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Abstract: We show that singlets composed of multiple multi-level quantum systems can naturally arise as the ground state of a physically-motivated
Hamiltonian. The Hamiltonian needs to be one which simply exchanges the states of nearest neighbours in any graph of interacting d-level quantum
systems (qudits) as long as the graph also has d sites. We point out that local measurements on some of these qudits, with the freedom of choosing a
distinct measurement basis at each qudit randomly from an infinite set of bases, project the remainder onto a singlet state. One implication of thisis
that the entanglement in these states is very robust (persistent), while an application is in establishing an arbitrary amount of entanglement between
well-separated parties (for subsegquent use as a communication

resource) by local measurements on an appropriate graph. Based on quant-ph/0602139.
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Overview of talk
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Overview of talk

Introduction to qudit singlets: setting the scene and formal definition

Summary of previous results

Proof that qudit smglets are the ground state of a 2-local Hamiltonian for any graph
Proof that you can take arbitrary measurements and always obtam a smaller singlet
Proof that these state have the highest possible persistency of entanglement
Potential uses of such states / directions for future research

Preparation of qudit singlets in an optical lattice

Summary
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Introduction to qudit singlets: setting the
scene

Secret sharing problem

« Suppose A, wants to have a secret action taken on
her behalf at a distant location

« She has agents A_, ..., Ay to do it for her

« A knows that some are dishonest, but does not
know which

irsa: 07030013 Page 5/94
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Introduction to qudit singlets: setting the
scene

+ She cannot send a secure message to all, because the
dishonest parties will sabotage it

« Assume that if thev carry it out together, honest ones will
prevent dishonest ones damaging task

« So: A needs to convey a cryptographic kev to A, ..., Ay,
such that thev can only read it if they all collaborate
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Introduction to qudit singlets: setting the
scene

Problem can be solved if each of the N parties has a sequence of numbers
that:

1 Is truly random

n. Possible numbers are mtegers fromo, .., N -1

ni.  If number i is a position j in K's sequence, it does not appear at
position j i another's sequence

iv. Each party knows only his ‘her sequence

Properties are impossible classically, smce eavesdroppers could histen in
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Introduction to qudit singlets: setting the
scene

So we need a method to generate such sequences

A, s sequence defined as the key

Only way to reveal it is to make remaining parties share their
respective sequences

Keyv then composed by the missing results

A Cabello, PRL 89, 100402 (2002) & J. Mod. Opt. 50, 1049 (2003)



Introduction to qudit singlets: setting the
scene

A1 Az A3 Aq
4 2 1 3
1 2 1
2 4 3 1
1 3 4 2
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Introduction to qudit singlets: setting the
scene

If a dishonest party D declares an incorrect result,
there 1s a probability 1/(r — 1) where r = number
of honest parties, that other honest party H has
already obtained that result. Then H would stop
the process, so A,’s key would remain safe

Order in which agents declare respective results
must change from round to round to avoid D
always being last.
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Introduction to qudit singlets: setting the
scene

A1 A2 A3 Al
4 2 1 3
1 2 1
> 1 3 1
1 3 1 2
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Introduction to qudit singlets: setting the
scene

If a dishonest party D declares an incorrect result,
there 1s a probability 1/(» — 1) where r = number
of honest parties, that other honest party H has
already obtained that result. Then H would stop
the process, so A,’s key would remain safe

Order in which agents declare respective results
must change from round to round to avoid D
alwayvs being last.

Pirsa: 07030013 Page 12/94

A Cabello, PRL 89, 100402 (2002) & J. Mod. Opt. 50, 1049 (2003)



Introduction to qudit singlets: setting the
scene

There are two other examples, which reduce to the
same problem:

N-strangers problem and liar detection problem

So these states are usetul
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Definition of qudit singlets

« “Qudit singlets™ are N-party, [7&N S(d)> _ |gtd)
d-level states, with the property N/ |I”N

« Each partvisaspin (d - 1)/2; total spin is zero
« Ford = N, they take the form

S[\\J{ Z €ny....ny |0nl ----- Qi \;>
) =T 2
« We call this an N-singlet
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Definition of qudit singlets

N) 1
‘S‘\‘ (Cl')> = — Z e ny |a”1 ..... Qn \.>
/ T _ :
- {n1}

e« Sum is taken over all combmations

- State is antisymmetric under all permutation operators
P, where 1, j run between 1 and N

« They are essentially pure multipartite Werner states!?
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Properties of qudit singlets

O-O-0O-0O0

« [If all parties measure in anyv basis (must be the same for
each), a smaller qudit singlet is established at each stage
between the other parties
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A Cabello, PRL 89, 100402 (2002) & J. Mod. Opt. 50, 1049 (2003)



Properties of qudit singlets

O O-O-0O-0

5

« [If all parties measure in any basis (must be the same for
each), a smaller qudit singlet is established at each stage
between the other parties
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Properties of qudit singlets

O O OO0

0 2

« [If all parties measure in any basis (must be the same for
each), a smaller qudit singlet is established at each stage
between the other parties
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Properties of qudit singlets

OO O OO
o 2 3

« [If all parties measure in any basis (must be the same for
each), a smaller qudit singlet is established at each stage
between the other parties
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Properties of qudit singlets

« This 1s how the sequences are distributed to all the
parties

+ If the parties share a large number of copies of an
N-singlet, they can solve the problem
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Properties of qudit singlets

OO O OO
- S

« [If all parties measure in any basis (must be the same for
each), a smaller qudit singlet is established at each stage
between the other parties
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Properties of qudit singlets

« This 1s how the sequences are distributed to all the
parties

+ If the parties share a large number of copies of an
N-singlet, they can solve the problem



Secret sharing problem solved

A1 A2 A3 Ag
] 4 2 1 3
+ | 1 2 4
+ | 2 4 3 1
+ | 1 3 4 2
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Previous results: summary

« If the same arbitrary rotation is applied to each
qudit, the state 1s the same (up to a phase)

+ If all parties measure in any basis (must be the
same for each), a smaller qudit singlet 1s
established at each stage between the other parties
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Previous results: for general d, N

» Qudit singlets are essentially pure multipartite Werner
states! for special cased = N

« Thev do not exist® for N < d
« May be used as basis of decoherence-free subspace=3-4

« Conjectured that for N = md qudits, there are m

orthogonal such states?
- . *R. F Werner. PRA 40. 4277 (1989)
« May be used for multi-party =p Kok et al . quant-ph, 02011038 (2002)
. . o g: .= A Cabello. PRL 89, 100402 (2002)
remote state preparafion®> ¢ ;o4 Opt. 50, 1049 (2003)
Pirem: 07030013 4A Cabello. PRA 75 (2007) 020301(R) rage 250
SP. Agrawal ef al . quant-ph/ 0304006 (2003)



Motivation

irsa:

Given this multitude of applications, we would like to be
able to make these states

Little progress has been made to date, and only then in the
case of entangled photons'=>

Here we consider a condensed matter Hamiltonian. which
also mav be implemented in optical lattices, for the special

cased=N
*A Lamas-Linares et al, Nature 412, 887 (2001)

N 2N. Gisin, conference pmce'edings. Quantum .information: quantym
entanglement (Sant Feliu de Guixols, Spain, 2002)



Previous results: for general d, N

+ Qudit singlets are essentially pure multipartite Werner
states! for special case d = N

« Thev do not exist® for N < d

« May be used as basis of decoherence-free subspace>3-4

« Conjectured that for N = md qudits, there are m
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Motivation

irsa:

Given this multitude of applications, we would like to be
able to make these states

Little progress has been made to date, and only then in the
case of entangled photons'=

Here we consider a condensed matter Hamiltonian. which
also mav be implemented in optical lattices, for the special

cased=N
*A Lamas-Linares et al, Nature 412, 887 (2001)

N 2N. Gisin, conference pmce'edings. Quantum .information: quantym
entanglement (Sant Feliu de Guixols, Spain, 2002)



Our three main results

« N-singlets are the ground state of a 2-local Hamiltonian

« One can use anyv measurement basis to establish
smaller qudit singlets at successive measurements: it
follows that these states are the most persistent
possible

+ Discuss a potential realisation of this state in an optical
lattice
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Result 1: Qudit singlets are the ground
state of permutation Hamiltonians

« Let G be a graph, E(G) its set of
edges, and V(G) its set of vertices.

» Let there be a qudit at each vertex
(levels1, ..., N)

« Let connected vertices 1, ) interact
through a permutation operator P;

« This operator permutes all states at
sites 1 and 7, and is an element of

SU(d)

irsa: 07030013




Result 1: Qudit singlets are the ground
state of permutation Hamiltonians

 Then the Hamiltonian for 0 — Pi 7
this system is:

» This is the SU(d) generalisation of the Heisenberg
interaction

« We can show that the ground state of this a qudit singlet.
independently of the choice of graph G!

Pirsa: 07030013



Permutation Hamiltonians:
physical realisation

d
3,. .
 This can be written: Fij = Z S5a(1)S3(7)
where {S5(n)} arethe a,0=1
generators of SU(d) at nth vertex



Permutation Hamiltonians:
Lemmai = Z

i.j€E(G

« Lowest energy state of a permutation Hanultonian has energy equal to that
uf an eigenstate of all P; terms mcluded in the Hanultonian, all with
eigenvalue — 1

12

Example: in this case, the

lowest energy state will be an
eigenstateof P, P, P, P,
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Permutation Hamiltonians:
Lemmmai o — Z

Proof
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Permutation Hamiltonians:
Lemmai = Z

t.J€EE(G
« Proof
min (v H ) 2> Z min (¢ P; ¢
« To minimise the energy:  [v)ec?? iicE(G) lIEC)®N
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Permutation Hamiltonians:
Lemma 1 o= Z P,_j

i.j€E(G
« Proof
min (¢ Hv) > Z min (¥ Fi; )
By . . Ae(rd\EN c(cdyaN
« To minimise the energy: v)€E(C i.jeE(q) IEC
« Minimum of each term is —1, so min (V|H|vY) > —N,

|L')€1C'f!i N

where N_ 1s number of terms in Hamiltonian.
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Permutation Hamiltonians:
Lemma 1 o — Z PU

i.j€E(G
« Proof
- ]lliI} \_{L' Hv) > 111_i1: \_‘ff_ Fi; ¥
« To minimise the energy: (v ijcE(c) 1DEC
« Minimum of each term is —1, so min (¢ |H|y) > —N,
[w)e(Cd)@A

where N 18 number of terms 1in Hamiltonmian.

« Equality exists for a state that is individually an eigenstate of all terms in
Hamiltonian, and if this exists it is a ground state
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Permutation Hamiltonians:
Lemma?2 o Z

i.j€E(G

« If a state is an eigenstate of all permutation operators in the Hanultoman, it
is an eigenstate of all possible permutation operators

12

Example: in this case, if the

state is be an eigenstate of

P_P.P,,P,,itwillalso

4 be an elgenshte of all P
eg b P

_——
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Permutation Hamiltonians:
Lemma 2

« Proof:
+ (Consider a chain:

« Any permutation may be
written as a product of
nearest-neighbour
operators, e.g.:

PLI. =k P12 P23 P34. P23 PIE

Pirsa: 07030013
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Permutation Hamiltonians:
Lemma 2

+ So, an eigenstate of all nearest-neighbour permutations
must be an eigenstate of all permutations

+ Alwayvs an odd number of permutations

« (Can be readily generalised to any connected graph

irsa: 07030013
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Permutation Hamiltonians:
Lemma?2

« Proof:
« (Consider a chain:

« Any permutation may be
written as a product of
nearest-neighbour
operators, e.g.:

P14 - P12P23P34P23P12

Pirsa: 07030013

1

N SO B

A B C D
P B A C D
P B C A D
P: B C D A
P, B D C A
P- B B €
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Permutation Hamiltonians:
Lemma?2

+ So, an eigenstate of all nearest-neighbour permutations
must be an eigenstate of all permutations

« Alwayvs an odd number of permutations

« (Can be readily generalised to any connected graph

irsa: 07030013
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Permutation Hamiltonians:
Lemma?2

« Proof:
« (Consider a chain:

« Any permutation mayv be
written as a product of
nearest-neighbour
operators, e.g.:

Pu = P12P23P34P23P12

Pirsa: 07030013
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Permutation Hamiltonians:
Proof of ground state

« Theorem: The ground state of a SU(N) permutation
Hamiltonian on a lattice of N sites is an N-singlet

« From above, we know a state completely antisymmetric
under all permutations is a valid ground state

« A qudit singlet d = N satisfies this bv definition

« Uniqueness can be proven by contradiction
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Result 2: General measurements and
establishing smaller qudit singlets

« Recall that if all parties measure in the same basis,
a smaller qudit singlet is established at each stage
between the other parties

« Can we measure in any basis?
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Result 2: General measurements and
establishing smaller qudit singlets

@ /F (’?\ (’T\ @ What if we want to measure in some new

basis. as shown?

@ Perform some 7 on all =» still qudit
singlet

Perform U on others = should have
same effect?

irsa: 07030013 Page 46/94
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Result 2: General measurements and
establishing smaller qudit singlets

« We find that this is true
« First, we prove the property

T < QAN -1 l-\'] —~ rrTRON -1 (N)
U@ 7215V = 1 o UteN-1 5y

i.e. performing [ on one qudit is equivalent to
performing the adjoint operation on all other qudits
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Result 2: General measurements and
establishing smaller qudit singlets

@ (T\ (’;4\ /?\ @ What if we want to measure in some new

basis. as shown?

@ Perform some [ on all =» still qudit
singlet

Perform ' on others = should have
same effect?
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Result 2: General measurements and
establishing smaller qudit singlets

« We find that this is true
« First, we prove the property

(N) (N)

UT®N-lI5v ) =T @ U®N 1 57))

1.e. performing [ on one qudit is equivalent to
performing the adjoint operation on all other qudits
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Result 2: General measurements and
establishing smaller qudit singlets

« For a 2-singlet, we can prove this
UeD|sy)=UsU)|s’)
= (ZaUHUeU)|sy))
= (ZeUT) ‘S.'_f’>
« Making use of the invariance property
« This can be generalised to:

= o N — _\' ) 4+ N — "'
UeI®V-53")) = 10 UTeN-1 5\ Yy
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Result 2: General measurements and
establishing smaller qudit singlets

o Claim: When we measure an N-singlet written in a basis
{|a,>} at one qudit using an arbitrary basis {|B,><p.|},
we get a product of |B,> at the measured site and an
(N — 1)-singlet ‘5:{3'_"11'{.3:.5;}> in basis {13} " at the
other qudits
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Result 2: General measurements and
establishing smaller qudit singlets

« Proof:

« Introduce notation: \Sf,;};] (B: 3,:) is a singlet written in
basis )32V~ with state |f;,> missing

« Perform measurement |3) (3}

o Since 5 (4 - Ula) (o) 0"we have

18:) (il ® T2V

S\\ l{l'|>

i R -4 AN—=11oN
= U |a;) (| U' & T®N IIb\- €n|>

=U|oy) (| T@ USN ! ‘5\\

irsa: 07030013
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Result 2: General measurements and
establishing smaller qudit singlets

« To proceed, we write the N-singlet in the form

N
| (N : *11a,), IS5 (e
Sy 'ﬂ'> - _TZI_ T ‘b-"—' e >-"-

v I

and thus 19U |sP @) | =

1 N .
_yiH o N-1 N0y,
S o) o s @a), |,

« This 1s a qudit singlet in the new basis
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Result 2: General measurements and
establishing smaller qudit singlets

« Proof:

« Introduce notation: s\ "3 ) > is a singlet written in
basis () 3yy2V-1 with state |f,> missing

« Perform measurement |3) (3}

e Since i) (3 =0 o U"we have

18;) (B;| @ T2V |s

WN), |
()

= U |a;) (a;| U i 2 I":'\._’l |5'L.\\ *.ct'|>

Pirsa: 07030013
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Result 2: General measurements and
establishing smaller qudit singlets

« To proceed, we write the N-singlet in the form
1 -

AN £ { N —
S v :q|> = — )T a;); |_‘-,\_ Il lax: ax; > _
; vN e 2.....N

and thus 10U0°"|sp@) =

1 N 3
_yiH & N ol N-1) g
=3 Oa) U st @a),

« This i1s a qudit singlet in the new basis
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Result 2: General measurements and
establishing smaller qudit singlets

. o — on A __ ,I._\-' I
So the outcome is |3) (3|27 '\bx m_.>l o/ -1l
| AMIN-=1)

Sy_1 (B:5; ﬁl>__.

— j;;] ,', .
A~
...and we have proved the claim

The significance of this is seen if we iterate ...

irsa: 07030013
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Result 2: General measurements and
establishing smaller qudit singlets

Claim: If M pames perform successive measurementsin arbitrary
bases
= {Hf

Bm = { ]t okl

the (N — M) remaining parties share an (N — M)-singlet in the basis
B:?: N-M

Restriction: each basis transformation operates on a space one
dimension smaller than previous (hifted later)
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Result 2: General measurements and
establishing smaller qudit singlets

Proof:
Consider effect of measuring m basis (= )jon outcome of previous
measurement. End resultis

E 2\ |AN-2), (2). (2 2h \
\a; >! a; >_*fb-""—-' (@™ a; ", a; )

In general for M measurements
1)\ 1:3 ol N-M M M\

ny Jy o |0man ) ag [ON-M Oy ) N

Elements of vector i are the levels excluded

irsa: 07030013
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Result 2: General measurements and
establishing smaller qudit singlets

Restriction arises because the property
UeN |s') = |S)

onlv holds when [” operates on space inhabited by the singlet

So: at Ith measurement. we restrict basis transformation ')
to operate only on (N — ) levels

But ...

irsa: 07030013 Page 59/94



Result 2: General measurements and
establishing smaller qudit singlets

+ [t is well known that a d-level unitary can be written in
terms of two-level unitaries:

Ug=V1...V
« So: U U=V WV)...(Vie @ V})

« We can now use dxd unitaries that the V', act either within
the singlet subspace or its complement
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Result 2: General measurements and
establishing smaller qudit singlets

« But what happens if we really take measurements in any
basis?

« Consider effect of arbitrary unitary on 2-singlet of levels
J. (Vi@ WV))...(V; ® V;)(|lim) — |mj))

=(V1@&WV})...(Vic1 @ Vi1 )((V; 7)) Im) — [m) (V; |5)))

« Each of the factors on the L.h.s. take the singlet into a
different space, but its entanglement properties are
unaffected

+ So we end up with a singlet!

irsa: 07030013 Page 61/94



Result 2: General measurements and
establishing smaller qudit singlets

« So we conclude that:

when N parties share a qudit singlet, and M of them
perform local measurements, the remaining (N — M) of
them share a smaller qudit singlet, regardless of the
measurement choices or outcomes!
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New property of qudit singlets:
highest possible persistency of entanglement

« We can now make some new claims about qudit
singlets

« Persistency of entanglement defined' as minimum
number of local von Neumann measurements
needed to completely disentangle the state

irsa: 07030013 Page 63/94
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New property of qudit singlets:
highest possible persistency of entanglement

« Can be considered a measure of multi-partite
entanglement

» For cluster states?, it 1s ~N/2

« Here,itis (N — 1), the highest possible value for
an N-partite state
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Entanglement distribution

« For most quantum computing tasks, we need
entanglement to be shared by well separated
parties

 This 1s difficult to achieve by distributing photons

« One approach: localisable entanglement

irsa: 07030013
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Localisable entanglement

» Localisable entanglement (LE) = maximum amount of
entanglement one can concentrate between two parts of
system, by local measurements on others

« Normally have to optimise over measurement basis

« Here, it is basis independent
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Consequences for
localisable entanglement

« We introduce fwo subsystem LE:
« Normally LE relates to two qudits

« Now suppose Alice and Bob have control of small parts of
the graph, each of n qudits

« They can establish log, #"C), ebits between them

irsa: 07030013
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Consequences for
localisable entanglement

Alice Bob

e Ahce and Bob have access to the boxes

« By performing arbitrary measurements on the other qudits, they can
establish a 6-smglet, with log, °C, ebits shared between them

» Tlus 1s very relevant physically, as this can now be used for short
"H8tance communications or networkimg distinct quantum registe
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Result 3: physical realisation

« These have fermionic and bosonic representations:

S5(n) = cg o

« Potentially there could be many mplementatlons
including optical traps. quantum dots, spin tubes

« Indeed, this is a natural interaction arising when qudits
simply hop along a lattice with site occupancy of at
most one qudit

Pirsa: 07030013
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Hubbard model

« The permutation Hamiltonian mayv be obtained from the
Hubbard model in a certain limit*

e The standard. two-level. one-band Hubbard model
Hamiltonian is:

N
= —tz Z (c:;z-cgj +cgicij) UZRMTLU

(i) o=T,1 =
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‘E. Fradkin, Field theories of condensed matter svstems (Addison Weslev, 19001)




Hubbard model

+ Consider this in the half-filled regime

(there are no unoccupied sites, and no sites with
multiple occupancy)

« Consider strong-coupling limit: 7 >> ¢
(number fluctuations eliminated, energy cost of
leaving half-filled subspace 1s very large)
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Hubbard model

+ Treating the hopping term as a perturbation, we obtain an
effective Hamiltonian H = H /U

t f t t i
—(7 Z Z (cm-caj . cmcnj) (le-ij i 2 631'(333-)

a,0=T1,1 (ij)
« Expand and only keep terms which confine state to single-
occupancy subspace
(since [ is large these state are suppressed)
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Hubbard model

t .
H{; — 5 Z (CLiC_QiCZ‘jCQj -+ ng‘caiCLjC@j)
a=1I.l
2t° b
— 7 Caicsicﬁjcﬁj‘
a=T,]

 This is the two-level permutation Hamiltonian

i.e. the Heisenberg Hamiltonian with J = 2#2/U

H6 = JZS?; * Sy
(27)
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Hubbard model

« Now we add more levels:

H = —-tzz (cmcg_} -l—cmcaj) - UZ Z Ngilg’i.

(17) o=1 s o350’

« We repeat the derivation, but in the 1/d-filling regime
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Hubbard model

« We now obtain the effectit e Hamiltonian:

2t
H(; Z Cazc3lcgjcﬂ3

a=1

» which is equivalent to the permutation Hamiltonian

required:
H- ¥ 7
i.J€EE(G
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Hubbard model

« This derivation is also equivalent to a generalised
Schriefter—Woltf transformation?
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1L.-M. Duan, E. Demler and M. D. Lukin, PRL 90, 100401 (2003)



Hubbard model: candidate systems

« The levels must be degenerate (e.g. hyvperfine
levels)

 With 4°K atoms, one can obtain 2F + 1 = 10 levels
« With Er atoms, one can obtain 2F + 1 = 22 levels

‘M. Kohl et al., PRL 94, 080403 (2005)
"% MecClelland and J. L. Hanssen, PRL 96, 143005 (2006)
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Other potential realisations

« Spin ladders and tubes?

« Arrayvs of quantum dots with electrons having both
spin and orbital levels>

M. T. Batchelor and M. Maslen J. Phvs. A 32, L377(1999)
"= Li et al, PRB 62, 4866 (2000)
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Hubbard model

« Now we add more levels:

H = —-tzz (cmcw +cmcw) - UZ Z Ngilly’i-

(17) o= 1 1 oFo’

« We repeat the derivation, but in the 1/d-filling regime
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Hubbard model

« We now obtain the effecth e Hamiltonian:

2
Hl; Z Cazc3lcgjcaJ

—

« which is equivalent to the permutation Hamiltonian

required:
H- ¥ 7,
1. J€E(G

Pirsa: 07030013 Page 80/94



Other potential realisations

« Spin ladders and tubes?

« Arravs of quantum dots with electrons having both
spin and orbital levels>

‘M. T. Batchelor and M. Maslen J Phvs. A 32, L377(1999)
"H=0). Li et al, PRB 62, 4866 (2000)
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Potential uses of qudit singlets
(work in progress and open problems)

+ Teleportation, and measurement-based QC
« Making a valence bond solid

« Proving non-locality for arbitrarv numbers of observers,
measurements and outcomes

« Open problems
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Teleportation (work in progress)

‘ ¢> Similar to GHZ and cluster state

Q Q_Q_O teleportation

1. Alice, Bob and Charlie share [S3_>

2 Alice has another qudit in state

/’\ 3. Alice performs a measurement, sgthe

state 1s shared by Bob and Charlie
O O-_O_O 4. Bob measures

Charlie reconstructs the state using the
‘ Qb) classical bits from Alice and Bob

O O O Q Can this be generalised to

measurement-based QC?

o



Valence bond solid (work in progress)

I W > I W > | W > Bell pairs may be put together to

make a spin-1 chain*?

O_O O_O O—O Between each pair, the qubits are

projected to the ssmmetric spin-1
space

This makes a spin-1 chain with
two spin-1/2's at the ends

This can be used to implement a
qubat cluster stateSs

14 Affleck ef al., Commun. Math. Phys. 115, 477 (1988 ) & PRL 59, 799 (1987)
2H. Fan, V. E. Korepin, V. Roychowdhury, C. Hadley & S. Bose, guant-ph/0605133 (2006)
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3F. Verstraete & J. 1. Cirac, Phys. Rev. A 70, 060302(R) (2004)



Valence bond solid (work in progress)

So could we make a VBS from qudit singlets?

Mav not be phvsical, but could be interesting ...
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cf. H. Fan, V. E. Korepin & V. Roychowdhury, guant-ph/0512150 (2005)



Other questions (work in progress)

Other questions:
« Do there exist multi-qubit states with as much persistency?
« What do these states look like when d = N?
« For which d, N do thev exist?
(Derive criteria from Tr p < 1, as in bipartite case)

» Prove conjecture that for N’ = md qudits, there are m
orthogonal such states!
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P. Kok et al.. quant-ph/ 02011038 (2002)



Summary

« Introduced qudit singlets
« Summarised previous results

« Shown that qudit singlets are the ground state of a 2-local Hamiltonian for

any graph
« Shown that vou can take arbitrary measurements and still get a singlet
« Shown that they have the highest possible persistency of entanglement
« Reviewed potential uses of states: work in progress and open problems

e lldscussed potential implementation of these states N



Thank you for listening!
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Hubbard model

« We now obtain the effectit e Hamiltonian:

25
H(; Z Cazcslcj‘?}cﬂ.?

a=1

» which is equivalent to the permutation Hamiltonian

required:
i ¥ n
i.J€EE(G
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Localisable entanglement

« Localisable entanglement (LE) = maximum amount of
entanglement one can concentrate between two parts of
syvstem, by local measurements on others

« Normally have to optimise over measurement basis

« Here, it is basis independent
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New property of qudit singlets:
highest possible persistency of entanglement

« We can now make some new claims about qudit
singlets

+ Persistency of entanglement defined! as minimum
number of local von Neumann measurements
needed to completely disentangle the state
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*H. J. Briegel & R. Raussendorf, PRL 86, 910 (2001)
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