Title: Multi-level, multi-party singlets as ground states and their role in entanglement distribution

Date: Mar 07, 2007 04:00 PM

URL: http://pirsa.org/07030013

Abstract: We show that singlets composed of multiple multi-level quantum systems can naturally arise as the ground state of a physically-motivated Hamiltonian. The Hamiltonian needs to be one which simply exchanges the states of nearest neighbours in any graph of interacting d-level quantum systems (qudits) as long as the graph also has d sites. We point out that local measurements on some of these qudits, with the freedom of choosing a distinct measurement basis at each qudit randomly from an infinite set of bases, project the remainder onto a singlet state. One implication of this is that the entanglement in these states is very robust (persistent), while an application is in establishing an arbitrary amount of entanglement between well-separated parties (for subsequent use as a communication

resource) by local measurements on an appropriate graph. Based on quant-ph/0602139.

Pirsa: 07030013 Page 1/94

LUCL

Multi-level, multi-party singlets as ground states and their role in entanglement distribution

Christopher Hadley University College London www.tampa.phys.ucl.ac.uk/quinfo/

Perimeter Institute, 7 March 2007

Based on C. Hadley and S. Bose, quant-ph/0602139 (2006)

≜UCL

Overview of talk

Pirsa: 07030013 Page 3/94

Overview of talk

- Introduction to qudit singlets: setting the scene and formal definition
- · Summary of previous results
- Proof that qudit singlets are the ground state of a 2-local Hamiltonian for any graph
- Proof that you can take arbitrary measurements and always obtain a smaller singlet
- Proof that these state have the highest possible persistency of entanglement
- Potential uses of such states / directions for future research
- Preparation of qudit singlets in an optical lattice
- Summary

Pirsa: 07030013

Secret sharing problem

- Suppose A₁ wants to have a secret action taken on her behalf at a distant location
- She has agents A₂, ..., A_N to do it for her
- A₁ knows that some are dishonest, but does not know which

- She cannot send a secure message to all, because the dishonest parties will sabotage it
- Assume that if they carry it out together, honest ones will prevent dishonest ones damaging task
- So: A₁ needs to convey a cryptographic key to A₂, ..., A_N, such that they can only read it if they all collaborate

Problem can be solved if each of the N parties has a sequence of numbers that:

- Is truly random
- ii. Possible numbers are integers from 0, ..., N-1
- iii. If number i is a position j in k's sequence, it does not appear at position j in another's sequence
- iv. Each party knows only his/her sequence

Properties are impossible classically, since eavesdroppers could listen in

So we need a method to generate such sequences

 A_1 's sequence defined as the key

Only way to reveal it is to make remaining parties share their respective sequences

Key then composed by the missing results

 A1
 A2
 A3
 A4

 4
 2
 1
 3

 3
 1
 2
 4

 2
 4
 3
 1

Pirsa: 07030013 Page 9/9

If a dishonest party D declares an incorrect result, there is a probability 1/(r-1) where r= number of honest parties, that other honest party H has already obtained that result. Then H would stop the process, so A_1 's key would remain safe

Order in which agents declare respective results must change from round to round to avoid *D* always being last.

A1 A2 A3 A4

4 2 1 3

3 1 2 4

2 4 3 1

1 3 4 2

If a dishonest party D declares an incorrect result, there is a probability 1/(r-1) where r= number of honest parties, that other honest party H has already obtained that result. Then H would stop the process, so A_1 's key would remain safe

Order in which agents declare respective results must change from round to round to avoid *D* always being last.

There are two other examples, which reduce to the same problem:

N-strangers problem and liar detection problem

So these states are useful

Definition of qudit singlets

"Qudit singlets" are N-party,
 d-level states, with the property

$$U^{\otimes N} \left| S_N^{(d)} \right\rangle = \left| S_N^{(d)} \right\rangle$$

- Each party is a spin (d 1)/2; total spin is zero
- For d = N, they take the form

$$\left|S_N^{(N)}(\boldsymbol{\alpha})\right\rangle = \frac{1}{\sqrt{N!}} \sum_{\{n_l\}} \epsilon_{n_1,\dots,n_N} \left|\alpha_{n_1},\dots,\alpha_{n_N}\right\rangle$$

We call this an N-singlet

Definition of qudit singlets

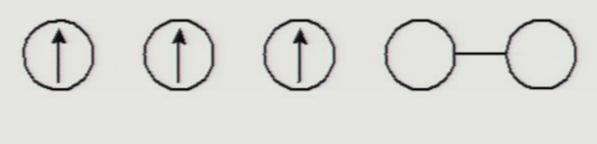
$$\left|S_N^{(N)}(\boldsymbol{\alpha})\right\rangle = \frac{1}{\sqrt{N!}} \sum_{\{n_l\}} \epsilon_{n_1,\dots,n_N} \left|\alpha_{n_1},\dots,\alpha_{n_N}\right\rangle$$

- Sum is taken over all combinations
- State is antisymmetric under all permutation operators P_{ij} where i, j run between 1 and N
- They are essentially pure multipartite Werner states¹

Pirsa: 07030013

5

5 <u>2</u>



5 ₂ 3

This is how the sequences are distributed to all the parties

 If the parties share a large number of copies of an N-singlet, they can solve the problem

Pirsa: 07030013 Page 20/94

5 ₂ ₃

This is how the sequences are distributed to all the parties

 If the parties share a large number of copies of an N-singlet, they can solve the problem

Pirsa: 07030013 Page 22/94

Secret sharing problem solved

	A_1	A2	A_3	A_4	
1	4	2	1	3	
+	3	1	2	4	>
+	2	4	3	1	>
+	1	3	4	2	>

Pirsa: 07030013 Page 23/94

Previous results: summary

 If the same arbitrary rotation is applied to each qudit, the state is the same (up to a phase)

UCL

Previous results: for general d, N

- Qudit singlets are essentially pure multipartite Werner states¹ for special case d = N
- They do not exist² for N < d
- May be used as basis of decoherence-free subspace^{2, 3, 4}
- Conjectured that for N = md qudits, there are m orthogonal such states²
- May be used for multi-party remote state preparation⁵

¹R. F. Werner, PRA **40**, 4277 (1989)

²P. Kok et al., quant-ph/02011038 (2002)

³A. Cabello, PRL **89**, 100402 (2002)

& J. Mod. Opt. 50, 1049 (2003)

⁴A. Cabello, PRA **75** (2007) 020301(R) _{Page 25/94}

⁵P. Agrawal et al., quant-ph/0304006 (2003)

Motivation

- Given this multitude of applications, we would like to be able to make these states
- Little progress has been made to date, and only then in the case of entangled photons^{1,2}
- Here we consider a condensed matter Hamiltonian, which also may be implemented in optical lattices, for the special case d = N
 - ¹A. Lamas-Linares et al., Nature **412**, 887 (2001)
 - ²N. Gisin, conference proceedings, Quantum information: quantum entanglement (Sant Feliu de Guíxols, Spain, 2002)

UCL

Previous results: for general d, N

- Qudit singlets are essentially pure multipartite Werner states¹ for special case d = N
- They do not exist² for N < d
- May be used as basis of decoherence-free subspace^{2, 3, 4}
- Conjectured that for N = md qudits, there are m orthogonal such states²
- May be used for multi-party remote state preparation⁵

¹R. F. Werner, PRA 40, 4277 (1989)

²P. Kok et al., quant-ph/02011038 (2002)

³A. Cabello, PRL **89**, 100402 (2002)

& J. Mod. Opt. 50, 1049 (2003)

⁴A. Cabello, PRA **75** (2007) 020301(R) _{Page 27/94}

⁵P. Agrawal et al., quant-ph/0304006 (2003)

Motivation

- Given this multitude of applications, we would like to be able to make these states
- Little progress has been made to date, and only then in the case of entangled photons^{1,2}
- Here we consider a condensed matter Hamiltonian, which also may be implemented in optical lattices, for the special case d = N
 - ¹A. Lamas-Linares et al., Nature **412**, 887 (2001)
 - ²N. Gisin, conference proceedings, Quantum information: quantum entanglement (Sant Feliu de Guíxols, Spain, 2002)

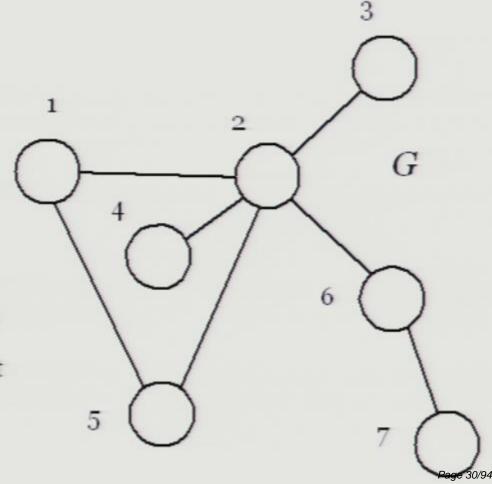
Our three main results

- N-singlets are the ground state of a 2-local Hamiltonian
- One can use any measurement basis to establish smaller qudit singlets at successive measurements: it follows that these states are the most persistent possible
- Discuss a potential realisation of this state in an optical lattice

UCL

Result 1: Qudit singlets are the ground state of permutation Hamiltonians

- Let G be a graph, E(G) its set of edges, and V(G) its set of vertices.
- Let there be a qudit at each vertex (levels 1, ..., N)
- Let connected vertices i, j interact through a permutation operator P_{ij}
- This operator permutes all states at sites i and j, and is an element of SU(d)



Result 1: Qudit singlets are the ground state of permutation Hamiltonians

• Then the Hamiltonian for this system is:

$$H = \sum_{i,j \in E(G)} P_{ij}$$

- This is the SU(d) generalisation of the Heisenberg interaction
- We can show that the ground state of this a qudit singlet, independently of the choice of graph G!

Pirsa: 07030013

Permutation Hamiltonians: physical realisation

• Permutation operator: $P_{ij} |\psi\rangle_i |\phi\rangle_i = |\phi\rangle_i |\psi\rangle_i$

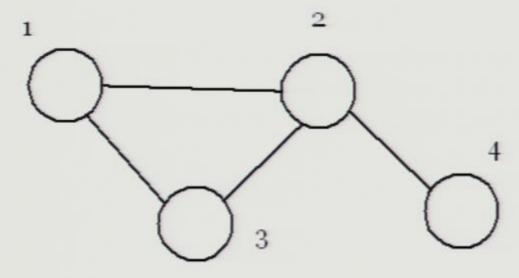
 $P_{ij} = \sum_{\alpha}^{d} S_{\alpha}^{\beta}(i) S_{\beta}^{\alpha}(j)$ This can be written: where $\{S^{\alpha}_{\beta}(n)\}$ are the generators of SU(d) at nth vertex

Pirsa: 07030013 Page 32/94

 $\alpha,\beta=1$

$$H = \sum_{i,j \in E(G)} P_{ij}$$

• Lowest energy state of a permutation Hamiltonian has energy equal to that of an eigenstate of all P_{ij} terms included in the Hamiltonian, all with eigenvalue – 1



Example: in this case, the lowest energy state will be an eigenstate of P_{12} , P_{13} , P_{23} , P_{24}

Pirsa: 07030013 Page 33/94

$$H = \sum_{i,j \in E(G)} P_{ij}$$

Proof

Pirsa: 07030013 Page 34/94

$$H = \sum_{i,j \in E(G)} P_{ij}$$

Proof

 $\bullet\quad \text{ To minimise the energy:} \quad \min_{|\psi\rangle\in(\mathcal{C}^d)\otimes N} \langle\psi|H|\psi\rangle \geq \sum_{i,j\in E(G)} \min_{|\psi\rangle\in(\mathcal{C}^d)\otimes N} \langle\psi|P_{ij}|\psi\rangle$

Pirsa: 07030013 Page 35/94

$$H = \sum_{i,j \in E(G)} P_{ij}$$

- Proof
- $\bullet \quad \text{To minimise the energy:} \quad \min_{|\psi\rangle \in (\mathcal{C}^d) \otimes N} \langle \psi | H | \psi \rangle \geq \sum_{i,j \in E(G)} \min_{|\psi\rangle \in (\mathcal{C}^d) \otimes N} \langle \psi | P_{ij} | \psi \rangle$
- Minimum of each term is –1, so $\min_{|\psi\rangle\in(\mathcal{C}^d)^{\otimes N}}\langle\psi\,|\,H\,|\,\psi\rangle\geq -N_c$

where N_c is number of terms in Hamiltonian.

Pirsa: 07030013 Page 36/94

Permutation Hamiltonians: Lemma 1 H

$$H = \sum_{i,j \in E(G)} P_{ij}$$

- Proof
- $\bullet \quad \text{To minimise the energy:} \quad \min_{|\psi\rangle \in (\mathcal{C}^d) \otimes N} \langle \psi | H | \psi \rangle \geq \sum_{i,j \in E(G)} \min_{|\psi\rangle \in (\mathcal{C}^d) \otimes N} \langle \psi | P_{ij} | \psi \rangle$
- Minimum of each term is –1, so $\min_{|\psi\rangle\in(\mathcal{C}^d)^{\otimes N}}\langle\psi\,|\,H\,|\,\psi\rangle\geq -N_c$

where N_c is number of terms in Hamiltonian.

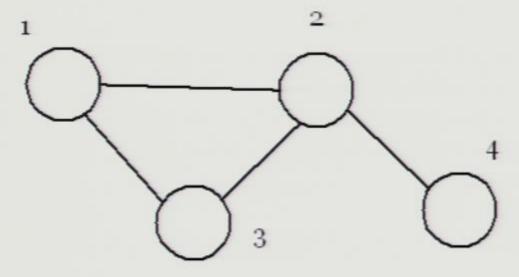
 Equality exists for a state that is individually an eigenstate of all terms in Hamiltonian, and if this exists it is a ground state

Pirsa: 07030013 Page 37/94

Permutation Hamiltonians: Lemma 2

$$H = \sum_{i,j \in E(G)} P_{ij}$$

 If a state is an eigenstate of all permutation operators in the Hamiltonian, it is an eigenstate of all possible permutation operators



Example: in this case, if the state is be an eigenstate of $P_{12}, P_{13}, P_{23}, P_{24}$, it will also be an eigenstate of **all** P_{ij} ; e.g. P_{34}, P_{14}, \dots

Pirsa: 07030013

UCL

Permutation Hamiltonians:

Lemma 2

1 2 3 4

- Proof:
- Consider a chain:
- Any permutation may be written as a product of nearest-neighbour operators, e.g.:
 P₁₄ = P₁₂P₂₃P₃₄P₂₃P₁₂

1	2	3	4	
A	В	C	D	

$$P_{12}$$
: B A C D

$$P_{23}$$
: B C A D P_{34} : B C D A

$$P_{23}$$
: B D C A

$$P_{12}$$
: D B C A

Permutation Hamiltonians: Lemma 2

 So, an eigenstate of all nearest-neighbour permutations must be an eigenstate of all permutations

Always an odd number of permutations

Can be readily generalised to any connected graph

Pirsa: 07030013 Page 40/94

UCL

Permutation Hamiltonians:

Lemma 2

1 2 3 4 5

- Proof:
- Consider a chain:
- Any permutation may be written as a product of nearest-neighbour operators, e.g.:
 P₁₄ = P₁₂P₂₃P₃₄P₂₃P₁₂

1	2	3	4	
A	В	С	D	

$$P_{12}$$
:
 B
 A
 C
 D

 P_{23} :
 B
 C
 A
 D

 P_{34} :
 B
 C
 D
 A

 P_{23} :
 B
 D
 C
 A

 P_{12} :
 D
 B
 C
 A

Permutation Hamiltonians: Lemma 2

 So, an eigenstate of all nearest-neighbour permutations must be an eigenstate of all permutations

Always an odd number of permutations

Can be readily generalised to any connected graph

Pirsa: 07030013 Page 42/94

UCL

Permutation Hamiltonians:

Lemma 2

1 2 3 4

- Proof:
- Consider a chain:
- Any permutation may be written as a product of nearest-neighbour operators, e.g.:
 P₁₄ = P₁₂P₂₃P₃₄P₂₃P₁₂

1	2	3	4	
A	R	С	D	

$$P_{12}$$
: B A C D

$$P_{23}$$
: B C A D P_{34} : B C D A P_{23} : B D C A

$$P_{12}$$
: D B C A

Permutation Hamiltonians: Proof of ground state

- Theorem: The ground state of a SU(N) permutation Hamiltonian on a lattice of N sites is an N-singlet
- From above, we know a state completely antisymmetric under all permutations is a valid ground state
- A qudit singlet d = N satisfies this by definition
- Uniqueness can be proven by contradiction

Pirsa: 07030013 Page 44/94

 Recall that if all parties measure in the same basis, a smaller qudit singlet is established at each stage between the other parties

Can we measure in any basis?

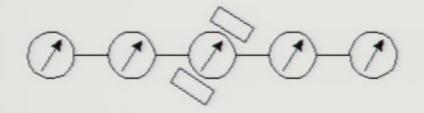
Pirsa: 07030013 Page 45/94

UCL

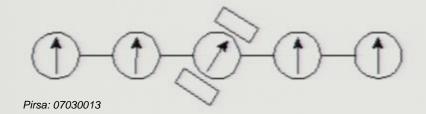
Result 2: General measurements and establishing smaller qudit singlets

What if we want to measure in some new basis, as shown?

Perform some *U* on all → still qudit singlet



Measure



Perform U[†] on others → should have same effect?

- We find that this is true
- First, we prove the property

$$U \otimes \mathcal{I}^{\otimes N-1} | S_N^{(N)} \rangle = \mathcal{I} \otimes U^{\dagger \otimes N-1} | S_N^{(N)} \rangle$$

i.e. performing U on one qudit is equivalent to performing the adjoint operation on all other qudits

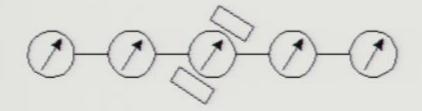
Pirsa: 07030013 Page 47/94

UCL

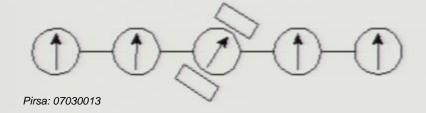
Result 2: General measurements and establishing smaller qudit singlets

What if we want to measure in some new basis, as shown?

Perform some U on all \Rightarrow still qudit singlet



Measure



Perform U[†] on others → should have same effect?

- We find that this is true
- First, we prove the property

$$U \otimes \mathcal{I}^{\otimes N-1} | S_N^{(N)} \rangle = \mathcal{I} \otimes U^{\dagger \otimes N-1} | S_N^{(N)} \rangle$$

i.e. performing U on one qudit is equivalent to performing the adjoint operation on all other qudits

Pirsa: 07030013 Page 49/94

For a 2-singlet, we can prove this

$$(U \otimes \mathcal{I}) \left| S_2^{(2)} \right\rangle = (U \otimes U^{\dagger} U) \left| S_2^{(2)} \right\rangle$$
$$= (\mathcal{I} \otimes U^{\dagger}) (U \otimes U) \left| S_2^{(2)} \right\rangle$$
$$= (\mathcal{I} \otimes U^{\dagger}) \left| S_2^{(2)} \right\rangle$$

- Making use of the invariance property
- This can be generalised to:

$$U \otimes \mathcal{I}^{\otimes N-1} | S_N^{(N)} \rangle = \mathcal{I} \otimes U^{\dagger \otimes N-1} | S_N^{(N)} \rangle$$

Pirsa: 07030013 Page 50/94

• Claim: When we measure an N-singlet written in a basis $\{|\alpha_i>\}$ at one qudit using an arbitrary basis $\{|\beta_i><\beta_i|\}$, we get a product of $|\beta_i>$ at the measured site and an (N-1)-singlet $\left|S_{N-1}^{(N-1)}(\beta;\beta_l)\right>$ in basis $\{|\beta_i\rangle\}^{\otimes N-1}$ at the other qudits

Pirsa: 07030013 Page 51/94

- Proof:
- Introduce notation: $|S_{N-1}^{(N-1)}(\beta; \beta_l)\rangle$ is a singlet written in basis $\{|\beta_l\rangle\}^{\otimes N-1}$ with state $|\beta_l\rangle$ missing
- Perform measurement $|\beta_i\rangle\langle\beta_i|$
- Since $|\beta_i\rangle\langle\beta_i| = U |\alpha_i\rangle\langle\alpha_i| U^{\dagger}$ we have

$$\begin{aligned} |\beta_{i}\rangle \langle \beta_{i}| \otimes \mathcal{I}^{\otimes N-1} \left| S_{N}^{(N)}(\boldsymbol{\alpha}) \right\rangle \\ &= U \left| \alpha_{i} \right\rangle \langle \alpha_{i}| U^{\dagger} \otimes \mathcal{I}^{\otimes N-1} \left| S_{N}^{(N)}(\boldsymbol{\alpha}) \right\rangle \\ &= U \left| \alpha_{i} \right\rangle \langle \alpha_{i}| \mathcal{I} \otimes U^{\otimes N-1} \left| S_{N}^{(N)}(\boldsymbol{\alpha}) \right\rangle. \end{aligned}$$

Pirsa: 07030013

To proceed, we write the N-singlet in the form

$$\left|S_N^{(N)}(\boldsymbol{\alpha})\right\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^N (-)^{i+1} \left|\alpha_i\right\rangle_1 \left|S_{N-1}^{(N-1)}(\boldsymbol{\alpha}; \alpha_i)\right\rangle_{2,\dots,N}$$

and thus
$$I \otimes U^{\otimes N-1} | S_N^{(N)}(\boldsymbol{u}) \rangle_{1,...N} =$$

$$\frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-)^{i+1} | \alpha_i \rangle_1 \otimes U^{\otimes N-1} | S_{N-1}^{(N-1)}(\boldsymbol{u}; \alpha_i) \rangle_{2,...,N}$$

This is a qudit singlet in the new basis

Pirsa: 07030013 Page 53/94

- Proof:
- Introduce notation: $|S_{N-1}^{(N-1)}(\beta; \beta_l)\rangle$ is a singlet written in basis $\{|\beta_l\rangle\}^{\otimes N-1}$ with state $|\beta_l\rangle$ missing
- Perform measurement $|\beta_i\rangle\langle\beta_i|$
- Since $|\beta_i\rangle\langle\beta_i| = U |\alpha_i\rangle\langle\alpha_i|U^{\dagger}$ we have

$$|\beta_{i}\rangle \langle \beta_{i}| \otimes \mathcal{I}^{\otimes N-1} | S_{N}^{(N)}(\boldsymbol{\alpha}) \rangle$$

$$= U |\alpha_{i}\rangle \langle \alpha_{i}| U^{\dagger} \otimes \mathcal{I}^{\otimes N-1} | S_{N}^{(N)}(\boldsymbol{\alpha}) \rangle$$

$$= U |\alpha_{i}\rangle \langle \alpha_{i}| \mathcal{I} \otimes U^{\otimes N-1} | S_{N}^{(N)}(\boldsymbol{\alpha}) \rangle.$$
Page 54/94

To proceed, we write the N-singlet in the form

$$\left|S_N^{(N)}(\boldsymbol{\alpha})\right\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^N (-)^{i+1} \left|\alpha_i\right\rangle_1 \left|S_{N-1}^{(N-1)}(\boldsymbol{\alpha}; \alpha_i)\right\rangle_{2,\dots,N}$$

and thus
$$I \otimes U^{\otimes N-1} | S_N^{(N)}(\boldsymbol{a}) \rangle_{1,...N} =$$

$$\frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-)^{i+1} |\alpha_i\rangle_1 \otimes U^{\otimes N-1} |\mathcal{S}_{N-1}^{(N-1)}(\boldsymbol{a};\alpha_i)\rangle_{2,\dots,N}$$

This is a qudit singlet in the new basis

Pirsa: 07030013 Page 55/94

So the outcome is
$$|\beta_i\rangle \langle \beta_i| \otimes \mathcal{I}^{\otimes N-1} \left| S_N^{(N)}(\boldsymbol{\alpha}) \right\rangle_{1,...,N} / ||...||$$

= $|\beta_i\rangle_1 \otimes \left| S_{N-1}^{(N-1)}(\boldsymbol{\beta}; \beta_i) \right\rangle_{2,...,N}$.

...and we have proved the claim

The significance of this is seen if we iterate ...

Pirsa: 07030013 Page 56/94

Claim: If M parties perform successive measurements in arbitrary bases $B_m = \{|\alpha_i^{(m)}\rangle\}_{i \neq 1,...,m-1} = \{\prod_{l=1}^m U^{(l)}|\alpha_i^{(0)}\rangle\}$

the (N – M) remaining parties share an (N – M)-singlet in the basis $B_M^{\otimes N-M}$

Restriction: each basis transformation operates on a space one dimension smaller than previous (lifted later)

Pirsa: 07030013 Page 57/94

Proof:

Consider effect of measuring in basis $\{|\alpha_i^{(2)}\rangle\}$ on outcome of previous measurement. End result is

$$\left|\alpha_i^{(1)}\right\rangle_1 \left|\alpha_j^{(2)}\right\rangle_2 \left|S_{N-2}^{(N-2)}(\boldsymbol{\alpha^{(2)}};\alpha_i^{(2)},\alpha_j^{(2)})\right\rangle_{3,...,N}.$$

In general for M measurements

$$\left|\alpha_{n_1}^{(1)}\right\rangle_1 \dots \left|\alpha_{n_M}^{(M)}\right\rangle_M \left|S_{N-M}^{(N-M)}(\boldsymbol{\alpha}_{n_M}^{(M)};\boldsymbol{n}^{(M)})\right\rangle_{M+1,\dots,N}$$

Elements of vector \mathbf{n} are the levels excluded

Pirsa: 07030013 Page 58/94

Restriction arises because the property

$$U^{\otimes N} \left| S_N^{(d)} \right\rangle = \left| S_N^{(d)} \right\rangle$$

only holds when U operates on space inhabited by the singlet So: at lth measurement, we restrict basis transformation $U^{(l)}$ to operate only on (N-l) levels

But ...

 It is well known that a d-level unitary can be written in terms of two-level unitaries:

$$U_d = V_1 \dots V_k$$

So:

$$U_d \otimes U_d = (V_1 \otimes V_1) \dots (V_k \otimes V_k)$$

 We can now use d×d unitaries that the V_i act either within the singlet subspace or its complement

Pirsa: 07030013

- But what happens if we really take measurements in any basis?
- Consider effect of arbitrary unitary on 2-singlet of levels j, m: $(V_1 \otimes V_1) \dots (V_i \otimes V_i)(|jm\rangle |mj\rangle)$ $= (V_1 \otimes V_1) \dots (V_{i-1} \otimes V_{i-1})((V_i | j\rangle) |m\rangle |m\rangle (V_i | j\rangle))$
- Each of the factors on the l.h.s. take the singlet into a different space, but its entanglement properties are unaffected
- So we end up with a singlet!

Pirsa: 07030013 Page 61/94

So we conclude that:

when N parties share a qudit singlet, and M of them perform local measurements, the remaining (N - M) of them share a smaller qudit singlet, regardless of the measurement choices or outcomes!

Pirsa: 07030013 Page 62/94

New property of qudit singlets: highest possible persistency of entanglement

We can now make some new claims about qudit singlets

 Persistency of entanglement defined¹ as minimum number of local von Neumann measurements needed to completely disentangle the state

New property of qudit singlets: highest possible persistency of entanglement

 Can be considered a measure of multi-partite entanglement

For cluster states¹, it is ~N/2

 Here, it is (N – 1), the highest possible value for an N-partite state

Entanglement distribution

- For most quantum computing tasks, we need entanglement to be shared by well separated parties
- This is difficult to achieve by distributing photons
- One approach: localisable entanglement

Localisable entanglement

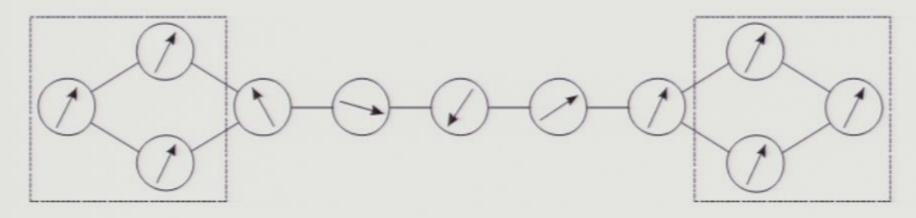
- Localisable entanglement (LE) = maximum amount of entanglement one can concentrate between two parts of system, by local measurements on others
- Normally have to optimise over measurement basis
- Here, it is basis independent

Pirsa: 07030013 Page 66/94

Consequences for localisable entanglement

- We introduce two subsystem LE:
- Normally LE relates to two qudits
- Now suppose Alice and Bob have control of small parts of the graph, each of n qudits
- They can establish $\log_2 {}^{2n}C_n$ ebits between them

Consequences for localisable entanglement



Alice Bob

- Alice and Bob have access to the boxes
- By performing arbitrary measurements on the other qudits, they can
 establish a 6-singlet, with log₂ ⁶C₃ ebits shared between them
- This is very relevant physically, as this can now be used for short

 Pirsa: 07030013tance communications or networking distinct quantum registers age 68/94

Page 69/94

Result 3: physical realisation

These have fermionic and bosonic representations:

$$S_{\alpha}^{\beta}(n) = c_{\beta,n}^{\dagger} c^{\alpha,n}$$

- Potentially there could be many implementations, including optical traps, quantum dots, spin tubes
- Indeed, this is a natural interaction arising when qudits simply hop along a lattice with site occupancy of at most one qudit

Pirsa: 07030013

Hubbard model

- The permutation Hamiltonian may be obtained from the Hubbard model in a certain limit¹
- The standard, two-level, one-band Hubbard model Hamiltonian is:

$$H = -t \sum_{\langle ij \rangle} \sum_{\sigma=\uparrow,\downarrow} \left(c_{\sigma i}^{\dagger} c_{\sigma j} + c_{\sigma i} c_{\sigma j}^{\dagger} \right) + U \sum_{i=1}^{N} n_{\uparrow i} n_{\downarrow i}$$

Pirsa: 07030013

Page 70/94

¹E. Fradkin, Field theories of condensed matter systems (Addison Wesley, 1991)

Hubbard model

- Consider this in the half-filled regime
 (there are no unoccupied sites, and no sites with multiple occupancy)
- Consider strong-coupling limit: U>> t
 (number fluctuations eliminated, energy cost of leaving half-filled subspace is very large)

^{Pirsa: 07030013} ¹E. Fradkin, Field theories of condensed matter systems (Addison Wesley, 1991)

Hubbard model

• Treating the hopping term as a perturbation, we obtain an effective Hamiltonian $H' = H_0^2/U$

$$\frac{t^2}{U} \sum_{\alpha,\beta=\uparrow,\downarrow} \sum_{\langle ij\rangle} \left(c_{\alpha i}^{\dagger} c_{\alpha j} + c_{\alpha i} c_{\alpha j}^{\dagger} \right) \left(c_{\beta i}^{\dagger} c_{\beta j} + c_{\beta i} c_{\beta j}^{\dagger} \right)$$

 Expand and only keep terms which confine state to singleoccupancy subspace

(since U is large these state are suppressed)

Pirsa: 07030013

$$H_0' = \frac{t^2}{U} \sum_{\alpha = \uparrow, \downarrow} \left(c_{\alpha i}^{\dagger} c_{\beta i} c_{\beta j}^{\dagger} c_{\alpha j} + c_{\beta i}^{\dagger} c_{\alpha i} c_{\alpha j}^{\dagger} c_{\beta j} \right)$$
$$= \frac{2t^2}{U} \sum_{\alpha = \uparrow, \downarrow} c_{\alpha i}^{\dagger} c_{\beta i} c_{\beta j}^{\dagger} c_{\alpha j}.$$

• This is the two-level permutation Hamiltonian i.e. the Heisenberg Hamiltonian with $J = 2t^2/U$

$$H_0' = J \sum_{\langle ij \rangle} \mathbf{s}_i \cdot \mathbf{s}_j$$

Pirsa: 07030013 Page 73/94

Now we add more levels:

$$H = -t \sum_{\langle ij \rangle} \sum_{\sigma=1}^d \left(c_{\sigma i}^\dagger c_{\sigma j} + c_{\sigma i} c_{\sigma j}^\dagger \right) + U \sum_i \sum_{\sigma \neq \sigma'} n_{\sigma i} n_{\sigma' i}.$$

• We repeat the derivation, but in the 1/d-filling regime

Pirsa: 07030013 Page 74/94

· We now obtain the effective Hamiltonian:

$$H_0' = \frac{2t^2}{U} \sum_{\alpha=1}^d c_{\alpha i}^{\dagger} c_{\beta i} c_{\beta j}^{\dagger} c_{\alpha j}$$

which is equivalent to the permutation Hamiltonian required:

$$H = \sum_{i,j \in E(G)} P_{ij}$$

Pirsa: 07030013 Page 75/94

 This derivation is also equivalent to a generalised Schrieffer–Wolff transformation¹

Hubbard model: candidate systems

- The levels must be degenerate (e.g. hyperfine levels)
- With 4°K atoms, one can obtain 2F + 1 = 10 levels
- With Er atoms, one can obtain 2F + 1 = 22 levels

¹M. Köhl et al., PRL **94**, 080403 (2005)

Page 77/94

Other potential realisations

Spin ladders and tubes¹

 Arrays of quantum dots with electrons having both spin and orbital levels²

¹M. T. Batchelor and M. Maslen J. Phys. A **32**, L377 (1999)

Now we add more levels:

$$H = -t \sum_{\langle ij \rangle} \sum_{\sigma=1}^d \left(c_{\sigma i}^\dagger c_{\sigma j} + c_{\sigma i} c_{\sigma j}^\dagger \right) + U \sum_i \sum_{\sigma \neq \sigma'} n_{\sigma i} n_{\sigma' i}.$$

• We repeat the derivation, but in the 1/d-filling regime

Pirsa: 07030013 Page 79/94

· We now obtain the effective Hamiltonian:

$$H_0' = \frac{2t^2}{U} \sum_{\alpha=1}^d c_{\alpha i}^{\dagger} c_{\beta i} c_{\beta j}^{\dagger} c_{\alpha j}$$

 which is equivalent to the permutation Hamiltonian required:

$$H = \sum_{i,j \in E(G)} P_{ij}$$

Pirsa: 07030013 Page 80/94

Other potential realisations

Spin ladders and tubes¹

 Arrays of quantum dots with electrons having both spin and orbital levels²

¹M. T. Batchelor and M. Maslen J. Phys. A 32, L377 (1999)

Potential uses of qudit singlets (work in progress and open problems)

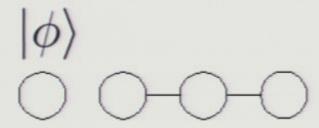
- Teleportation, and measurement-based QC
- · Making a valence bond solid
- Proving non-locality for arbitrary numbers of observers, measurements and outcomes

Open problems

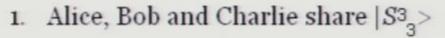
Pirsa: 07030013

UCL

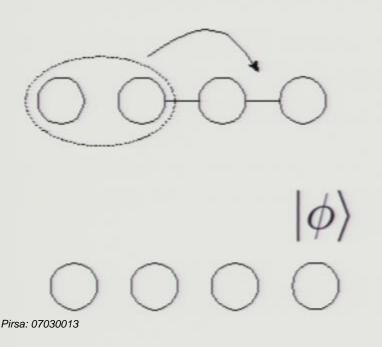
Teleportation (work in progress)



Similar to GHZ and cluster state teleportation



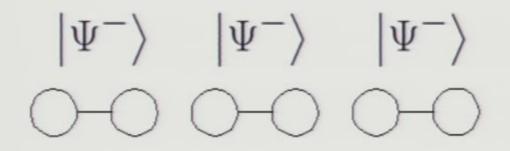
- 2. Alice has another qudit in state
- Alice performs a measurement, søthe state is shared by Bob and Charlie
- Bob measures
- Charlie reconstructs the state using the classical bits from Alice and Bob

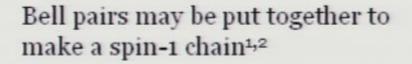


Can this be generalised to measurement-based QC?

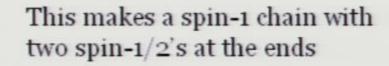
UCL

Valence bond solid (work in progress)

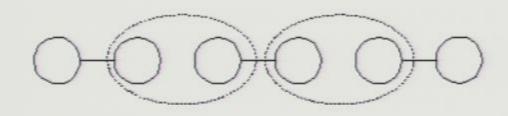




Between each pair, the qubits are projected to the symmetric spin-1 space

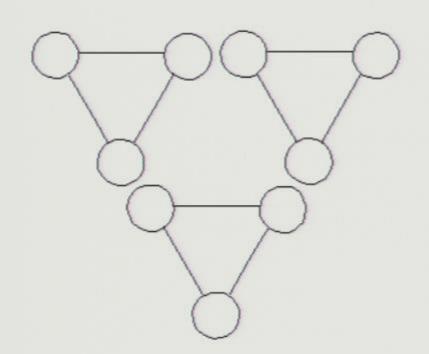


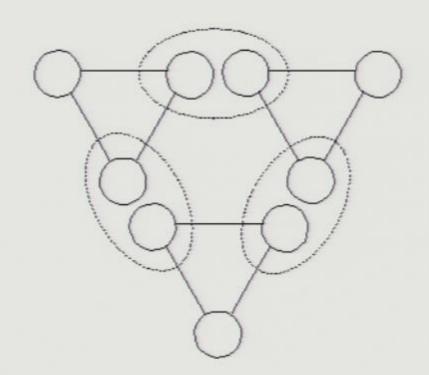
This can be used to implement a qubit cluster state³



- ¹A. Affleck et al., Commun. Math. Phys. 115, 477 (1988) & PRL 59, 799 (1987)
- ²H. Fan, V. E. Korepin, V. Roychowdhury, C. Hadley & S. Bose, quant-ph/0605133 (2006)

Valence bond solid (work in progress)





So could we make a VBS from qudit singlets?

May not be physical, but could be interesting ...

Other questions (work in progress)

Other questions:

- Do there exist multi-qubit states with as much persistency?
- What do these states look like when $d \neq N$?
- For which d, N do they exist?
 (Derive criteria from Tr ρ² ≤ 1, as in bipartite case)
- Prove conjecture that for N = md qudits, there are m orthogonal such states¹

Pirsa: 07030013 Page 86/94

Summary

- Introduced qudit singlets
- Summarised previous results
- Shown that qudit singlets are the ground state of a 2-local Hamiltonian for any graph
- Shown that you can take arbitrary measurements and still get a singlet
- Shown that they have the highest possible persistency of entanglement
- Reviewed potential uses of states: work in progress and open problems

Thank you for listening!

Acknowledgements

Sougato Bose Ignacio Cirac Andrew Fisher Vladimir Korepin UK EPRSC

Further details online

quant-ph/0602139 www.tampa.phys.ucl.ac.uk/quinfo

Pirsa: 07030013 Page 88/94

· We now obtain the effective Hamiltonian:

$$H_0' = \frac{2t^2}{U} \sum_{\alpha=1}^d c_{\alpha i}^{\dagger} c_{\beta i} c_{\beta j}^{\dagger} c_{\alpha j}$$

 which is equivalent to the permutation Hamiltonian required:

$$H = \sum_{i,j \in E(G)} P_{ij}$$

Pirsa: 07030013 Page 89/94

Localisable entanglement

 Localisable entanglement (LE) = maximum amount of entanglement one can concentrate between two parts of system, by local measurements on others

Normally have to optimise over measurement basis

Here, it is basis independent

Pirsa: 07030013 Page 90/94

New property of qudit singlets: highest possible persistency of entanglement

We can now make some new claims about qudit singlets

 Persistency of entanglement defined¹ as minimum number of local von Neumann measurements needed to completely disentangle the state

Pirsa: 07030013

New property of qudit singlets: highest possible persistency of entanglement

We can now make some new claims about qudit singlets

 Persistency of entanglement defined¹ as minimum number of local von Neumann measurements needed to completely disentangle the state