Title: Quantum Simulations of Quantum and Classical Systems

Date: Jan 22, 2007 04:00 PM

URL: http://pirsa.org/07010006

Abstract: If a large quantum computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not simulate on a conventional computer? In this talk, I argue that a QC could solve some relevant physical "questions" more efficiently. First, I will focus on the quantum simulation of quantum systems satisfying different particle statistics (e.g., anyons), using a QC made of two-level physical systems or qubits. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed showing quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra. Second, I will focus on the quantum simulation of classical systems. Interestingly, the thermodynamic properties of any d-dimensional classical system can be obtained by studying the zero-temperature properties of an associated d-dimensional quantum system. This classical-quantum correspondence allows us to understand classical annealing procedures as slow (adiabatic) evolutions of the lowest-energy state of the corresponding quantum system. Since many of these problems are NP-hard and therefore difficult to solve, is worth investigating if a QC would be a better device to find the corresponding solutions.

Quantum Simulations of Quantum and Classical Systems

Rolando D. Somma, P-21 LANL

G. Ortiz, M. Knill, R. Laflamme, C. Batista, D. Berkeland, J. Chiaverini, W. Lybarger...

Perimeter Institute anuary 22nd, 2007

Quantum institute

Quantum Simulations of Quantum and Classical Systems

Rolando D. Somma, P-21 LANL

(G. Ortiz, M. Knill, R. Laflamme, C. Batista, D. Berkeland, J. Chiaverini, W. Lybarger...

Perimeter Institute January 22nd, 2007

Quantum institute

Outline

-Standard Model of Quantum Computation

-Efficient Quantum Simulations of Spin Systems

-Adiabatic Quantum Computation?

-Quantum Simulations of Bosonic and Fermionic Systems

-Quantum Simulations of Classical Systems

Pirsa: 07010006

Algorithm: Errors & Efficiency $=\langle \sigma \rangle_{meas}$ $\langle \sigma \rangle_{exact}$ In reality $\pm \varepsilon$ Some reasons... The algorithm is performed a finite # of times (proj. measur.) Gate imperfections (cont. parameter; will not discuss) Approximation of Evolution Decoherence (will not discuss) an algorithm is efficient with respect to N Def.: (problem size) if the amount of resources needed (# of bits and operations) scales at most as poly(N) and Page 8/33 $poly(1/\varepsilon)$.

Algorithms in the Standard Model of QC

-QC is made of qubits $|\psi(t)\rangle = a_0|0...0\rangle + a_1|0..1\rangle + ... + a_{2^N-1}|1..1\rangle$

-Language given by the Pauli Algebra

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \ ; \ \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \ ; \ \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Possible elementary gates: single qubit rotations + two-qubit interactions

-Measurement: Projection onto an eigenstate of

Page 9/33

 σ_{i}^{μ}

 j,μ

Algorithms in the Standard Model of QC

Resources:

- -Number of qubits $\rightarrow \mathcal{O}(N)$
- -Number of single and two-qubit gates $\rightarrow \mathcal{O}(N^p)$
- Number of repetitions $\rightarrow \mathcal{O}(1/\epsilon^2)$
- -Time required to prepare desired initial state $\rightarrow \mathcal{O}(??)$

N is the volume of the system to be simulated

Quantum Simulations: Computation of Correlation Functions

$$G(t) = \langle \phi | W | \phi \rangle; | \phi \rangle = U | 0_1 ... 0_N \rangle; W^+ = W^{-1}; U^+ = U^{-1}$$

N = Size of quantum system to be simulated.... Can we obtain G efficiently (poly (N))?

Example of a Quantum Circuit

Pirsa: 07010006

Quantum Simulations: Computation of Correlation Functions

$$G(t) = \langle \phi | W | \phi \rangle; | \phi \rangle = U | 0_1 ... 0_N \rangle; W^+ = W^{-1}; U^+ = U^{-1}$$

N = Size of quantum system to be simulated.... Can we obtain G efficiently (poly (N))?

Quantum Simulations: Computation of Correlation Functions

4- Single qubit measurement (flipping coin)

Quantum Simulations: Trotter Approximation

3- Assume
$$W = e^{iHt} \rightarrow H = \sum_{j=1}^{\text{poly}(N)} c_j H_j; H_j = \prod_{k,\mu} \sigma_{\mu}^k$$
 (Physical Hamiltonian)
 $\rightarrow e^{iHt} \approx \prod_{j=1}^{\text{poly}(N)} W_j$

$$e^{iHt} = \prod e^{iH\Delta t}; e^{iH\Delta t} \approx e^{ic_1H_1\Delta t} \dots e^{ic_PH_P\Delta t} \longrightarrow \varepsilon_{TA} \approx \|H\|^2 t\Delta t$$

Fixed error $\Rightarrow O(N^2)$

$$H_{j} = \sigma_{x}^{1} \sigma_{z}^{2} \sigma_{x}^{3} \Rightarrow e^{ic_{j}H_{j}} = e^{-i\pi\sigma_{y}^{2}/4} e^{-i\pi\sigma_{x}^{2}\sigma_{x}^{3}/4} e^{-i\pi\sigma_{y}^{1}/4} e^{ic_{j}\sigma_{z}^{1}\sigma_{z}^{2}} e^{i\pi\sigma_{y}^{1}/4} e^{i\pi\sigma_{x}^{2}\sigma_{x}^{3}/4} e^{i\pi\sigma_{y}^{2}/4}$$

$$e^{i\pi\sigma_{y}^{3}/4} e^{i\pi\sigma_{y}^{3}/4} e^{-i\pi\sigma_{z}^{2}\sigma_{z}^{3}/4} e^{-i\pi\sigma_{y}^{3}/4} e^{-i\pi\sigma_{y}^{3$$

12 single qubit rotations + 3 phase gates

Pirsa: 07010006

Page 15/33

Quantum Simulations: Computation of Ground-State Properties

$$H|n\rangle = E_n|n\rangle$$
 $n = 0 \rightarrow$ Ground state
 $f = 0$ Complex quantum Hamiltonian
 $E_0 = ??$
Don't know how to prepare GS
 $\phi = \sum_n c_n |n\rangle \rightarrow G(t) = \sum_n |c_n|^2 e^{iE_n t}$
Some trial state; easy to prepare (poly(N))
 $G(t) = \langle \phi | e^{iHt} | \phi \rangle$ $G(t_1), G(t_2), ..., G(t_M)$
Fourier transform!

The method is efficient if c_0 is finite [i.e., $c_0 \neq \exp(-N)$]

Page 16/33

Quantum Simulations: Computation of Ground-State Properties

-In general, it is exponentially hard to obtain the ground-state energy E_0 <u>Why?</u>

-We don't know how to prepare

Perform the algorithm exponentially many times

 $|g\rangle = \prod_{j=1}^{\text{poly}(N)} U_j |0_1 \cdots 0_N\rangle$

Exactly solvable models (no quantum advantage)

$$|\phi\rangle / \langle \phi | g \rangle \neq \exp(-aN)$$

e.g., mean-field solution:

 $H \rightarrow H_{MF}$

Exactly solvable

That's true for simulating the water molecule. Page 17/33 P. Love. et.al Quantum Simulations: Computation of Ground-State Properties

How does the gap close with the system size?

E E a sha a fair a f

Quantum Simulations of Fermionic Systems

$$c_1^{\dagger}c_3^{\dagger}|vac
angle
ightarrow \mathbf{1}$$
 (2) (3) (4) (5)

Jordan-Wigner Transf.
$$\left\{c_j^{\dagger} \rightarrow \prod_{i=1}^{j-1} \sigma_z^i \sigma_+^j\right\}$$

$$\begin{array}{c} |vac\rangle \rightarrow |1_{1}1_{2}\cdots 1_{N}\rangle \\ c_{1}^{\dagger}c_{3}^{\dagger}|vac\rangle \rightarrow |0_{1}1_{2}0_{3}1_{4}1_{5}\rangle \end{array}$$

Creation; annihilation

 $H \to H_{ferm}(c_i^{\dagger}; c_j)$

 $\left\{c_{i}^{+},c_{j}\right\}=\delta_{ij}$

Mapped fermionic model

$$G_{ferm}(t) = \langle vac | U^{\dagger} e^{iH_{ferm}t} U | vac \rangle \rightarrow G(t) = \langle 0_1 \cdots 0_N | U'^{\dagger} e^{iHt} U' | 0_1 \cdots 0_N \rangle$$

The transformation is efficient: it can be efficiently done + gates can be efficiently implemented

Page 20/33

Pirsa: 07010006

Quantum Simulations of Bosonic Systems

Creation; annihilation $\begin{bmatrix} b_i^+, b_j \end{bmatrix} = \delta_{ij}$

 $b_1^{\dagger}b_3^{\dagger}|n^1n^2n^3
angle\propto$

If the number of bosons is preserved, a mapping is possible...

Page 21/33

resources required for its preparation determines the complexity of simulating classical systems with QCs

Pirsa: 07010006

Many Classical (optimization) problems are NP-hard (Barahona'85)

 $|\psi(T)\rangle = e^{-\beta H/2} \sum |\tau\rangle$ (Gibbs state)

Thermalization with unitaries

Purification

One dimensional Ising model: Efficient Quantum Simulation

THIS appload

$$H_{l \sin g} = \sum_{j} J_{j} \sigma_{z}^{j} \sigma_{z}^{j+1}$$

$$|\psi(T)\rangle = e^{-\beta H_{l \sin g}/2} \sum_{\tau} |\tau\rangle = \prod_{j} (a_{j} + b_{j} \sigma_{z}^{j} \sigma_{z}^{j+1}) \sum_{\tau} |\tau\rangle$$

$$\boxed{(a_{3} + b_{3} \sigma_{z}^{3} \sigma_{z}^{4})}(a_{2} + b_{2} \sigma_{z}^{2} \sigma_{z}^{3})(a_{1} + b_{1} \sigma_{z}^{1} \sigma_{z}^{2}) \sum_{\tau} |\tau\rangle$$

$$\int_{\sigma_{x}^{4}} = 1$$

$$\boxed{(a_{3} + b_{3} \sigma_{z}^{3} \sigma_{z}^{4} \sigma_{x}^{4}) = a_{3} + ib_{3} \sigma_{z}^{3} \sigma_{y}^{4} \propto e^{i\theta_{x} \sigma_{z}^{3} \sigma_{y}^{4}}} \Rightarrow |\psi(T)\rangle = e^{i\theta_{N} \sigma_{z}^{N} \sigma_{y}^{N-1}} \dots e^{i\theta_{2} \sigma_{z}^{3} \sigma_{y}^{2}} e^{i\theta_{1} \sigma_{z}^{2} \sigma_{y}^{1}} \sum_{\tau} |\tau\rangle$$

$$F_{\text{Figure corrections}}$$

$$F_{\text{Figure corrections}}$$

$$F_{\text{Figure corrections}}$$

useu IUI

the two-uniterisional

uuei)

Trees and Matrix Product States: Efficient Classical Simulation

(G. Vidal, et. al.; H. Briegel, et. al.)

Quantum Adiabatic Evolution I: Simulated Annealing

 Adiabatic evolution by slow decrease of parameter T (quantum v. simulated annealing)

$$T(t) \approx N/\log(t) \rightarrow \forall H$$

(remain in equilibrium Worst-case: inefficient)

Pirsa: 07010006

Classical Adiabatic Evolution: Equivalence of rates

 $\overrightarrow{P}_a \propto (p_a^1, \cdots, p_a^{2^N})$ (distribution at time step a) $\overrightarrow{P}_{eq} \propto (e^{-\beta E_1}, \cdots, e^{-\beta E_{2^N}})$ (equilibrium)

$$\overrightarrow{P}_{a} = [M(T)]^{a} \overrightarrow{P}_{0} ; \ \overrightarrow{P}_{eq} = \overrightarrow{P}_{a \to \infty}$$

Rate of convergence is determined by the gap of M

$$T(t) \approx N/\log(t) \rightarrow \forall H$$

(similar scaling obtained by S. Geman and D. Geman '84)

Pirsa: 07010006 The classical system is always close to equilibrium

Quantum Adiabatic Evolution I: Simulated Annealing

 Adiabatic evolution by slow decrease of parameter T (quantum v. simulated annealing)

$$T(t) \approx N/\log(t) \rightarrow \forall H$$

(remain in equilibrium Worst-case: inefficient)

Pirsa: 07010006

Classical Adiabatic Evolution: Equivalence of rates

 $\overrightarrow{P}_a \propto (p_a^1, \cdots, p_a^{2^N})$ (distribution at time step a) $\overrightarrow{P}_{eq} \propto (e^{-\beta E_1}, \cdots, e^{-\beta E_{2^N}})$ (equilibrium)

$$\overrightarrow{P}_{a} = [M(T)]^{a} \overrightarrow{P}_{0} ; \ \overrightarrow{P}_{eq} = \overrightarrow{P}_{a \to \infty}$$

Rate of convergence is determined by the gap of M

$$T(t) \approx N/\log(t) \rightarrow \forall H$$

(similar scaling obtained by S. Geman and D. Geman '84)

Pirsa: 07010006 The classical system is always close to equilibrium

Quantum Adiabatic Evolution II: Quantum Annealing T>0

$$\begin{split} \tilde{H}_q(\gamma) &= H(\sigma_z^j) - \gamma \sum_j \sigma_x^j \ ; \ \gamma(0) \gg 1 \ , \ \gamma(t \gg 1) \to 0 \ \ ; \ (T=0) \end{split}$$
 Farhi, et. al.)

$$H_{q}(\gamma) = \sum_{j} e^{\beta H_{j}} - \gamma \sigma_{x}^{j} \Longrightarrow H_{q}(\gamma = 1) |\psi(T)\rangle = 0 \quad (T > 0)$$

$$H \Rightarrow |\psi(T)\rangle \approx \sum_{\tau} |\tau\rangle = |+\rangle_{1} \otimes ... \otimes |+\rangle_{N}$$

 Adiabatic evolution by slow decrease of parameter γ (quantum annealing for T>0)

$$\gamma(t) \approx (Nt)^{-1/N} \longrightarrow \forall H$$

(remain in equilibrium Worst-case: inefficient)

For particular problems: see how the gap closes...

Pirsa: 07010006

Y>>

Page 30/33

A similar rate was obtained for the classical simulation of QA with Monte-Carlo Techniques (H. Nishimori'06)

Conclusions + Future Work:

-A QC seems to be a powerful tool for quantum simulations (Exponential Speed-Up in some cases)

$$G(t) = \langle \phi | e^{iHt} \phi \rangle$$

-However, a CC can efficiently compute *G(t)* in some particular cases (Clifford algebra, Gen. Coh. States, etc...)

-Ground state properties.... Adiabatic QC?

-Efficient quantum simulations of fermionic and bosonic systems through algebra and Hilbert space mappings

Conclusions + Future Work:

-Simulation of Classical Systems: Quantum annealing for finite T Convergence rates, etc.

Open questions:

Is there any (quadratic) speed-up by simulating classical systems on QCs?

Is there a classical interpretation of quantum annealing (without going to d+1)?