded-error protocols, Q¹ vs. R¹, for a function (Gavinsky, Kempe, Kerenidis, Raz, and de Wolf, 2007)
- We show a relation that can be solved with bounded error by a Q¹-protocol that is exponentially more efficient than any R-protocol

- ▶ Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- Bounded-error protocols, Q¹ vs. R¹, for a function (Gavinsky, Kempe, Kerenidis, Raz, and de Wolf, 2007)
- We show a relation that can be solved with bounded error by a Q¹-protocol that is exponentially more efficient than any R-protocol

- ▶ Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- Bounded-error protocols, Q¹ vs. R¹, for a function (Gavinsky, Kempe, Kerenidis, Raz, and de Wolf, 2007)
- ➤ We show a relation that can be solved with bounded error by a Q¹-protocol that is exponentially more efficient than any R-protocol

Wes 140 Got West GA (0.2) = 0.04 (10-2 COA) (1 COA) (1 COA), (0'1) 3 10-0 COA 1001

- ▶ Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- Bounded-error protocols, Q¹ vs. R¹, for a function (Gavinsky, Kempe, Kerenidis, Raz, and de Wolf, 2007)
- We show a relation that can be solved with bounded error by a Q¹-protocol that is exponentially more efficient than any R-protocol

1	2
1,5	3,8
4,7	2,6

- ▶ Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column

1	2
1,5	3,8
4,7	2,6

Pirsa: 07030026

- ▶ Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column

- ▶ Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- ► Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column
- Alice and Bob have to output a column index, and a number which is orthogonal to the bit-wise xor of the two elements in the corresponding cell of the last row

イロン イ掛ト イミン イミト

- ▶ Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column
- Alice and Bob have to output a column index, and a number which is orthogonal to the bit-wise xor of the two elements in the corresponding cell of the last row
 Page 2

- Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column
- Alice and Bob have to output a column index, and a number which is orthogonal to the bit-wise xor of the two elements in the corresponding cell of the last row

- Integers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- ► Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column
- Alice and Bob have to output a column index, and a number which is orthogonal to the bit-wise xor of the two elements in the corresponding cell of the last row

- lntegers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- ► Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column
- Alice and Bob have to output a column index, and a number which is orthogonal to the bit-wise xor of the two elements in the corresponding cell of the last row

- lntegers $1..2n^2$ are placed in an $n \times n$ table, two numbers in every cell; the columns are indexed 1..n
- ► Alice's input consists of the elements of the last row
- Bob's input consists of the elements of each column
- Alice and Bob have to output a column index, and a number which is orthogonal to the bit-wise xor of the two elements in the corresponding cell of the last row

Our Statement

- Our problem is solvable by a one-way quantum protocol of cost O (log n)
- ▶ The problem requires $\Omega(n^{1/8})$ bits of communication in the classical multi-round model
- ► The gap is exponentia

Our Statement

- Our problem is solvable by a one-way quantum protocol of cost O (log n)
- ▶ The problem requires $\tilde{\Omega}$ $\binom{n^{1/8}}{}$ bits of communication in the classical multi-round model
- ► The gap is exponentia

Quantum One-Way Protocol

- Alice sends to Bob the superposition of the indices in the last row

Quantum One-Way Protocol

$$\frac{|2\rangle + |4\rangle + |6\rangle + |7\rangle}{2}$$

$$\frac{|2\rangle + |6\rangle}{\sqrt{2}} = \frac{|0010\rangle + |0110\rangle}{\sqrt{2}}$$

$$\frac{\sum_{j \perp 0100} |j\rangle}{4}$$

- Alice sends to Bob the superposition of the indices in the last row
- Bob projects the state to the content of one of the columns, then applies the Hadamard transform and measures in the computational basis

Quantum One-Way Protocol

- Alice sends to Bob the superposition of the indices in the last row
- Bob projects the state to the content of one of the columns, then applies the Hadamard transform and measures in the computational basis

Classical Solution is Expensive: The First Reduction

Claim

Assume that a protocol of cost k solves the original problem with small error. Then another protocol of similar cost solves the 1×1 -version with probability $\frac{1}{n}$ with small error.

Pirsa: 07030026 Page 35/75

Classical Solution is Expensive: The Second Reduction

Claim

Assume that a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error. Then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

Classical Solution is Expensive: The Second Reduction

Claim

Assume that a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error. Then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

The proof is combinatorial, technical.

Classical Solution is Expensive: The First Reduction

Claim

Assume that a protocol of cost k solves the original problem with small error. Then another protocol of similar cost solves the 1×1 -version with probability $\frac{1}{n}$ with small error.

Classical Solution is Expensive: The Second Reduction

Claim

Assume that a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error. Then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

イロン (長) (注) (注)

Dm2 YOU

Pirsa: 07030026

Pirsa: 07030026

Pirsa: 07030026

VUV

Classical Solution is Expensive: The Second Reduction

Claim

Assume that a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error. Then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$.

The proof is combinatorial, technical.

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- ▶ If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$, our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

Pirsa: 07030026

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$, our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$,

our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

Pirsa: 07030026

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$, our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$, our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

Pirsa: 0703002 nother combinatorial proof, uses a lemma by Razborov (1992) Page 49/75

D.C. I. C. III. C. C. ID. I. O. I. M.

- If a protocol of cost k solves the original problem with small error then another protocol of similar cost solves the 1×1 -version with probability $\frac{1}{n}$ with small error
- If a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$
- ► The chances of a protocol of cost k to solve the search 1x1-version are $O\left(\left(\frac{k}{n}\right)^2\right)$
- In This gives us the required $k \in \Omega$ ($n^{1/2}$)

- If a protocol of cost k solves the original problem with small error then another protocol of similar cost solves the 1×1 -version with probability $\frac{1}{n}$ with small error
- If a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$
- ► The chances of a protocol of cost k to solve the search 1x1-version are $O\left(\left(\frac{k}{n}\right)^2\right)$
- In This gives us the required $k \in \Omega$ ($n^{1/4}$)

- If a protocol of cost k solves the original problem with small error then another protocol of similar cost solves the 1×1 -version with probability $\frac{1}{n}$ with small error
- If a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$
- The chances of a protocol of cost k to solve the search 1x1-version are $O\left(\left(\frac{k}{n}\right)^2\right)$
- ▶ This gives us the required $k \in \tilde{\Omega}(n^{1/8})$

- If a protocol of cost k solves the original problem with small error then another protocol of similar cost solves the 1×1 -version with probability $\frac{1}{n}$ with small error
- If a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$
- The chances of a protocol of cost k to solve the search 1x1-version are $O\left(\left(\frac{k}{n}\right)^2\right)$
- ▶ This gives us the required $k \in \tilde{\Omega}(n^{1/8})$

- If a protocol of cost k solves the original problem with small error then another protocol of similar cost solves the 1×1 -version with probability $\frac{1}{n}$ with small error
- If a protocol of cost k solves the 1x1-version of the problem with probability $\frac{1}{n}$ with small error then another protocol of similar cost solves the search 1x1-version of the problem with probability $\frac{1}{nk^2 \log^2(n)}$
- The chances of a protocol of cost k to solve the search 1x1-version are $O\left(\left(\frac{k}{n}\right)^2\right)$
- ▶ This gives us the required $k \in \tilde{\Omega}(n^{1/8})$

- ▶ Is it possible to find a functional problem that requires exponentially more expensive protocol in R than in Q^1 ?
- Generally speaking, give a separation that would logically imply as many known results as possible.

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- \triangleright If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$, our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

Pirsa: 07030026 nother combinatorial proof, uses a lemma by Razborov (1992) Page 56/75

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$, our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$,

our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

Pirsa: 07030026

- ▶ To solve the problem with constant probability, we need $\Omega(n)$ bits of communication
- If we are allowed only k bits of communication, we can find one element of the intersection with probability $O\left(\frac{k}{n}\right)$, our chances to find the both elements are $O\left(\left(\frac{k}{n}\right)^2\right)$

- ▶ Is it possible to find a functional problem that requires exponentially more expensive protocol in R than in Q¹?
 - How about simultaneous protocols?
- Generally speaking, give a separation that would logically imply as many known results as possible.

- ▶ Is it possible to find a functional problem that requires exponentially more expensive protocol in R than in Q¹? How about simultaneous protocols?
- Generally speaking, give a separation that would logically imply as many known results as possible.

- ▶ Is it possible to find a functional problem that requires exponentially more expensive protocol in R than in Q¹? How about simultaneous protocols?
- Generally speaking, give a separation that would logically imply as many known results as possible.

- ▶ Is it possible to find a functional problem that requires exponentially more expensive protocol in R than in Q¹? How about simultaneous protocols?
- Generally speaking, give a separation that would logically imply as many known results as possible.

Pirsa: 07030026

Exponential Savings from Quantum Communication

- ▶ Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- ▶ Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- Bounded-error protocols, Q¹ vs. R¹, for a function (Gavinsky, Kempe, Kerenidis, Raz, and de Wolf, 2007)
- We show a relation that can be solved with bounded error by a Q¹-protocol that is exponentially more efficient than any R-protocol

Exponential Savings from Quantum Communication

- ▶ Zero-error protocols, Q vs. R and Q^1 vs. R^1 (Buhrman, Cleve, and Wigderson, 1998)
- ▶ Bounded-error protocols, Q vs. R (Raz, 1999)
- Bounded-error protocols, simultaneous protocols (Buhrman, Cleve, Watrous, and de Wolf, 2001)
- Bounded-error protocols, Q¹ vs. R¹, for a relation (Bar-Yossef, Jayram, and Kerenidis, 2004)
- ▶ Bounded-error protocols, Q¹ vs. R¹, for a function (Gavinsky, Kempe, Kerenidis, Raz, and de Wolf, 2007)
- We show a relation that can be solved with bounded error by a Q¹-protocol that is exponentially more efficient than any R-protocol

Pirsa: 07030026