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Abstract: | begin with abrief description of the black strings in backgrounds with compact circle, the Gregory-L aflamme instability and the resulting
phase transition, and the critical dimensions.Then | describe a Landau-Ginzburg thermodynamic perspective on the instability and on the order of
the phase transition. Next, the approach is generalized from a circle compactification to an arbitrary torus compactification. It is shown that the
transition order depends only on the number of extended dimensions. | end up with outlining several open questions and puzzles related to the
outcome of the Gregory-Laflamme instability.
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LG (Landau-Ginzburg) in GL (Gregory-Lafiamme)

Based on: B Kol and E Sorkin, hep-th/0604015
Evgeny Sorkin

Physics and Astronomy Degpt.. University of British Columbia

Outline:

*Gregory-Laflamme instability

Phase transition. its order. and a critical dimension

*Ginzburg-Landau theory of phase iransitions

*Application to black string

»Arbitrary torus compactification

The critical dimension depends only on number of extended dimensions
*Some open questions
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Gregory-Laflamme instability of a black string

: : L3
Spacetime topology - cylinder R B2 X S | D=d+1
Uniform Black-string (UBS): X 2
wrapped along compact z-direction &thl +az
Z
1 A single dimensionless - contral -parameter
I
- G,m
iu = ]ij_';
L oK
However...
H<Hg
— i Classical growing mode — Gregory&Laflamme
Instability ('93)

Non-uniform Black-string (\UBS) 4= ll;;  marginally tachyonic (zero) mode
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What is the endstate of GL instability?
Use dynamical evolution (Choptuik et al ‘03 + in progress).
Does the pinch off occur at finite (asymptotic) time?

In order to understand the phase transition and the end-state it suffices to
find all Static solutions, namely one has to construct a phase diagram.
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A phase diagram in D<13
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A phase diagram in D<13
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For this range of dimensions (D<13):

BH

UBS

Perturbation analysis in 5D (Gubser): L -7 o5

First order black-strings phase GL,

transition. Namely, the nonuniform |

phase develops non-smoothly from
the GL string.

Scalar charge

Hnuss ~ Huyss

Snuss(i) < Syes(u)

These are the two variables (mass and entropy)
computed in the perturbation theory
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However

0 Perturbative For D*>13.5 a sudden change
5 ,JUBS in the order of the phase
. fransition. It becomes smooth
? \ (ES ‘04)

Scalar charge

Surprising critical dimension: What is the
physical scale?
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A phase diagram in D<13
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However

Perturbative <
NUBS For D*>13.5 a sudden change

In the order of the phase
fransition. It becomes smooth
(ES ‘04)

BHs
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In conclusion there is the GL instability that leads to a phase transition and
order of this transition depends on the spacetime dimension.

The conclusion is based on the perturbative construction of static NUBS
emerging from the GL point. Namely, the marginally static GL mode
induces non-uniformity, then the back-reaction due to this mode is
solved up to the third order. where one computes mass and entropy

variation. This is the direct Gubser's method

Here I'd like to describe another perspective of the phase transition and
its order analysis: Ginzburg-Landau theory
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In conclusion there is the GL instability that leads to a phase transition and
order of this transition depends on the spacetime dimension.

The conclusion is based on the perturbative construction of static NUBS
emerging from the GL point. Namely, the marginally static GL mode
induces non-uniformity, then the back-reaction due to this mode is
solved up to the third order. where one computes mass and entropy
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In conclusion there is the GL instability that leads to a phase transition and
order of this transition depends on the spacetime dimension.

The conclusion is based on the perturbative construction of static NUBS
emerging from the GL point. Namely, the marginally static GL mode
induces non-uniformity, then the back-reaction due to this mode is
solved up to the third order. where one computes mass and entropy

variation. This is the direct Gubser's method

Here I'd like to describe another perspective of the phase transition and
its order analysis: Ginzburg-Landau theory
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Ginzburg-Landau theory of phase transitions

Local analysis: focusing on low energy modes and zooming.
Consider the expansion of the free energy F around critical temperature
T. in powers of an order parameter

F(T.A)=E(T)+(T-T)AA +BT )X +C(T )1 +..

A>0 since for T>T, the free energy has a minimum: Generically B+0: Let B>0.
and we assumed the existence of critical solution with zero mode.
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However, In some cases, symmetries set B=0 identically;
In our case this will be the parity | - - | symmetry, such that

F(l'}: F{-.-'L) —r ]:1'_12}

F(T,A)=F(T)+(T-T)A A’ +B(K
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However in some cases symmetries set B=0 identically:
In our case this will be the parity | - - | symmetry, such that

F()=F(-1) => F(1)

F(T,A)=F,(T)+(T-T)AX +C(T)A* +..
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However in some cases symmetries set B=0 identically:
In our case this will be the parity | - - | symmetry, such that

F(.IL'}: F{-.-'L) e FI'_]LE}

F(T,A)=F(T)+(T-T)AA +C(T )1 +..

A(T-T)
2C

The extrema of the free energy dF/d\=0 are \=0 and i~ =-

so a new branch exists if sign(T-T.) = - sign(C)

There are two possibilities: C>0 or C<0
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F(T:A)=A(T-T)A +CA" +.. C<0
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F(T.A)=FE(T)+(T-T)AA +C(T)A +...

In summary:

C<0 first order phase transition
C>0 second order phase transition
(C=0 higher order)

Thermodynamics is encoded by F
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Reviewed

» GL instability of black string and the associated phase transition

» LG theory of phase transitions

Next

*LGinGL

» Torus compactification
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York-Gibbons-Hawking action (canonical ensamble)

| . E 0
[dV.R+—[dV. [K-K
67G,” ” 8xG.; L }

1(8)=-pF=

In Euclidean signature £ is the period of the imaginary time.
It is related to the temperature T=#/ g

The program: We will compute the variation of this action around the GL
point. namely looking at the perturbation Df the uniform black string
background due to r - ~ S

h, (r.2)=AHg(rlexp(ikgz2)
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Non-uniform black-strings

The most general static black string background on cylinder is

dS: :C:_u[l'zlf{r)dtl+62Bi:.z}[f (r] ldrl+dz:}+ejfll'.l'ridgd

f(r)=1-1/1""  horizon atr,=1

For A,B.C=0 we get a uniform BS

We denote the fields collectively by x
and consider the expansion

=1 +AXV £ XY &
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The expansion of the free energy up to the fourth order in A

Fix)=F+F{X X))+ FE{X. X, X+ FE(X X, X, X)+..

. dF
+:Jffr_—+...
ok

Since in the perturb. theory X is decamposed into GL mode and BR, we get

FI:X; ) =FE(B)+APB A +F, (XX, )+ AG(X ) +F, A

because of the eqn for back reaction: 0F/0X =0 = 2F X, +G=0
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The computation steps:

1. Solve Einstein equations for X, : LX;, =0 getky
2. Solve Einstein equations for Xg; : LXgp =Src(Xs,?)

3. Substitute into the action F(T,A)=E () +T-T)AX +CT) A +..
and by integration compute the coefficients A and C

4. Calculate thermodynamical variables M and S
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Result

In either the direct Gubser's or LG methods there are 2 “bottom line”
numbers {M,S} and {A.C}.

They are related by usual thermodynamics relations
S= -dF/dT and M=F+TS

Numerical values of S. M computed directly (Gubser's) or derived
from A and C (LG) are comparable within 5% in the checked range
of dimensions 4<d<14

LG works in black string case.
The benefits: more economic method;
It computes the action integral instead of solving more QDEs at 3d order
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The computation steps:

1. Solve Einstein equations for X : LX5,=0 getkg
2. Solve Einstein equations for Xgg : LXgg =Src(Xg, ?)

3. Substitute into the action F(T,A)=F,(T)+T-T)AX +CT) A +..
and by integration compute the coefficients A and C

4. Calculate thermodynamical variables M and S
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Torus compactification RIx TP D=d+p

For & general p-torus the uniform brane: B . — S{‘/’Hi‘“{. T

Instability: Zero mode A, h,(r,2)=0, h,(r2)=h () eka=> A, +A4 =0

v v

A, =

critical GL mass €= shortest vector in the reciprocal lattice

Options: #(marginal tachyons)=
#(reciprocal lattice vectors closest to the origin)
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One can view the space of torii as having two boundaries:

-Highly asymmetrical torii, where one or more dimensions are much larger
then others (First GL mode along the shortest k.

*Highly symmetrical torii, such as the square torus (several simult. modes)

By studying the second case we achieve understanding of both limits and
therefare of the intermediate region of general tori.

For simplicity we focus on the square torus
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For square TP there are p simultaneous tachyons

Torus directions ' ~ 7' +L
So at the linear order the GL instability generalizes to
X=X 5> X"=1X.

Back-reactions is sourcedby ~ A4 X, 4. X/ andhence

Xpe =AAX

In addition there are more metric fields than in S compactification
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Square torus symmetries z, <>z for any ij imply that Xg5 or more generally
any tensor T' has only 2 distmc![ components:

Xgp~ Wwas computed already for T', while Xgg= Is novel
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We consider expansion of the free energy along X =AX_, + 44, X’;{H

As a result the quadratic coefficient the free energy expansion is proportional
to that computed for T' and the quartic coefficient becomes tensor

cc(x)=clxf ]
LA
C'= <
€& i#j
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Determination of the order of phase fransition

Consider how C(\) varies over all possible directions in tachyon space.

It's enough to take Z‘/ \: =

It is possible to show that C varies in the range
Ce|C.C(p)|c|c.C]

N = (D-D\C*
C’{p}zc (p—1C
F

‘average”

The fransition is second order iff C is positive for all directions in \' space,

if C.Ci p)=0
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By definition C- and C= doesn't depend on p. C- was actually found
in the p=1 case and, moreover suffices it solve only p=2 case in
order to compute C= and to infer the order of the p.t. for any p.

Rather than determining C= directly we look along the “diagonal” direction

A=Alp

In this case we compute  C(4

A
and for p=2 we derive C*=2C| -C
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Results for TP

Second order p.t. iff C=.C(p)=0

*A necessary condition C=>0; so for all D<D'=12.5 where the p.1. is
first order far p=1 it is first order for any p

It turns out that the converse is frue as well, for d>11, where G- >0.
then also C=>0 and therefore C(p)>Ufor all p and hence the transition
Is second order in this range of dimensions for all p.

D

» In TP compactification: The fransition order depends only on d
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Results for TP

» From analy51s of( ( |tfollowsthat (for d>4) the diagonal

a0 = =~1oTavAro r ™ TTIFRIIR™ Al . allatailaths = ) -~
_.\ .,-| [ gl il 1 e _..-|l — 1 Il | = =11 il - P 1\
"W ey O R | \ LA S BANG LaAL LY

direction Is at 1O LUl

Hence in a case of 15 order p.t. the decay will proceed (initially)
through a single tachyon, while for a 2™ order p.t. the system will
re-settle into a slightly non-uniform along one of the directions brane.
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Failure of “Equal-area for equal-mass estimator ’

A mm ( )_ A gsir (au:;)

¥ w Fm= m
-3 - g = Be 1 @ & r:_ SCth‘ BH
TR e "‘
=4 *
. 7
3
5 -6 Tk JIa
Hs |
- |
: |
1
-0 T 15 20 »
Dimension Scalar ChEngE

While works well for T+, for higher-dimensional torus the estimate is very
imprecise, due to large error-bars
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Results for TP

« From analysisof C~.C it follows that (for d>4) the
m--:.*jc* e ciefavored re :[ atn firning on 2 “einnia t

15 151~ =88 ~1 ~IFA = |~
o ¥ ibw { |

' AFERLTIE
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-

Hence in a case of 15 order p.t. the decay will proceed (initially)
through a single tachyon, while for a 2™ order p.t. the system will
re-settle into a slightly non-uniform along one of the directions brane.
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Failure of “Equal-area for equal-mass estimator ’

A s m ( )_ jlB:Sn-(au:;)
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While works well for T*, for higher-dimensional torus the estimate is very
imprecise, due to large error-bars
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Some open questions on the GL phase transition

The pinch-off in both the dynamical and the static contexts; topology
changing phase transition

-Local geometry at the pinch-off; scaling and universality

*The cosmic censorship
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