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Abstract: The mathematical formalism of quantum theory has many features whose physical origin remains obscure. In this paper, we attempt to
systematically investigate the possibility that the concept of information may play a key role in understanding some of these features. We formulate
a set of assumptions, based on generalizations of experimental facts that are representative of quantum phenomena and physically comprehensible
theoretical ideas and principles, and show that it is possible to deduce the finite-dimensional quantum formalism from these assumptions. The
concept of information, via an information-theoretic invariance principle, plays a central role in the derivation, and gives rise to some of the central
structural features of the quantum formalism.
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Elucidating the physical origins of quantum theory

e The formalism of quantum theory has many features whose physieal origin is

obscure (complex numbers, unitary evolition. etc.)
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Elucidating the physical origins of quantum theory
e The formalism of quantum theory has many features whose physical origin is
obscure (complex numbers, unitary evolition. etc.)

e Is it possible to derive these features using the concept ot

miormation? (Wheeler, Wootters. Zeilinger. Fuchs. ete.
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Elucidating the physical origins of quantum theory

e The formalism of quantum theory has many features whose physical origin is

obscure (complex numbers, unitary evolution. etc.)

e [s it possible to derive these features using the concept ot

information? (Wheeler, Wootters. Zeilinger. Fuchs. etc.

e We will deseribe a systematic attempt to explore this possibility by
formulating a novel information-theoretic principle. and showing how this
leads (in conjunction with a set of physical assumptions) to the

finite-dimensional quantum formalism.
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Why Information?
The concept of information plavs a new and thundamental role in quantum
; [
phvsics.

e Classical Physics. An ideal measurement provides an experimenter with

pertect knowledge about the nnknown state of a system....

=

..Shae=8...

Classical
Input System —= Measurement — Ouiput System
in state S
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Why Information?

The concept of imformation plays a new and fundamental role in quantum
phvsics.
e Classical Physics. An ideal measurement provides an experimenter with

perfect knowledge about the unknown state of a system....

_ Classical
Input System —= Measurement —= Ouiput System
in state S

..so there 1s no distinction bhetween (1) the state itselt. and (1) the ideal

experimenter s knowledge of the state.
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Why Information?
e Quantum Physiecs. An ideal measurement provides only partial knowledge
about an unknown state....

probabiity density cver
state space 15.

]

Input system in L » OCutput system
unknown state » e :

Ciuantum Measurement

..50 a sharp and tuindamental distinetion i1s drawn between the state and the

experimenter s knowledge of it.
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Why Information?
e Quantum Physies. An ideal measurement provides only partial knowledge
about an unknown state....

probabilty density over
state space 5.

]

Input system in _ B » Output system
unknown state > e '

Cuantum Measurement
..50 a sharp and tundamental distinetion i1s drawn between the state and the
experimenter s knowledge of it.

e Information serves as a means to relate the two: "How much information has

been obtained by the experimenter about the state 77

NEPE LU RSIEY OF Philip Goyal, Cavendish Lab
irsa: al. Ve - H at age
Pi 0701002% E- AMBRIDGE LIPp U0va 4AVETNQls d400TatorPage 8/227

. Eﬁ




Some recent informational approaches

1. Approaches of W. Wootters. C. Brukner, J. Summhammer.
e Make a few, physically comprehensible assnmptions.
e Impose an informational principle which concerns the amount of
miormation obtained when a measurement is performed.
e Obtamn Malus' Law.

e But unable to obtain the gquantum formalism.
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Some recent informational approaches

1. Approaches of W. Wootters, C. Brukner, J. Summhammer.
e Make a few, physically comprehensible assnmptions.
e Impose an informational principle which concerns the amount of
immformation obtained when a measurement 1s pertformed.
e Obtain Malus' Law.

e But unable to obtain the quantum formalism.

o

Approaches of A. Caticha. Clifton et al., A. Grinbaum. and others.
e Make abstract assumptions (e.g. introduction of complex numbers) at the
outset.

e But are able to obtain a significant fraction of the guantnm formalism.
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Wootters’ approach

Wootters considers an experimental arrangement where Alice tries to transmit

information about # to Bob using spin-1/2 systems:

%
—_— i A
‘hl

Source
Detectons

) (. o
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Wootters’ approach

Wootters considers an experimental arrangement where Alice

information about # to Bob using spin-1/2 systems:

-/ 2
B
— SRR _ --f
- e
Source IE[
Detactons
g, & 0. d
The state of the prepared spin is
) = 8/ PIE’”' | T _I| .

tries to transmit

where P, P, are the outcome probabilities of the measurement.
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Wootters’ approach

3 1 = .
Quantum theory tells us that P, = cos®(#/2). Hence. by analyzing n spins, Bob

learns about P; and therefore about #.
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Wootters’ approach
Quantum theory tells us that P; = cos®(#/2). Hence, by analyzing n spins, Bob
learns about P} and therefore about 6.

Wootters mnstead asks: “What himmction P (#) marimizes the amount of Shannon

information that Bob gains about # 77
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Wootters’ approach
Quantum theorv tells us that P; = cos?(8/2). Hence, by analyzing n spins, Bob
learns about P} and therefore about 6.

Wootters instead asks: “What himction P;(#) mazrimizes the amount of Shannon

information that Bob gains about # 77

Remarkably. he obtains a generalized torm of Malus™ law.

P, = COs> (M) y

2

where m 1s an undetermined mnteger (m # ) and #y i1s undetermined
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Formulation of the strategy

e The above-mentioned approaches support the view that information has an

mmportant role in our understanding of quantum theory.
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Formulation of the strategy
e The above-mentioned approaches support the view that information has an
mmportant role in our understanding of quantum theory.

e A formmulation using only phvsically comprehensible assumptions has the

potential to provide the greater understanding of quantum theory.
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Formulation of the strategy

e The above-mentioned approaches support the view that information has an

important role in our understanding of quantum theory.
e A formulation using only physically comprehensible assumptions has the

potential to provide the greater understanding of quantum theory.

e Our objective will be to explore whether is it possible to build up the
guantum formalism using the concept of information using only physically

comprehensible assumptions.
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Physical Comprehensibility

e Bv “phyvsically comprehensible”, we mean that the assumptions should have

the properties:
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Physical Comprehensibility

e By “physically comprehensible”, we mean that the assumptions should have
the properties:
1. Transparency: Transparently understandable as a clear assertion about

phyvsical events.
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Physical Comprehensibility

e By “physically comprehensible”, we mean that the assumptions should have
the properties:
l. Transparency: Transparently understandable as a clear assertion about

phyvsical events.

]

Traceability: Traceable to experimental facts and plausible physical

principles or ideas.
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Physical Comprehensibility

e By “physically comprehensible”, we mean that the assumptions should have
the properties:
l. Transparency: Transparently understandable as a clear assertion about
physical events.
2. Traceability: Traceable to experimental facts and plausible physical
principles or ideas.
e Historical Example: In Einstein's derivation of the Lorentz
transformations, the two postulates are both transparent and traceable.

For example. the speed of light postulate:
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Physical Comprehensibility

e By “physically comprehensible”, we mean that the assumptions should have
the properties:
1. Transparency: Transparently understandable as a clear assertion about
phyvsical events.
2. Traceability: Traceable to experimental facts and plausible physical
principles or ideas.
e Historical Example: In Einstein's derivation of the Lorentz
transformations. the two postulates are both transparent and traceable.
For example. the speed of light postulate:
1. can be clearly understood as an assertion about the results of an

experimental procedure, and
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Formulation of the Assumptions

Accordingly. we shall seek to formulate assumptions that are. as far as possible:
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Physical Comprehensibility

e Byv “physically comprehensible”, we mean that the assumptions should have
the properties:
l. Transparency: Transparently understandable as a clear assertion about
phyvsical events.

2. Traceability: Traceable to experimental facts and plausible physical
principles or ideas.

e Historical Example: In Einstein's derivation of the Lorentz
transformations. the two postulates are both fransparent and traceable.
For example. the speed of light postulate:
1. can be clearly understood as an assertion about the results of an
experimental procedure, and

2. can be regarded as based on well-established experimmental
facts (Michelson-Morley) that are generalized in light of the principle ot

the uniformitv of nature.
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Formulation of the Assumptions

Accordingly. we shall seek to formulate assumptions that are. as far as possible:
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Formulation of the Assumptions

Accordingly. we shall seek to formulate assumptions that are. as far as possible:

(1) drawn from the theoretical framework of classical physics and other
well-established theoretical frameworks (such as probability theory and

Shannon’s theorv of information).
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Formulation of the Assumptions

Accordingly. we shall seek to formulate assumptions that are. as far as possible:

(1) drawn from the theoretical framework of classical physics and other
well-established theoretical frameworks (such as probability theory and

Shannon’s theorv of information).

(ii) based on experimental facts characteristic of quantum phenomena. or
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Organization of the Formulation

1. Basic notions
e Background Assumptions — definition of elementary terms (system,
background. state. ete.). which are needed for theoretical modeline to
begin.
e Idealizations — assumptions concerning the type of measurements.

interactions. and backeround that are considered.

UNIVERSITY OF P e
irsa: ral, AVE > e t age
P 0701002@ I.- AMBRIDGE HIPp Uova 4dVEMAISs dD00TaLl0T Rage 29/227




Organization of the Formulation

1. Basic notions
e Background Assumptions — definition of elementary terms ( system,
background. state. ete.). which are needed tor theoretical modeling to
begin.
e Idealizations — assumptions concerning the type of measurements,

mmteractions. and backeround that are considered.

2. Abstract experimental set-up
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Organization of the Formulation

1. Basic notions
e Background Assumptions — definition of elementary terms (system,
background. state, ete.). which are needed for theoretical modeline to
begin
e Idealizations — assumptions concerning the type of measurements.

imteractions., and backeround that are considered.

2. Abstract experimental set-up

e Provides a precise description of an abstract. idealized experimental
set-np without making use ot the abstract langnage of gquantum

theory (such as “pure state’).
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Organization of the Formulation

1. Basic notions

e Background Assumptions — definition of elementary terms ( system,
background. state. ete.). which are needed tor theoretical modeling to

begm.
o Idealizations — assumptions concerning the type of measurements.
mmteractions, and backeground that are considered.
2. Abstract experimental set-up
e Provides a precise description of an abstract. idealized experimental
set-np without making use ot the abstract langnage of quantum
theory (such as ‘pure state’).
3. Postulates

e The postulates determine the theoretical model of the abstract set-up.
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Organization of the Formulation

1. Basic notions
e Background Assumptions — delinition of elementary terms (system,
background. state. ete.). which are needed tor theoretical modeling to
begin.
e Idealizations — assumptions concerning the type of measurements,

interactions., and backeround that are considered.
2. Abstract experimental set-up
e Provides a precise description of an abstract. idealized experimental
set-np without making use ot the abstract langnage of quantum
theory (such as ‘pure state’)
3. Postulates
e The postulates determine the theoretical model of the abstract set-up.
e An additional principle (The Average-Value Correspondence Principle)

allows the derivation of the formal rules (commmutation relations. etc.)

needed to model partienlar experimental set-ups.
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Deductive Formulation of Quantum Theory

3. Postulates

e The postulates determine the theoretical model of the abstract set-up.
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Deductive Formulation of Quantum Theory

3. Postulates
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e The postulates determine the theoretical model of the abstract set-up.

e An addifional principle (The Average-Value Correspondence Prineiple

allows the derivation of the formal rules (commutation relations, etc.)

needed to model particular experimental set-ups.
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Background Assumptions

At the outset, we adopt from classical physies the following key assumptions:

e Partitioning: The universe is partitioned into a system. the background
environment of the system. measuring apparatuses, and the rest of the

NNIVerse.
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Background Assumptions

At the outset, we adopt from classical physies the following key assumptions:

e Partitioning: The universe is partitioned into a system. the background
environment of the system. measuring apparatuses, and the rest of the

NNIVEeTse.

e Time: In a given frame of reference, one can speak of a physical time which
15 common to the system and its background. and 1s represented by a

real-valued parameter
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Background Assumptions

At the outset, we adopt from classical physies the following key assumptions:

e Partitioning: The universe i1s partitioned into a system. the background
environment of the system. measuring apparatuses, and the rest of the
NIverse.

e Time: In a given frame of reterence, one can speak ot a physical time which
1s common to the syvstem and its background, and is represented by a

real-valuned parameter, t.

e States: At any time. the system is in a definite physical state, whose

mathematical description is called the state of the system.
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Idealizations

1. Measurements are assumed to have the following properties:

o Finiteness: Measurements vields a finite number of possible outcomes.
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Idealizations

1. Measurements are assumed to have the following properties:
e Finiteness: Measurements vields a finite number of possible outcomes.
o [istinctness: The possible outeomes have distinet valnes.
o Repetition Consistency: When a measurement is immediately repeated.
the same outcome 15 obtained with certamntv.
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Idealizations

1. Measurements are assumed to have the following properties:
e Finiteness: Measurements vields a finite number of possible outcomes.
o Ihistinctness: The possible outeomes have distinet values.
e Repetition Consistency: When a measurement is immediately repeated.
the same outcome 15 obtained with certamtv.
e (lassicality: The measurements do not involve auxiliary quantum

Systems.
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Idealizations

1. Measurements are assumed to have the following properties:
e Finiteness: Measurements vields a finite number of possible outcomes.
e Distinetness: The possible outcomes have distinet values.

Repetition Consistency: When a measurement is immediately repeated.

L
the same outcome 15 obtained with certamtv.
e C(lassicality: The measurements do not involve auxiliary quantum

systems.
Interactions are assnmed to have the following properties:

o Identity-preserving: Interactions preserve the identity of the system.

[t TR O Philip Goyal, Cavendish Lab
irsa: ral, dVE : e t dage
P 0701002% AMBRIDGE HIPp UOya dVEMAIS dD00TaLl0TRage 42/227




Idealizations

1. Measurements are assumed to have the tollowing properties:
o Finiteness: Measurements vields a finite nnmber of possible outcomes.
o [istinctness: The possible outeomes have distinet valnes.
e Repetition Consistency: When a measurement is immediately repeated.
the same outcome 15 obtained with certamntv.

o (lassicality: The measurements do not involve auxibiary quantum

SYStems.

Interactions are assumed to have the following properties:

o Identity-presermng: Interactions preserve the identity of the system.

e Reversibility and Determinacy: Interactions are reversible and

deterministic at the level of the state of the system.
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Idealizations

1. Measurements are assumed to have the following properties:

o Finiteness: Measurements vields a finite nnmber of possible outecomes.
o [istinctness: The possible outeomes have distinet values.

e Repetition Consistency: When a measurement is immediately repeated.
the same outcome 15 obtamned with certamntv.

Classicality: The measurements do not mmvolve auxiliary quantum
Systems.

Interactions are assumed to have the following properties:
o Ildentity-presermng: Interactions preserve the identitv of the system.
o Reversibility and Determinacy: Interactions are reversible and

deterministic at the level of the state of the system.

The internal dynamics of the backeround is assumed to be adequately
modeled within the eclassical framework.
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Idealizations

2. Interactions are assumed to have the following properties:

o Identity-preserving: Interactions preserve the identity of the system.
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Idealizations

2. Interactions are assumed to have the following properties:
o Identity-preserving: Interactions preserve the identity of the system.
o Reversibility and Determinacy: Interactions are reversible and

deterministic at the level of the state of the system.
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Abstract Experimental Set-up

-
/f
=

e - , =
gl'u'laasimmem = : . inter?.cm:m 3 hhausg?rﬁzr;ma‘ﬂ : :
I i - - ' : -
- e -:.;‘ l P _ o '______-"‘\ E
I o
Source Preparation Measurement
A
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An Ideal Preparation

e The basic purpose of an experimental set-up is to study how some property

of a system 1s influenced by mteractions with the background
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An Ideal Preparation
e The basic purpose of an experimental set-up 1s to study how some property
ol a system is influenced by interactions with the background

e We do this by preparing the system in some way, subjecting it to

interactions. and then performing a measurement on it.
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An Ideal Preparation

e The basic purpose of an experimental set-up is to study how some property
of a system 1s influenced by mmteractions with the background

e We do this by preparing the system in some way, subjecting it to
mmteractions. and then performing a measurement on it.

e An ideal preparation is one that gives us maximal control over the degrees ot
freedom of the state which encode the property of the system we are

studving
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An Ideal Preparation
e The basic purpose of an experimental set-up is to study how some property
of a system 1s influenced by imteractions with the background

e We do this by preparing the system in some way, subjecting it to

interactions. and then performing a measurement on it.

e An ideal preparation is one that gives us maximal control over the degrees ot

freedom of the state which ene '1.tu;ir- the property of the system we are

studving.

e (lassical and gquantum physics disagree about what constitutes an ideal

preparation.
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An Ideal Preparation

e The basic purpose of an experimental set-up is to study how some property

of a system is influenced by mmteractions with the background

e We do this by preparing the system in some way. subjecting it to

interactions. and then performing a measurement on it.

e An ideal preparation is one that gives us maximal control over the degrees ot
freedom of the state which encode the property ot the system we are

studving.
e (lassical and gquantum physics disagree about what constitutes an ideal

preparation.

e [s it possible to find a test or operational procedure that allows us to
determine if a preparation is ideal in the quantum setting without reference

to the quantum formalism?
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Key Notion: Completeness of a Preparation

e In classical physics, if a system undergoes an ideal preparation, it is prepared

in a precisely known state.
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Key Notion: Completeness of a Preparation

e In classical physics, if a svstem undergoes an ideal preparation, it 1s prepared

in a precisely known state.

e Once a system is prepared in this way. the results of subsequent
measurements are independent of the history of the system prior to the

Prey ml..frFlU]_l
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Key Notion: Completeness of a Preparation

e In classical physics, if a svstem undergoes an ideal preparation, it 1s prepared

in a precisely known state.

e Once a system is prepared in this way. the results of subsequent
measurements are independent of the history of the system prior to the

preparation.

e One can sav: the preparation is complete with respect to the subsequent

meEasurements.
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Completeness in Quantum Theory

e (ne encounters an analogous situation in quantum theory.
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Key Notion: Completeness of a Preparation

e In classical physies, if a svstem undergoes an ideal preparation, it 1s prepared

in a precisely known state.
e Once a system is prepared in this way. the results of subsequent
measurements are independent of the history of the system prior to the

preparation.

e One can sav: the preparation is complete with respect to the subsequent

measturerments.
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Completeness in Quantum Theory

e (One encounters an analogous situation in quantum theory.
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Completeness in Quantum Theory

e One encounters an analogous situation in gquantum theory.

e Consider an experiment where. in each run. a spin-1/2 system undergoes a

preparation and measurement using Stern-Gerlach devices.

—
SOurce o : IEI

Cetectors
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Completeness in Quantum Theory

e One encounters an analogous situation in quantum theory.

e Consider an experiment where. in each run. a spin-1/2 system undergoes a

preparation and measurement using Stern-Gerlach devices.

b -
miES - — o
Source g | = IEI
Destectors
{0 O) & a)

e (Quantum theory tells us that the outcome probabilities of the measurement

are independent of the pre-preparation history of the spin-1/2 system.
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Completeness in Quantum Theory

e (ne encounters an analogous situation in quantum theory.

e Consider an experiment where. in each run. a spin-1/2 system undergoes a

preparation and measurement using Stern-Gerlach devices.

b 4 -
T — Inleacton. #————— — -
R & | T
Source e T IEI
Detectors
':':'. (i)} 18, al

e (Quantum theorv tells us that the outcome probabilities of the measurement

are independent of the pre-preparation history of the spin-1/2 system.

e So0. analogously. we can say that the preparation is complete with respect to

the measurement.
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Operational Definition of Completeness

e Suppose that measurement A is performed in n runs of an experiment, and
generates the data string ID),, = a1a-...a,. where a, 15 the outcome on

the rth run.

' =]

Measurement

n e " -
S(t) —3—o A =

trials

[=1E]
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Operational Definition of Completeness

e Suppose that measurement A is performed in n runs of an experiment, ane
generates the data string DD, = a1a5...a,. where a, 15 the outcome on

the rth run.

= E
L Measurement n B
() ; ! — A oo
[

e [),, can be modeled by a probabilistic source with some probability

n-tuple P = (P1.Po.....PN).

M
F’*=|{F‘1.PE,....I?‘]..,}.-éjr b D, ="a,a,..a,
= trials
H\ 1
UNIVERSITY OF
Philip Goval, Cavendish Laboratorwyage 63227
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Definition of Completeness

e Definition: if P is independent of arbitrary pre-preparation interactions
with the system. then the preparation is complete with respect to the

measurement A.
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Definition of Completeness

e Definition: if P is independent of arbitrary pre-preparation interactions
with the system. then the preparation is complete with respect to the

measurement A.

e [ntuitively, the preparation provides maxamal control over the “degrees of

freedom™ of the svstem that are relevant to the outecomes ot measurement A.
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Measurement Pairs

e - ; - '
e Definition: If completeness still holds when measurements A and A’ are

1 i ' r
exchanged, then A. A" form a measurement pazr.
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Measurement Pairs
e Definition: If completeness still holds when measurements A and A’ are
exchanged, then A, A’ form a measurement pair.

e Intuitively, measurements A and A’ are probing precisely the “same region

of property-space” of the system.
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Measurement Pairs
e Definition: If completeness still holds when measurements A and A’ are
exchanged, then A, A’ form a measurement pair.

e Intuitively, measurements A and A’ are probing precisely the “same region

of property-space” of the system.

e Example: Any two Stern-Gerlach measurements form a measurement pair.
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Measurement Sets

e Definition: The set of measurements generated by A forms a measurement
set. A. and 1s defined as the set of all measurements that
(a) form a measurement pair with A, and that

b) are mot a composite of other measurements m A.
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Measurement Sets

e Definition: The set of measurements generated by A forms a measurement
set. A. and 1s defined as the set of all measurements that
(a) form a measurement pair with A, and that
(b) are not a composite of other measurements m A.

e Intuitively the measurements in the set are all measurements probing a

given “region of property space’.
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Measurement Sets

e Definition: The set of measurements generated by A forms a measurement
set. A. and 1s defined as the set of all measurements that
(a) form a measurement pair with A, and that
b) are mot a composite of other measurements m A.

e I[ntuitively the measurements in the set are all measurements probing a
given “region of property space”.

e Example: The set of all Stern-Gerlach measurements forms a measurement
set with respect to a spin-1/2 system. Composites of two or more successive

Stern-Gerlach measurements are excluded.
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Compatible Interactions

Definition: An interaction is compatible with the measurement set if and only if
it preserves the completeness of any preparation with respect to any

measurement.
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Compatible Interactions

Definition: An interaction is compatible with the measurement set if and only if
it preserves the completeness of any preparation with respect to any

measurement.

e Intuitively, the interaction is not coupling the region of property space under

study with ether regions of property space.
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Compatible Interactions

Definition: An interaction is compatible with the measurement set if and only if
it preserves the completeness of any preparation with respeect to any
measurement.
e Intuitively, the interaction is not coupling the region of property space under
study with ether regions of property space.
e Example: Uniform B-field mteractions with a spin-1/2 system are

compatible with the Stern-Gerlach measurement set. Non-unitorm B-feld

interactions are not compatible.
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Interaction Sets

Definition: An interaction set. L. is the set of all interactions compatible with

the measurement set.
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Interaction Sets
Definition: An interaction set, L. is the set of all interactions compatible with
the measurement set.

e Example: The interaction set for a spin-1,/2 system undergoing

Stern-Gerlach measurements 1s the set of all wmiform B-field imteractions.
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Disjoint Set-ups

e Suppose that a system admits a guantum model with respeet to

. o
measurement sets 4'' and A7,
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Disjoint Set-ups

e Suppose that a system admits a guantum model with respeet to

15 oy
measurement sets A4'' and A",

oy - \ {3 e s - 5
e Definition: If the sets A'" and A4'?) are disjoint, then the set-ups will be

said to be disjoint.
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Disjoint Set-ups

e Suppose that a system admits a quantum model with respeet to
measurement sets A'" and A",
' -y o= . " i 5D Tm = . .
e Definition: If the sets A'" and A'¥) are disjoint, then the set-ups will be
,*54'_-}.]'_41_ 8] be 1Ei_-'.j[,li_]’_]_1’,
e Intuitively, the set-ups are examining distinet aspects of the property space

of the svstem.

A
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Disjoint Set-ups

e Suppose that a system admits a guantum model with respeet to

measurement sets A4'Y and A'“).

n T ¥ 3 ! {3y g= = = =
e Definition: If the sets A" and A'%) are disjoint, then the set-ups will be

said to be disjoint.

e Intuitively, the set-ups are examining distinet aspeets of the property space

of the svstem.

. Exanﬂple: A source emits a system consisting of two distingnishable
spin-1/2 particles on each run of an expermment. If there are two set-ups.
with each set-up involving Stern-Gerlach measurements on only one of the

particles. then the set-ups are disjoint.
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The Postulates

The postulates can be divided as follows:
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The Postulates

The postulates can be divided as follows:

(a) Based on Classical Physics. Postulates adopted from classical phvsics.
either unchanged or modified in the light of experimental facts characteristic

of quantum phenomena.
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The Postulates

The postulates can be divided as follows:

(a) Based on Classical Physics. Postulates adopted from classical phvsics.
either nnchanged or modified in the light of experimental facts characteristic
of guantum phenomena.

(b) Based on Classical-Quantum Correspondence. Postulates obtained

through a classical-gquantum correspondence argument.

ﬁ
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The Postulates

The postulates can be divided as follows:

(a) Based on Classical Physics. Postulates adopted from classical physics.
either nnchanged or modified in the light of experimental facts characteristic

of gquantum phenomena.

(b) Based on Classical-Quantum Correspondence. Postulates obtained

through a classical-quantum correspondence argument.

(¢) Nowvel Postulates. Postulates. with no classical analoeues. based on

experimental facts or novel theoretical principles or ideas.
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Organization of the Postulates

Measurements. 3. Transformations.
1.1 Finite and Probabilistic 3.1 One-to-one.

ountcomes. o :
3.2 Inwvariance.
1.2 Repetition. et , : ,
I 3.3 Parameterized Transtormations.
1.3 Representation of
. Consistency.

Measurements. L. Consistenc:

. Composite Systems.

(A ] |

2. States.

2.1 States.

]
)

Physical Interpretation of
the x;.
2.3 Intormation Gain.

Prior Probabilities.

o
s
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Organization of the Postulates

Measurements.

1.3 Representation of
Measurements.
2. States.

2.1 States.

2.2 Physical Interpretation

the x;.
2.3 Information Gain.

2.4 Prior Probabilities
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3.2 Iovariance

Consistency.

. Lot
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WISTEE

Svstems.
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Postulate 1.1

1 Measurements.
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Postulate 1.1

1 Measurements.

e Kev new idea: All measurements in the measurement set 4 have

N observable outcomes.
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Postulate 1.1

1 Measurements.

[l

e Kev new idea: All measurements in the measurement set 4 have
N observable outcomes.

e The postulate 1s a modification of determinacy and continuum assumptions
of classical physics in the Light of experimental facts characteristic of

quantum phenomena (such as Stern-Gerlach measurements on silver atoms).
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Postulate 1.2

1 Measurements.
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Postulate 1.2

1 Measurements.

e [dentical to the assumption of repetition consistency of classical physies.

e Comsistent with experimental findings in many quantum experiments (such

as Stern-Gerlach measurements on spin systems).
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Postulate 1.3

1 Measurements.

1 9 Po oy F o : : g :
1.3 J.r;’“ SEMLTALION o _|fr.-.-.'.-'..'u ITLETLLS. ]:-.wl 41y FIVen pair 'rf

measurements. A. A’, there exast mteractions L. I'. such that A can b
represented (insofar as the probabilities of the observed outcomes and of
the output states are concerned) by an arrangement where I is

immediately followed by A’ which. in turn. is immediately followed bv T'.
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Postulate 1.3

1 Measurements.
1.3 Representation of Measurements. For any given pair of
measurements. A. A’. there exist i:_:‘:'-a'e!- tions L. I'. such that A can b
represented (insofar as the probabilities of the observed outcomes and of
the output states are concerned) by an arrangement where I is

immediately followed by A’ which. in turn. is immediately followed bv T'.

A novel assumption, generalized from appropriate experimental
facts (Stern-Gerlach measurements on silver atoms). with no classical

analogue.
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Postulate 1.3

Measurament _ "
Input Systemn — = A —»= Oulput Systemn
o i e
u c$ .
= _ Interaction Measurement \ Inferacfion | _
Input Systerm ——=——— I —— A —— I —— 1 Cutput System
~ _ i :

Bl B UNIVERSITY OF

...,ﬂ'....

Pirsa: 0701002 y CAMBRIDGE Philip Goval, Cavendish Laboratorwyage 941227




Postulate 2.1
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Postulate 2.1

2 States.

Postulate 2.1 1s based on a classical-quantum correspondence argnment:
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Postulate 2.1

2 States.

2.1 States. The state. S(t). at time ¢, can b«

)

I

deosrees

I Py.....Py)and ¥ = (x1----.xn~)-. where the y; are real-valued

Postulate 2.1 1s based on a classical-quantum correspondence argnment:

(a) Suppose a particle. mass m, is prepared using

time #,. is subject to a potential V(r, 1), and

measurement at time f;.
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Postulate 2.1

2 States.

2.1 States. The state. S(t). at time t. can be represented as ( P. v). where

P=(P. - Py) and ¥ = (x1..-.. XN ). where the y; are real-valued

degrees of freedom.

Postulate 2.1 1s based on a classical-quantum correspondence argument:

(a) Suppose a particle. mass m, is prepared using a position measurement at
time #,. 1s subject to a potential V(r, 1), and undergoes a position
measurement at time f;.

(b) If the position measurements are sufficiently high in resolution, we find that
the preparation is complete with respect to the subsequent position

measurerment.

18 UNIVERSITY OF
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Postulate 2.1

2 States.

2.1 States. The state. S(t). at time ¢, can be represented as ( P. x ), where

P=(P.....Py)and x = (X1----- XN )- where the y; are real-valued

degrees of freedom.
Postulate 2.1 1s based on a classical-gquantum correspondence argnment:

(a) Suppose a particle. mass m, is prepared using a position measurement at
time tp. 1s subject to a potential V(r, t), and undergoes a position

measurement at time f;.

(b) If the position measurements are sufhciently high in resolution. we find that
the preparation is complete with respect to the subsequent position

measurement.

(¢) Theretore. we can model the situation using the quantum framework.
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Postulate 2.1

(d) As m tends to macroscopie values. the behavior ot the particle is
]

well-described by classical physies. Yet the outcomes of the position

measurement are still probabilistic.

Bl B UNIVERSITY OF

...!u'...

Pirsa: 0701002 y CAMBRIDGE Philip Goyal, Cavendish Laboratorsge 1001227




(d)

Postulate 2.1

As m tends to macroscopic values. the behavior ot the particle is

well-deseribed by classical physies.

Yet the outcomes of the position

measurement are still probabilistie.

(e} Hence.

with state
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the correct classical model 1s the disere

tized Hamilton-Jacobi model.
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Postulate 2.1

(d) As m tends to macroscopie values. the behavior ot the particle is
well-described by classical physies. Yet the outecomes of the position

measurement are still probabilistic.

(¢} Hence. the correct classical model 1s the disceretized Hamilton-Jacobi model.

with state

(f) To obtain a one-to-one correspondence between the guantum and classical
states, the quantum state must be (P;: x;). where the y; are real-valued

degrees of treedom.
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Postulate 2.1

Quantum T
(Pi; xi) Evolution -~ (Pi’xi)

L)

oM. Classical e
) Evolution >S5
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2 States.
) ©) _.'"-‘.-'_: 19T -'. nternretati

the outcome 1 15 obt
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ed. there are additional outcomes that ar
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Quantum e
Evolution > (Pi’xi)
Classical ' CM, O
Evolution ,.(Pi ’Sf)
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Postulate 2.2

15

outcome
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Postulate 2.2

2 States.

tation of the y;. When measurement A is performed and

the outcome 1 15 obtained. there are additional outcomes that are

(a) one of two outcomes (labeled a and b), obtained with respective
probabilities P, ; = (). and Fy; = Q);,.. where @, flx:)
and 2y f(x;). where f 1s not a constant tunction and f and f hawve

rang 1.1|. and
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Postulate 2.2

2 States.

PreLd

2.2 Physical intes tion of the y;. When measurement A is performed and
the outcome 1 is obtained. there are additional outcomes that are
objectively realized but unobserved:

(a) one of two outcomes (labeled a and b), obtained with respective

probabilities P,; = Q7. and B,; = Q7 .. where Q,;; = f(x;)
and (Jy; f(x;). where f is not a constant function and f and have
range |—1. 1|, and

(b) one of two possible outeomes (with values labeled + and —). which 15

determined by the sign ot (),; or (Jp; depending upon whether

- b

outcome a or b has been realized
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Postulate 2.2
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Postulate 2.2

1. When measurement A is performed. and outcome 7 is observed. either a or b

s additionally realized (but unobserved).

el

2. Outcomes a and b are realized probabilistically. with probabilities F,; = Q- .

= r ¥ =
and Fy; = ;. respectively.
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Postulate 2.2
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Postulate 2.2

2 States.

922 Physical intes

S pretation of the y;. When measurement A is performed and
the outcome 1 1s obtained. there are additional outcomes that are
objectively realized but unobserved:

(a) one of two outcomes (labeled a and b), obtained with respectivi

yrohabilities f". _ ;L}f _and I:l (-,JT: . g {_;}I- flxe)
and {3] 1 .-'l:j Xz where f 15 not a constant tunction and - aned __-'L: ha
range |—1. 1|, and

(1 one orf two E‘Hr«hiilll' mtecomes (with values labeled + and P

determmed by the sign of (Ju); or (Jy; dependmg upon whether

- b

ontcome a or b has been realized
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Postulate 2.2
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Postulate 2.2

1. When measurement A 1s performed. and outcome 7 1s observed, either a or b

18 additionally realized (but nnobserved).
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Postulate 2.2

- 4

1. When measurement A 1s performed. and outcome 7 1s observed. either a or b

5 additionally realized (but unobserved).

B8]

Outcomes a and b are realized probabilistically. with probabilities P, = ()

¥
and Pp; = Q3 ., respectively.
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Postulate 2.2

1. Outcomes a and b are motivated by desideratum that the degrees of freedom

in the state as far as possible encode probabilities of events.
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Postulate 2.2

1. Outcomes a and b are motivated bv desideratum that the degrees of freedom

in the state as tar as possible encode probabilities of events.
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Postulate 2.2

1. Outcomes a and b are motivated by desideratum that the deerees ot freedom

in the state as tar as possible encode probabilities of events.

2. The (),; and (Jp); are motivated by the fact that, in the polarization of a
photon. the ‘state’ 1s (cos#.sinf). which leads to the

- = I 3 - 2
yrobabilities cos= #.sin” 6.
I
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about S(#) in n runs of

tends to mbhmnity.
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Postulate 2.3

measurement A is performed

amount of Shannon-Jayne
rmined outcomes
the experiment is independent ot S(f) in the
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Postulate 2.3

e Consider two experimental trails, each consisting of n runs.
- Measurement bt T oy sformation about
Sit) —= A e, £ i =&
Measurement s it nformation about
S(t) ——— A iata, D', At
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Postulate 2.3

e Now. by Postulate 1.3 ( Representation of Measurements). we can replace

measurement A’ in trial 2 as follows:

o Measursment e E —ry Information about
Sit) —————— = data. Ly

o i Measurement P s Terenta Hormanan about
S(f) ——s (M g A
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Postulate 2.3

e Grouping together S(f) and I. we have. equivalently:

Maasurement — eraal o e e
E““ —_— A 2. L - e
[ S Measuremernt ial
St 3 Intem:tlun : A s erenla ""rm.;‘z_!‘. 3N about
...where 5'(t) = M(S(t)). where M represents the effect of interaction L
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Postulate 2.3

e Suppose that trials 1 and 2 yield different amounts of information about S(t).

Measurement P Terenis Infarmation about
st ————— A i ot
Measurement =

Information about

S|tl| 4—- Al- 13i3 __
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Postulate 2.3

e Grouping together S(¢) and I. we have, equivalently:

Measurement e erental biloncakanaboul
5'“ — A cilcd. L . 210
3 NSy -
Sl:t'l > . Intﬂ-rac:’tl 1on i T ME!EIEAI;HEI Terl s D =remtg | "i'."‘l‘l.:‘!:f'l - about

...where §'(t) = M(S(t)). where M represents the effect of interaction L
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Postulate 2.3

e Suppose that trials 1 and 2 yield different amounts of information about S(t).

S ———— RS iata. T sisalalon: Information about
: ' A LA Foce St
_ Measurement G b s Information about
S(t) ——t A Sy
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Postulate 2.3

e Suppose that trials 1 and 2 yield different amounts of information about S(t).

_ Measurement I SRR Information about
St ———— A T roce St

Measurement e IErenta Irformation about
S(t) —=—p A "

e This implies that one of the measurements A and A’ is privileged insofar as

the amount of iInformation 1t vields about S(1).
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Postulate 2.3

e Suppose that trials 1 and 2 yield diferent amounts of information about S(#).

_ Measurement S ferentic Information about
S(t) —— A s En roce st

Measurement SR Ll Iriformation about
S(t) ——t A i S(t

e This implies that one of the measurements A and A’ is privileged insofar as

the amount of information it vields about S(#).

e We make the intuitively plausible assertion that this 1s not possible — that

no measurement in A is mformationally privileged.
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Postulate 2.3

e But this implies that measurement A vields the same amount of information

about states S(t) and S'(#).

Measurement B i — riormation about
Sit) ——————1 A fata, [ =
[ mmm\ S Measursmemn ’ =T
Sit) —=—s | —:— A lersrial farmat :_n abioust
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where [ 1s the
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Postulate 2.3

e But this implies that measurement A wvields the same amount of information
about states S(t) and S'(#).

- Measurement e o s e irdormation about
Sty —»>—7 A e b 2
E ™
Measurement A
It rRcton erermal nfommaticn aboust

Slt) — = : S A iata, [

e Postulate 2.3 ensures that this is the case for all S(#) and S'(#).
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Postulate 2.4

2 States

24 Pr probabulit The prior probability, Pr(y;|{). where I is ths
ckor 1 kno de 1@ experunenter prior te rtorming
weasurement A . is unitor
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Postulate 2.4

2.4 Prior probabilities. The prior probability, Pr(y;|[). where I is the
background knowledge of the expermmenter prior to performing

measurement A. 1s nunmiform.

e In the discretized Hamilton-Jacobi model with state (F;. S;). the zero-value

of the S; is physically irrelevant.
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Postulate 2.4

2 States
2.4 Prior probabilities. Thi ]'rL'l-: r probability, Pr(y;|f). where I is the
background knowledge of the experimenter prior to performing
measurement A. is uniform.

e In the discretized Hamilton-Jacobi model with state ( P;. S;). the zero-value

of the S; is physically irrelevant.

e This implies that Pr(S;,....S — Pr(S; + Sg..... Sy + Sp) for all Sy and
all S;.

e Theretore. Pr({5;|I) is unitform.
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Postulate 2.4

2.4 Prior probabilities. The prior probability, Pr({y;|f). where I is the
background knowledge of the expermmenter prior to pertorming

measturement A. is uniform.
e In the discretized Hamilton-Jacobi model with state ( P;. S; ). the zero-value
of the S; is physically irrelevant.

e This implies that Pr(S;,....S = Pr{S;+ S, .- Snx + Sp) for all Sy and
all S;.

e Theretore. Pr({5;|1) is uniform.

e Under the classical-quantum correspondence x; = S;/a. it follows

that Pr{x;|/) is uniform.
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Postulates 3 and 3.1
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Postulate 2.4

2.4 Prior probabilities. The prior probability, Pr(y;|[). where I is the

background knowledge of the experimenter prior to pertorming

measurement A. is uniform.
e In the discretized Hamilton-Jacobi model with state ( F;. S; ). the zero-value
of the S; is physically irrelevant.

e This implies that Pr(S;,....S Sn) =Pr{S; + Sp, -, £ Sy + Sg) for all Sy and
all §..

e Theretore. Pr(5;|1) 1s uniform.

e Under the classical-quantum correspondence x; = S;/a. it follows

that Pr{y;|[[) is uniform.
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Postulate 2.4

ETI0T P babilities. Tha prior Lilllul_l_ Pr| X1 I'). where 1 1s the

background knowledge of the expermmenter prior to pertorming

measurement A. is uniform.
e In the discretized Hamilton-Jacobi model with state (F;. S;). the zero-value
of the S; is physically irrelevant.

e This implies that Pr(S;,....S Sx) = Pr(S; + Sp.....Sn + Sp) for all Sy and
all S..

e Theretore. Pr(5;|1) is unitform.

e Under the classical-quantum correspondence x; = S;/a. it follows

that Pr{y;|[[) is uniform.

a
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Postulate 2.4

Prior probabilittes. The prior probability, Pr{x;|f). where I 1s the
bac] f the experimenter prior to performing

measurement A. ___'{.11"__1.
e In the discretized Hamilton-Jacobi model with state (P;. S;). the zero-value
of the S; is physically irrelevant.

e This implies that Pr(S;,.... S = PS4+ 5 -, Sn + Sp) for all Sy and
all S..

e Theretore. Pr(5;|1) is uniform.

e Under the classical-quantum correspondence x; = S;/a. it follows

that Pr{x;|[) is uniform.
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Postulate 3.2

e In the diseretized Hamilton-Jacobi model with state (FP:. 5;). one can add Sy

to each of the S; without changing the predictions of the model.

e o

JOlIUon

(P; S)

micH

(r)
0
W]

(P; S+S,)

myc)

bt

(5]

I'_.'J
i
——
0
)
<
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Postulate 3.2

e In the diseretized Hamilton-Jacobi model with state (FP:. 5;). one can add Sy

to each of the S; without changing the predictions of the model.

:-ﬁ&&f:al e (_P']; 5'.|)

|
JOIUTIon

mich

()
0
W]

(P.. S+S,)

myc)
dnle

5]

lr_.'.l
o
—
0
o))
e
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Postulate 3.2

e Under the classical-quantum correspondence y; = S; /. this implies that
one can add yg to each of the y; i the quantum state (F;: x;) without

changing the predictions.

(P;: %) SR > (P y)

Evolution

U
U

Quantum - "
(Pi: ;(i""}{.u) = - v (P i K ])

evolution
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Postulate 3.3

L3

3 Transformations.

e Adopted unchanged from classical physics.
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Postulate 3.3

3 Transformations.

e Adopted unchanged from classical physics.

e Example 1: A reflection-rotation of a frame of reference through an angle #
is continuously dependent upon #. The map. My, that represents the

transformation is therefore continuously dependent upon #.

,.
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Postulate 3.3

3 Transformations.

e Adopted unchanged from classical physics.

e Example 1: A reflection-rotation of a frame of reference through an angle #
1s continuously dependent upon #. The map. My, that represents the

transformation is therefore continuously dependent upon #.

e Example 2: A rotation of a frame of reference through an angle 4 is a
continuous transtormation. For the value # = (. the map. My, representing

the transformation. reduces to the identity.
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Postulate 4

: Map M )
S > M(S)
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Postulate 5

5. Composite Syvstems. Suppose that a system admits a quantum model with
respect to the measurement set A''Y whose measurements have N1 possible
observable ontcomes. and admits a quantum model with respect to the
measurement set A4'<) whose measurements have N'*/ possible observabls
outcomes, where the sets A'Y and A'% are disjoint.

Consider the guantum model ot the system with respect to the measurement

as 1”_,:' :‘.’i_.' } (3 1.2 .. .. NY and f_‘_f_ :"H:.-_ =2 .. V(2

AV e A% If the states of the sub-systems are repre

]
]
-
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Postulate 5

e Suppose that. in the diseretized Hamilton-Jacobi model of a particle. the
state of a particle with respect to r- and y-position measurements

is (P*,S¥) and (P?.S?). respectively.
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Postulate 5

e Suppose that.
state of a particle with respect

T2

7) and (P.S). respectively.

e Then.

respect to ry-position measurements is

(Bij;: Si) = (PiPi: ST+ 51
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Postulate 5

e Suppose that. in the diseretized Hamilton-Jacobi model of a particle. the
state of a particle with respect to z- and y-position measurements
B (FE.55) and R’ ,“_'1';’ ). respectively.

e Then. by the Hamilton-Jacobi equations, the state of the particle with

respect to ry-position measurements is

| P,J-: .I'}‘l,:J = [P:'P,-': ,."Jrr 1 .F_'I?'!;I .

J

e Under the classical-guantum correspondence x; = 5;/a. this implies. if the
] _J-I

- 1 . ol (1) 1 P I
states of two disjoint models of a system are (P, ":x, ') and (P, 71 x; ).

then the state of the composite system is

o :Pf.f:l:Pf::yf;: %)
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Main steps in the deduction of the formalism (1)

Step 1. Implement the Prineiple of Information Gain.

Step 2. Represent S(t) as a unit vector in a 2N-dimensional Euclidean

space.

Step 3. Find the set of possible mappings of state space which represent

physical transtformations.
Step 4. Obtain a representation of measurements as Hermitian operators.

Step 5. Obtain the tensor product rule.
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Main steps in the deduction of the formalism (2)

In later steps (not discussed here):
e Formulate the “Average-Value Correspondence Principle”™ (AVCP)
e Derive the temporal evolution operator.

e Derive the formal rules (such as operator rules and commutation relations)

needed to apply the abstract quantum formalism.

ELE UNIVERSITY OF _ _
Pirsa: 0701002ﬁ 5 AMBRIDGE Philip Goyal, Cavendish Laboratopsge 1571227




Step 1: Implement the Principle of Information Gain

The probabilistic source which models measurement A being performed has the
probability n-tuple
=t B.....Boy 3. 555)
= PLP__. o PP, =g P_‘»'R,—, N - P_‘\_‘RJ N
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Step 1. Implement the Principle of Information Gain.

e Postulate 2.3 (Information Gain) mimplies that. for any P the amount of
information obtained about P in n runs is independent of P in the lmit

a5 T —» OO
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Step 1. Implement the Principle of Information Gain.

e Postulate 2.3 (Information Gain) mmphies that. for any P the amount ot
information obtained about P in n runs is independent of P in the lmit

a5 TE —+ O

e To mmplement this condition. we need to examine the process by which

information is gained about a probabilistic source.

5.5 UNIVERSITY OF | _
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Gaining information from a probabilistic source

e A probabilistic source with two possibl

and a data strine, D,,. 1s obtamed.

P=(P,.P,)
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Gaining information from a probabilistic source

1. From D,,. obtain the frequency. f;. of outcome 1.
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Gaining information from a probabilistic source

1. From D, obtain the frequency. f;. of outcome 1.
2. Using Bayes rule. calculate the posterior. Pr( Py |fi.n.T).

Pr(fi|Pi.n.I)Pr(Pi|n.I)

Pr(Pi|fi.n. 1) = Pr(filn.I

where “T" svmbolizes the knowledge of the experimenter before obtaining D,,.
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Gaining information from a probabilistic source

1. From D, . obtain the frequency, f;. of outcome 1.

D

Using Bayes rule. caleulate the posterior. Pr( Py | fi.n. ).

Pr( fi|Pi.n. 1) Pr(Pyin.I)

Pr(Pi|fi.n,I) = Pr( filn.I)

where “I" svmbolizes the knowledge of the experimenter before obtaining D,,.
3. Calculate the mformation gain, AK:

A K = (Initial uncertaintv about P;) — (Fmal uncertammty about P;)
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The Shannon-Jaynes entropy

e We quantity the uncertainty nsing the Shannon-Javnes entropy: the
uncertainty m P if ones knowledge about P, is given by the probability

density funetion f(FP;) is

£
I ; d P

H | f{ P = —/ (P In ——
(Pl J ey MPT:IPII;
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The Shannon-Jaynes entropy

e We quantify the uncertainty using the Shannon-Jaynes entropy: the
uncertainty i P it ones knowledge about P is given by the probability
density function f(FP;) is

F

Ty ' f( P
H|f(P) = — ({Pi)ln ———dP
._,f. 1] / f B Pr( P, I}f 1

e Hence, the mtormation gain 1s given bv
AK =H |Pr(P|I) — H|Pr( P | fi1,n. 1)

: Pr{ P | fi.m. I)
= / Pr(FPi|fi.n.I)In l Prl[ ;}l ;} d Py
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The Shannon-Jaynes entropy

e We guantity the uncertainty using the Shannon-Javnes entropy: the
uncertainty in P; if ones knowledge about P is given by the probability

density function f(FP;) is

H[f(P;) / f(P)1 G P
— — i 7
7 (F)] i ) uPrlPl n"

e Hence, the mformation gain 1s given bv
AK =H|Pr(P|I) — H|Pe( A | fi,n. )]

Pr(P,|fi.n. 1)
1P,
Pr(P 1) -

s / Pr(P1|fi.n.I)ln

e The mformation gain 1s. as we would expect, dependent upon the
prior, Pr(P;|I). But what is Pr(P;|I) 7
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Pirsa: 0701002@ C AMBRID GE Philip Goval, Cavendish Laboratopsge 167227

‘.,_




A uniform prior

e Let’s try a unitorm prior. Pr(FP;|f) = 1. In that case. in the limit of large n.

we find

AK = —In(oVv 2me

i}n(—) . élu{P-._ (L — )Y

2TE

where o0~ = f1(1 — I,lf.'_ _...-',r,l.
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A uniform prior

e Let's try a unitorm prior. Pr(P;|f) = 1. In that case. in the imit of large n,

we find

AK = —Inlov 2

l y
=5 (5—) - sl (P (1-P))
2 2TE
where o~ = fi(1 — f1)/n
e Hence, with the uniform prior. Pr( P;|I) = 1. the information gain depends

upon the value of P;.
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A uniform prior

e Let’s try a unitorm prior. Pr(F;|f) = 1. In that case. in the limit of large n.

we find

AK = —InloVv 2me

1 > 1 _ ,
:Elll(, )—E].T_l':_P]_':_]_—IDl |

2we
where o~ = f1(1 — f1)/n

e Hence, with the uniform prior. Pr( P |I) = 1. the information gain depends

upon the value ot P;.

e Is there a choice of Pr( P |[) such that the information gain is independent
of J.D]_ s
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A special prior
e One finds that the information gain is independent of P; if and only it

Pr(P,|I) =

1 |
T xj:fjil 1 — .EjL;.
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A special prior

e One finds that the information gain is independent of P; if and only it

1 |
PriFP|I) = —— .
T v/ fji[ 1 —'.EjL;

e Readily generalizes to an M-outcome probabilistic source with probability

n-tuple P = § 55,73

- 2 1
PriP\1) = 1 — P.
2 i(i-xr)

where Ay ; is the surface area of a unit M-ball.
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Visualization of the special prior

e [t we change variables to (Q1.0Q2) = (Vv P1. v P>). we find that the

prior Pr(Q;.Q2|I) is constant on (QF + @Q3) = 1 for Q; > 0 and Q3 > 0.
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Visualization of the special prior

e [t we change variables to ((1.Q2) = (v 'P;.\/P5). we find that the
prior Pr(Q;.Q:|I) is constant on (QF + @Q3) = 1 for Q; > 0 and Q5 > 0.

. . - . T . ) .
e If we define a two-dimensional Euclidean space. ()°. then we can equivalently
represent and visualize the prior as:

(L
i

unificem priar
over arthant

Q= g

ﬁ;"
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Visualization of the special prior

e If we change variables to (Q1.Q2) = (VP;./P>). we find that the

A4

prior Pr(Q;.Q:|I) is constant on (Q7 + @Q3) = 1 for Q; > 0 and Q3 > 0.

. . - . T . Y .
e [f we define a two-dimensional Euclidean space. ()°. then we can equivalently

represent and visualize the prior as:

unificrm prior
over arthant

2= g

e The posterior, for large n. is a Ganssian with standard deviation 1/2/n over

the positive quadrant.
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Visualization of the special prior

e Similarly. for an M-outcome probabilistic source, we define (Q-space to be
an M-dimensional Euclidean space. Then we can represent the prior Pr(Q|[)

as a uniform prior over the positive orthant of the unit hypersphere.
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Visualization of the special prior

e Similarly. for an M-outcome probabilistic source, we define Q-space to be
an M-dimensional Euclidean space. Then we can represent the prior Pr(Q|[)
as a uniform prior over the positive orthant of the unit hypersphere.

e The posterior, for large n. 1s a symmetric Gaussian with standard

deviation 1/2./n over the positive orthant.
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Implications of the Principle of Information Gain

e Let us represent P = (F;..... Psar) as a vector in a 2N dimensional

Eunclhidean space:

=0, (Jon )
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Implications of the Principle of Information Gain

e Let us represent P = (FP;..... Psar) as a vector in a 2N dimensional

Euclidean space:

Q = | r)L f'_}-J ..... [.J_r_\,-' ]

e Then Postulate 2.3 implies that the prior is uniform over the positive

3 AT - . : BN .
orthant. 2. of unit hypersphere in Q%" and zero otherwise.

Eﬁ*
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Implications of the Principle of Information Gain

e Let us represent P = (P;..... Psp) as a vector in a 2N dimensional
Euchidean space:
Q = | {{:br-j}f ..... [J_r_\; )

P S _— =

= (VP Pr,....\ Pon).
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Visualization of the special prior

e Similarly. for an M-outcome probabilistic source, we define QQ-space to be
an M-dimensional Euclidean space. Then we can represent the prior Pr(Q|[)

as a uniform prior over the positive orthant of the unit hypersphere.

e The posterior, for large n. 15 a symmetric Gaussian with standard

deviation 1/2./n over the positive orthant.
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Visualization of the special prior

e Similarly. for an M-outcome probabilistic source, we define Q-space to be
an M-dimensional Euclidean space. Then we can represent the prior Pr(Q|[)

as a uniform prior over the positive orthant of the unit hypersphere.
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Visualization of the special prior

e [t we change variables to (()1.Q2)

y =) PJ_. \.,,_P_w ). we tind that the
prior Pr((};.(J)2|I) is constant on | J“{ 5) =1 for Q; > 0 and Q2 > 0.

]

. 4 Y -
e If we define a two-dimensional Euclidean space. ()°. then we can equivalently

represent and visualize the prior as:

unificrm prior
over arthant

2= g

e The posterior, for large n. is a Gaussian with standard deviation 1/2/n over

the positive quadrant.

5.5 UNIVERSITY OF |
Pirsa: 0701002ﬁ ? CAMBRIDGE Philip Goyal, Cavendish Laboratopsge 1831227




Visualization of the special prior

e If we change variables to (Q:.Q2) = (VP;. VP2). we find that the
prior Pr(Q;.Q:|I) is constant on (Q7 + @Q3) = 1 for Q; > 0 and Q3 > 0.

e If we define a two-dimensional Euclidean space. ()°. then we can equivalently

represent and visualize the prior as:

unificem prior
over arthant

=i )
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Visualization of the special prior

e If we change variables to (Q1.Q2) = (Vv P1. v P>). we find that the
prior Pr(Q;.Q2|I) is constant on (Q7 + @Q3) = 1 for Q; > 0 and Q3 > 0.
o If we define a two-dimensional Euclidean space. Q. then we can equivalently

represent and visualize the prior as:

unificrm priar
over arthant

2= g

e The posterior, for large n. is a Gaussian with standard deviation 1/2/n over

the positive quadrant.
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Visualization of the special prior

e Similarly. for an M-outcome probabilistic source, we define (Q-space to be
an M-dimensional Euclidean space. Then we can represent the prior Pr(Q|[)

as a uniform prior over the positive orthant of the unit hypersphere.
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Implications of the Principle of Information Gain

e Let us represent P = (FP;..... FPspr) as a veetor in a 2N dimensional

Eunchidean space:

=0 0. (Jan )

1 e

R ——

e Then Postulate 2.3 implies that the prior is uniform over the positive

v AT © . : ¥ N .
orthant. 2. of unit hypersphere in Q%" and zero otherwise.
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Step 2. Represent S(f) in a 2NV-dimensional Euclidean space.

e If we allow all (Q on the unit hypersphere. then the 2N signs of the @Q,; and

the (Jy; are encoded by the erthant contaiming Q.
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Implications of the Principle of Information Gain

e Let us represent P = (P;..... Psar) as a vector in a 2N dimensional

Euclidean space:

= | 1\' P;. '\, P: ceeen f':}-_'_\' ].

e Then Postulate 2.3 implies that the prior is uniform over the positive

¥ AT i - : %N .
orthant. $2. of unit hypersphere in Q%" and zero otherwise.

Using Postulate 2.4, namely Pr(y;|l) 1s uniform. and using the relations

Quii = F(x:) and Qi = ().

L

we find that

) = cOS X and __f::[_ N ) =Sy

=
Lt
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Step 2. Represent S(f) in a 2N-dimensional Euclidean space.

e [t we allow all Q on the unit hypersphere. then the 2N signs of the Q,; and

the (Jy; are encoded by the orthant containing Q.
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Step 2. Represent S(f) in a 2V-dimensional Euclidean space.
e If we allow all QQ on the unit hypersphere. then the 2N signs of the @),; and
the (Jy; are encoded by the erthant contaiming Q.

e Hence, the Q on the unit hypersphere. S2¥—!_ represent the state space of

the system. The state S(#) can be represented by the unit vector

Q= (v Picosyi.vPisinyxg..... V Pn cos xi. v Py sin xg ).
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Pirsa: 0701002ﬁ @ AMBRIDGE Philip Goyal, Cavendish Laboratopsge 1011227




Step 2. Represent S(f) in a 2V-dimensional Euclidean space.

e If we allow all Q on the unit hypersphere. then the 2N signs of the ¢),; and
the (Jy; are encoded by the orthant contaming Q.

z S T | .
e Hence, the Q on the unit hypersphere. S ! represent the state space of

the system. The state S(#) can be represented by the unit vector
Q= (vVPcosyr.vVPisiny..... v P cos xi. v Py sinxi ).

N
e The prior is uniform over S i

e The posterior consists of a symmetric Gaussian. with standard

deviation ¢ = 1/2/n. over one orthant. and zero in all other orthants.

's.ﬁ‘
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Step 3: Find the set of possible mappings of state space

1. Postulates 3 and 3.1: all physical transtformations are represented by 1-1

mappings over state space.
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Step 3: Find the set of possible mappings of state space

1. Postulates 3 and 3.1: all physical transformations are represented by 1-1

lllii-[')]_)i]'.l';’.‘; OVer state space.

2. Postulate 4: the possible transtormations are orthogonal transformations.
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Step 3: Find the set of possible mappings of state space

1. Postulates 3 and 3.1: all physical transformations are represented by 1-1

mappings over state space.

I

Postulate 4: the possible transtormations are orthogonal transformations.

3. Postulate 3.2: the possible transtormations are a particular subset of the

orthogonal transformations.
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Step 3: Find the set of possible mappings of state space

1. Postulates 3 and 3.1: all physical transformations are represented by 1-1

lllEi-[JI}Il]'.l'_"ﬁ over state Space.

I

Postulate 4: the possible transtormations are orthogonal transformations.

3. Postulate 3.2: the possible transtormations are a particular subset of the

orthogonal transtormations.

. Represent state space in complex form: the set of possible

transformations is the set of unitary and antiunitarv transformations.

,.
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Implementation of Postulate 4

N—

] 1 2 1 1 = e - - -
e Under the map M. over S -, the uniform prior transforms into the

3 [ & = + - = R .
probability density tunction p(Q’') given by

NG )|
NQ1.....Qx)|

p(Q") = Pr(Ql1) (1)

where Q = (.. .., Qan) and Q' = (Q]....,Q5y) and Q' = M(Q).

e However, since no measurement has been performed. the prior must remain

unchanged. Therefore. the Jacobian is unitv.
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Implementation of Postulate 4

Map M : _
Q > O'=MQ)
p(Q) oo M > p(Q)
Symmetric Gaussian Symmetric Gaussian
over one orthant over one orthant
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Implementation of Postulate 4

Map M

> 0'=MQ)

p(Q) = > p'(Q)

Symmetric Gaussian Symmetric Gaussian
over one orthant over one orthant

One finds that any given map M must be an orthogonal transtormation. M,
oE S
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Implementation of Postulate 3.2

e Postulate 3.2 requires that the outcome probabilities P;. .. .. P of
measurement A performed on a svstem in state Q' = MQ are unatfected by

the addition of an arbitrary real constant to the y; where

Q = (VPicosx1.VPisinxi.- ... Pxcosyi, Py sinxi).
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Implementation of Postulate 3.2

e (ne finds that this leads to the constraint that M has the form

{. lr'-:ll; I-ll_‘j- I‘:L_"a-".\‘
-I*'_‘l: T 22 ) I‘:_‘-_‘J'u

M =
\T N1} I—: N2y I.. NI }
where
plid) —  j— COSYi; —OijSHLE;;
— Mg ,
SIIL (7 5 Tiq COS5 T4

and where all the non-zero T sub-matrices are either all scale-rotation or all

scale-reflection-rotation matrices.

B8l UNIVERSITY OF

Pirsa: 0701002 @ CAMBRIDGE Philip Goyal, Cavendish Laboratopsge 2011227




Complex representation of state space

e Let us represent QQ = (). .... (Jon) as a unit vector v,

[ Q1+iQ> \
(s + Q4

\Q2n_1 +1Q2N )
in an N-dimensional complex veetor space. and consider

v = V.
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Complex representation of state space

e Let us represent = (.. --. (Jon) as a unit vector v,

( Q1 + 10, \

Qs +iQy

\Qan_1 + 5{21_\')
in an N-dimensional complex veetor space. and consider

=\

o If we set V;; = | /ai; explip;;). then the resulting transformation is identical

to that produced ]}_1-' M TJ.'Hll the non-zero T'"' being scale-rotations.
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Complex representation of state space

e Similarly. the transtormation produced by VK. where K 1s the complex
conjugation operation. is identical to that produced by M with the

non-zero 1 '*7) heing scale-reflection-rotations.
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Complex representation of state space

e Similarly. the transtormation produced by VK. where K 1s the complex
conjugation operation, 1s identical to that produced by M with the

non-zero 1'*7) being scale-refiection-rotations.

e The converse is also true: every unitary or antinnitary transformation can be

cast in the form of M satistying Postulate 3.2.
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Complex representation of state space

N - dimensional complex 2N - dimensional real
vector space Q-space
States are unit veciors, w. : > States are unit vectors, Q.
Transformations are the set of all Transformations are a subset of the
unitary cr antiunitary transformations orthogonal fransformations of
of the unit hypersphere the unit hypersphers
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Step 4: Obtain a representation of measurements

e After measurement A has been pertormed and outcome 7 observed, what 1s

the state of the svstem?
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Step 4: Obtain a representation of measurements

e From Postulate 1.3, a measurement A’ can be represented in terms of

measurement A as follows:

E Uv Measurement v W
1T U A —— Ve

where U and V are unitarv transformations.
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Step 4: Obtain a representation of measurements

e From Postulate 1.3, a measurement A" can be represented in terms of

measurement A as follows:

E oy Uv Measurement v Vv
= —— A s v |

where U and V are nnitarv transformations.

4 I - Il - N N
e Suppose that measurement A’ performed on state v, yields outcome 2 with
certainty. Then. in the above arrangement. we require that. for all 7.

I

th, = we™"

where &; 1s arbitrary.
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Step 4: Obtain a representation of measurements

e Since U is unitary. the v. also form an orthonormal basis.
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Step 4: Obtain a representation of measurements

g - — I . T q .
e Since U 1s umitary. the v; also form an orthonormal basis.

g =

e An input state v = ). c,v; therefore gets transformed into Uv = ). c;e'5v,.

e Hence, measurement A vields outcome 7 with probability ¢=.
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Step 4: Obtain a representation of measurements

e - = i v R =
e Since U 1s umitary, the v; also form an orthonormal basis.

£

e An input state v =) c;v. therefore gets transformed into Uv = ) e;e’5v,.

— ],
e Hence, measurement A vields outcome i with probability ¢=.
e Hence, the v;. together with the corresponding outcome values, a;, of A'.
characterize measurement A’. and can be represented bv the Hermitian

operator, A = 3. a;vlv,
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Step 5: Obtain the tensor product rule

e Comnsider a composite system with two sub-systems with abstract
models g(N'"') and q(N'“'). respectively, where the composite system has

the abstract model g( V).
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Step 5: Obtain the tensor product rule

e Comnsider a composite system with two sub-systems with abstract
models g(N'Y) and q(N'“), respectively, where the composite system has
the abstract model q( V).

e Suppose that the sub-systems are in states represented as | P.-: . 1_:-1" -
and (P, g _:': ). Tespectively.

e Then. by Postulate 5. the state of the composite system can be represented

as (Fj;: xij)- where
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Step 5: Obtain the tensor product rule

e Consider a composite system with two sub-systems with abstract
models g(N'Y) and q(N'“). respectively, where the composite system has

the abstract model g( V).
1 : il
e Suppose that the sub-systems are in states represented as (P,
i 2] 2} :
and (P.7'; x. ). respectively.

e Then. by Postulate 5. the state of the composite system can be represented

as (F;;: xij)- where

e [f we write the states of the sub-systems in complex form. then it follows

that v can simply be written as v\t @ v'?),
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Step 5: Obtain the tensor product rule

e Comnsider a composite system with two sub-systems with abstract
models g(N'Y) and q(N'?). respectively, where the composite system has
the abstract model (V).

e Suppose that the sub-systems are in states represented as | PI,:L o

¥

and (P:™; ). respectively.

e Then. bv Postulate 5. the state of the composite system can be represented

as (Fj;: xij)- where

e If we write the states of the sub-systems in complex form. then it follows

that v can simply be written as v'! @ v'?,

e This is easily generalized to a composite system containing d sub-systems.

J'
,.
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Some General Remarks

e We obtain a mathematical structure that is neither more nor less general
than the finite-dimensional quantum formalism. Consequently, the derivation
provides an excellent ‘laboratory’ for investigating proposed modifications or

novel applications of the quantum formalism.
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Some General Remarks

e We obtain a mathematical structure that is neither more nor less general
than the finite-dimensional quantum formalism. Consequently, the derivation
provides an excellent ‘laboratory’ for investigating proposed modifications or

novel applications of the quantum formalism.

e Complex mumbers in the quantum formalism appear to be directly connected
with the fact that all possible physical transformations can be represented by
unitary or antiunitary transformations. Both stem from the mmvariance

postulate (Postulate 3.2).
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Some General Remarks

e We obtain a mathematical structure that is neither more nor less general
than the finite-dimensional quantum formalism. Consequently, the derivation
provides an excellent ‘laboratory’ for investigating proposed modifications or

novel applications ot the quantum formalism.

e Complex numbers in the quantum formalism appear to be directly connected
with the fact that all possible physical transformations ean be represented by
unitary or antinnitary transtormations. Both stem from the mvariance
postulate (Postulate 3.2).

e The concept of imformation plays a central role in the emergence of the
quantum formalism. Specifically, it leads to:

1. (Q—space. which introduces real amplitudes.

2. the sinusoidal hinctions f and f.

3. the restriction that M is an orthogonal transtormation of (Q—space.
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Some General Remarks

e The derivation highlichts the physical importance of the notion of a prior
over a continnous parameter, which enters primarily via the Shannon-Jaynes

ENLropyv.
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Some General Remarks

e The derivation highlichts the physical importance of the notion of a prior
over a continnous parameter, which enters primarily via the Shannon-Jaynes

entropy.

e One can see rather clearly which assumptions quantum theory shares with
classical physics. which are modifications of classical ideas. and which are

novel. Information is the key new ingredient.
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Postulate 2.2: Unobservability of a and b

e For a system in an eigenstate of energy E. the overall phase. y. of its

quantum state changes at the rate E/A.
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Postulate 2.2: Unobservability of @ and b
e For a system in an eigenstate of energy E. the overall phase. y. of its
quantum state changes at the rate E/hA.

e A measurement able to resolve a and b must have temporal
resolution At < A/E.

e But. using AEAt > i/2. the energy associated with the measurement has
uncertainty AE > A/2At. Hence. AE > E/2

v B

e From E = me*, it follows that AE must be of the order of the rest energy of
the system.

e But such a measurement would probably not preserve the identity of the

system. as is required by the idealizations.

e Conversely, an acceptable measurement will have insufficient temporal

resolution to resolve the outcomes a and b.
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Information: Some Connections

The information gain condition has a number of connections to results in
5
probability theory and to principles used in informational approaches to

gquantum theory.
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Information: Some Connections

The information gain condition has a number of connections to results in
probability theory and to principles used in informational approaches to
quantum theory.

e The assumption that the information gain eondition applies to a probabilistic

source 1s equivalent to Jeffreys' rule for assigning prior probabilities.

e The metric ds* = ). d(Q); over QM -space provides a natural measure of the
distance between probability distributions. and is equivalent to the Fisher
. 3 ¥ oy - - :
metric dsp = Z d P/ P; (ct. Fisher information approaches to quantum

thee iy X
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Information: Some Connections

The information gain condition has a number of connections to results in
probability theory and to principles used in informational approaches to

gquantum theory.

e The assumption that the information gain condition applies to a probabilistic

sonrce 1s equivalent to Jefireys' rule tor assigning prior probabilities.

e The metric ds* = ). dQ); over Q™ _space provides a natural measure of the
distance between probability distributions. and is equivalent to the Fisher
. 7 y . - e .
metric dsy = »_. dP~/P; (cf. Fisher information approaches to quantum

theory).

e The information gain condition implies that the amount of Shannon-Jaynes

information obtained from a source after n interrogations increases

monotonically with n in the limit as n — oc (cf. Summhbammer, Grinbaum).
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