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Abstract: We consider N=2 supersymmetric quantum electrodynamics (SQED) with 2 flavors, the Fayet--1liopoulos parameter, and a mass term
$beta$ which breaks the extended supersymmetry down to N=1. The bulk theory has two vacua;, at $beta=0$ the BPS-saturated domain wall
interpolating between

them has amoduli space parameterized by a U(1) phase $sigma$ which can

be promoted to a scalar field in the effective low-energy theory on the

wall world-volume. At small nonvanishing $beta$ thisfield getsa

sine-Gordon potential. As aresult, only two discrete degenerate BPS

domain walls survive. We find an explicit solitonic solution for domain lines -- string-like objects living on the surface of the domain wall which
separate wall | from wall 11. The domain line is seen as a BPS kink in the world-volume effective theory. The domain line carries the magnetic flux
which is exactly 1/2 of the flux carried by the flux tube living in the bulk on each side of the wall. Thus, the domain lines on the wall confine
charges living on the wall, resembling Polyakov's

three-dimensional confinement.
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Introduction

Domain walls natural objects in supersymmetric theories

fa“r'
There are the following alternatives (without taking in account the
trivial translational modulus):

a) A single domain wall interpolating two vacua.

b) A moduli space of solution. The modulus can be promoted to a
massless field on the wall world-volume (for example ' = 2 SQED)
c) A discrete number # 1 of solutions (expected in N =1
Super-Yang-Mills)
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Wall 1

Vacuum 1 . Vacuum 2

Wall II

Domain Lines interpolating between discrete Domain Wall solutions:
an explicit solitonic example at weak coupling
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Fields & Superpotential

N =2 U(1) gauge theory
Bosonic Fields:
* U(1) gauge vector superfield
* superfield A with zero charge
* Ny = 2 squark superfields g, Q from hypermultiplets

5 JiQBQB +mpQpQp + 7(@1@2 — 1) — ux/?

mi = —mo =m

V2

3 =% 0 we are breaking the extended supersymmetry
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Potential
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Symmetry breaking

Flavor SU2)r — U(1)p
by the parameter m

U(l)p is broken by 3
SU(2)p is also broken by 3

A Zo subgroup of
U(L)r xU(1)F,
generated by a 7 rotation in both the U (1) factors
is left unbroken by 5. m

This Z> is spontaneusly broken by the wall
(exchanges Wall | with Wall 1l )

Page 22/82



irsa: 07010007

Symmetry breaking

Flavor SU2)r — U(1)p
by the parameter m

U(1l)g is broken by 3
SU(2)g is also broken by 3

A Zo subgroup of
Ul xU(1)F,
generated by a 7 rotation in both the U(1) factors
is left unbroken by 3. m

This Zs is spontaneusly broken by the wall
(exchanges Wall | with Wall 1l )

Page 23/82



Potential

(2

_ g ‘ Lt
Vb :§(|Q_'B|2 — |gB|*)?

=
> 12

) 1 o | e
Ve — 5 q1(a + \/§ml) — ,.::3@]2 = ;HQ’Q((L — \/5?'??_2) = ,_:'_3q1\2+
1 — . ew o B s g>
+5)({1 = = \/2111.1)9'1 3 3(12\' T ;|(a = 5 \/E-m.g)qz + ;‘3(}1\ . u 5 gAgA — =

irsa: 07010007 Page 24/82



Fields & Superpotential

N =2 U(1) gauge theory
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Sigma Model description

g€ >> m, 3 we can integrate out a, A,
Constraints:

Do |y

a1? + lgel® = 11 1* +1g2l®.  Gaga =
Eguchi-Hanson manifold (four real dimensions)

’ ((} E_),u, q — Ej a,u {j)
e :

R Gq + qq

P Oy R " Sk : I . . =2 —1 -
V2m (|22 + |@2)? — |t — |a)?) + 3 (wf —¢'+qaq —q 92)
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Sigma Model description
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Sigma Model description
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Eguchi-Hanson sigma model

Coordinates: (r.6. p. )

<)
- 1 L e I &Y
Sy VArZ g2 {(dﬁr) i (I N (5) )
i H'ﬂ ‘2 E:- - = 2 & ‘2,_“’ = == o v ,2 R
—(Ou)” | ° + 5 ) sin 0| —(0,v¥)°r" — (Oup) (Out)) (2r-cosB) ; .

Potential induced by m. 3

m2(4r2 + £2sin* f)

e = + 2v/2mBr(cos 6 cos p cos Y — sin wsin )+
\/ 4r2 + £2
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Eguchi-Hanson sigma model

Coordinates: (r, 0, ¢, 1)
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Potential induced by m. 3
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Both the vacua and the wall are living in the S? subspace of
Eguchi-Hanson manifold at 3 =0 Vacua: r =0, 6 =0. 7«
Moduli space of BPS domain walls parameterized by an U(1) phase e¢'?

0(z) = 2tan™ ' (exp(2mz))

Modulus promoted to a field on the wall world-volume:

: i
S = / d>x ("(ana)ﬂ) .
4m
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Eguchi-Hanson sigma model

Coordinates: (r, 8, o, 1)
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Both the vacua and the wall are living in the S? subspace of
Eguchi-Hanson manifold at 3 =0 Vacua: r =0, 6 =0. 7«
Moduli space of BPS domain walls parameterized by an U(1) phase ¢'?

A(z) = 2tan" '(exp(2mz))

Modulus promoted to a field on the wall world-volume:

| ¢
S — / >z (“’(dncr)ﬂ) .
4m
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Wall in the sigma model description

Coordinates (6. p)
Vac 1

Wall

Vac 2

o is the longitude of the wall
At 3 # 0 we get a potential with a nontrivial dependence on the
somcr |ongitude of the sphere (just ¢ = 4+7/2 will survive) ruess
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Wall in the sigma model description

Coordinates (6. p)
Vac 1

Wall

Vac 2

o is the longitude of the wall
At 3 # 0 we get a potential with a nontrivial dependence on the
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Plot of the potential at some sections at constant » and at
= 7/3.7/2.2/3mw. There are always two symmetric minima, one at
@ = 1 = w/2 and the other at ¢ = ¢ = 37 /2.
BPS wall equations can be solved in correspondence of these two

values.

g1 = =i€dcos(n/2) + wsin(n/2), g = Tiwcos(n/2) + Qsin(n/2)

g1 = Ti€dcos(n/2) —wsin(n/2), g2 = Tiwcos(n/2) + 2sin(n/2)

: i} . Page 48/82
i — —-\/Zmz — 3?(cosn £ i— sin n)
' = ."IETT'.I
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Wall at 5 # 0

Plot of the potential at some sections at constant r» and at
0 —5/3.5(2, 2/‘3;-1’. There are always two symmetric minima, one at
@ = ¥ = w/2 and the other at ¢ = ¢ = 37 /2.
BPS wall equations can be solved in correspondence of these two
values.

g1 = =i€dcos(n/2) + wsin(n/2), g9 = Tiwcos(n/2) + 2sin(n/2)

-~

g1 = Tifdcos(n/2) —wsin(n/2), Go = Tiwcos(n/2) + N2sin(n/2)
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Wall in the sigma model description

Coordinates (6, ©)
Vac 1

Wall

Vac 2

o is the longitude of the wall
At 3 # 0 we get a potential with a nontrivial dependence on the
somcr |ongitude of the sphere (just ¢ = 4+7/2 will survive) ruesos



Domain Lines

Wall 1

Vacuum 1 . Vacuum 2

Wall 11

Domain Lines interpolating between discrete Domain Wall solutions:
an explicit solitonic example at weak coupling
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Solution for n and world-volume potential

- 32 e?™m= (15cos? o + 8(1 + ™= }m:)
n(z) = 2 arctan(e*™*) — - , : + O(3%).
e, ( } m 2 _L(l £ edmz ]2 { )

At the first non trivial order in 3, the following potential is generated:

._5’25 y
V =="cos(20) + O(5>)
2m
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Wall in the sigma model description

Coordinates (6, p)
Vac 1

Wall

Vac 2

o is the longitude of the wall
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Unstable wall: sigma model

Coordinates: (7.6, o, 1))

O(n. o)

?

n

%
Q

(1. 0)

1 —=
e —— — f 3E
- M, T it ol
I Ny e SRR e prail-. ——
a.al L e 1.5
| N =
" | . e
I , - =
t ' 1.5 e
a.af -~ =
[ 1f ™, -
"_'I.Zi? sk BN
|4
g 0.5 1 1.5 3 2.5 3 0.5 1 1.5 2 2.5 3

Left: »(n), Right: v/(n) for different o.
They are both constant at 0 = +7/2.
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Unstable walls

The BPS wall solutions at 3 # 0 correspond to ¢ = 7/2. 37 /2.
Ansatz for a “meta-solution” at generic o

q1 = (e'"Qcos(n/2) + wsin(n/2))/A,

g2 = (e*%wcos(n/2) + Qsin(n/2))/A.,
g1 = (e 7" Qcos(n/2) —wsin(n/2))A,

go = (—e ““wecos(n/2) + Qsin(n/2))A.

]

where 7)(z) is a profile function which is calculated by minimization of
the action and the factor A is introduced in order to maintain the
sigma model constraints.
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Unstable wall: sigma model

Coordinates: (7.6, o, 1))

O(n. o)

?

n

p(n,o) <o

1 —— —
o, "--_____ =% e - 3L
\: '\;\-.\ ""--_______ s _____---"'- /-'"::, .
a.8 :- .l':':'.t'-._ 3 i 5 i
I \
[ T—
~&F =
[ — ; o —
0. 4f _ . -
| 1t b
o.2f .
| - 1.5 | s
¥
i ) T ) ) . PR P L. S
5 | IS 2 X5 3 0.5 1 I.5 2 2.5

Left: »(n), Right: 1(n) for different o.
They are both constant at 0 = +=7/2. o
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Unstable wall: sigma model

Coordinates: (7.6, p. 1))

O(n.o)~n

e
p(n,o)~o
[ e E
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ok S Te
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Solution for n and world-volume potential

“)

22 Xz I, O R 1 i Amz "
2maz) 3< € (15cos= o +8(1 + ¢ _}NL,) 13\

7 m?2 4(1 4 edmz)2 +O(5).

17(z) = 2arctan(e

At the first non trivial order in 3, the following potential is generated:

.395
V = —eos(20) + O(5?)
2m
%
1
‘Zl!-]'r
E
'l.a‘[

|
. 0.2}
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Unstable walls

The BPS wall solutions at (3 # 0 correspond to ¢ = 7/2, 37/2.
Ansatz for a “meta-solution” at generic o:

g1 = ('Q cos(n/2) + wsin(n/2))/A.

q2 = (E-i”..u cos(n/2) + Qsin(n/2))/A,
g1 = (e:’_""'"TQ cos(n/2) —wsin(n/2))A,

Go=(—e *w cos(n/2) + Qsin(n/2))A

[\..l

where 7)(z) is a profile function which is calculated by minimization of
the action and the factor A is introduced in order to maintain the
sigma model constraints.
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Solution for » and world-volume potential

e 32 e?™mz (15cos? o + 8(1 + 6'4’”""'“}m:) :
\ : 2mz / \ / i el
M z) = 2arctan|e ) — : +O(37).
AN ( : m2 4(1 4 edm=)2 \57)

At the first non trivial order in 3, the following potential is generated:

_i].
4= C
32¢

2m

¥ = cos(20) + O(5?)
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Unstable walls

The BPS wall solutions at 3 # 0 correspond to 0 = 7/2. 37 /2.
Ansatz for a “meta-solution” at generic o

g1 = (" cos(n/2) + wsin(n/2))/A,

> = (€*%wcos(n/2) + Qsin(n/2))/A.
g1 = (e "7 Qcos(n/2) —wsin(n/2))A,
Go = (—e *“w cos(n/2) + Qsin(n/2))A.

=

where 7)(z) is a profile function which is calculated by minimization of
the action and the factor A is introduced in order to maintain the
sigma model constraints.
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Solution for n and world-volume potential

— 32 e?™= (15cos? o + 8(1 + 6-4’”"':};??:;) -
e +O(5%).
) m? 4(1 + edm=)2 7

17(z) = 2arctan(e

At the first non trivial order in 3, the following potential is generated:

32¢ y
e (fO-“i(QO-) + (‘)( ’})3)
2m

-
e ]

=
i =]

[ ]
]

(]
[

(]
i a
] i h e Bl e el e st B S R P R
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Domain line as a Sine Gordon kink

There are two different kinks interpolating the two world-volume vacua

< )
- 13 *{: i \ 2 '}_E o
H= [ dx|—(0,0)" +———cos"c | =
4dm 2m

o NE FR 0 L -
= B —(0y0) T PBcosoc | =—dJ(sino) ;.
2m \+/2 vV2m
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The fate of a bulk vortex

Bulk: T' = 2#@&
Domain line: T = /23¢/m
The Domain Line carries a magnetic flux which is 1/2 of the flux
carried by a bulk vortex.
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The fate of a bulk vortex
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Bulk: T' = 2#7&
Domain line: T = /28¢/m
The Domain Line carries a magnetic flux which is 1/2 of the flux

carried by a bulk vortex.
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Sine Gordon vs. Chern-Simon

World-volume scalar field o

: 211 €5 | 1 i
Duality: /o %Eﬂ,m;‘.dkﬂ'.

i

. |
o — fdsl' (—E(Fr;lnl:l—) .

Chern-Simon term (proposed for domain walls of ' = 1 Super-Yang-Mills):
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Different from the Sine-Gordon potential in our weakly coupled examplel
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Sine Gordon vs. Chern-Simon

World-volume scalar field o
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Sine Gordon vs. Chern-Simon
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Confined Monopoles

vac

vac IT

Siving frone the bulk

vacl

We can introduce external magnetic monopoles embedding the U/(1) theory in a
SU(2) one

It is possible to build a static configuration where a monopole is a junction of two

domain lines (similar to what happen in the bulk for the non-abelian string)

string b — . —= stringa
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Confined Monopoles
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We can introduce external magnetic monopoles embedding the U/(1) theory in a
SU(2) one

It is possible to build a static configuration where a monopole is a junction of two

domain lines (similar to what happen in the bulk for the non-abelian string)

string b — . —= stringa
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Conclusion

* A Domain-Line soliton has been built in a weakly coupled theory

* The effective world-volume description involves a Sine-Gordon theory
with two vacua

* The domain line carries a magnetic flux which is 1/2 of a bulk
Abrikosov-Nielsen-Olesen vortex
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