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Abstract: If a large quantum computer (QC) existed today, what type of physical problems could we efficiently ssimulate on it that we could not
simulate on a conventional computer? In this talk, | argue that a QC could solve some relevant physical "questions' more efficiently. First, | will
focus on the quantum simulation of quantum systems satisfying different particle statistics (e.g., anyons), using a QC made of two-level physica
systems or qubits. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to
represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be
performed showing quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy
spectra. Second, | will focus on the quantum simulation of classical systems. Interestingly, the thermodynamic properties of any d-dimensional
classical system can be obtained by studying the zero-temperature properties of an associated d-dimensional quantum system. This
classical-quantum correspondence allows us to understand classical annealing procedures as slow (adiabatic) evolutions of the lowest-energy state
of the corresponding quantum system. Since many of these problems are NP-hard and therefore difficult to solve, is worth investigating if a QC
would be a better device to find the corresponding solutions.
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Qutline

-Standard Model of Quantum Computation

-Efficient Quantum Simulations of Spin Systems

-Adiabatic Quantum Computation?

-Quantum Simulations of Bosonic and Fermionic Systems

-Quantum Simulations of Classical Systems
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Deterministic Quantum Algorithms

Quantum systems

1- Preparation of an initial (pseudo) pure state — ‘qb)
2- Unitary Evolution — U, U1\¢> (e.g., external fields)
3- Measurement of Observable (after n repetitions)

— (o) = (¢|U] - --ULoUp - - - Ur|$)
-Encoded Result (o )Mt = <U>mm +1//n




Algorithm: Errors & Efficiency

In reality (U >€mt = <0>mm -

Some reasons...

The algorithm is performed a finite # of times (proj. measur.)
Gate imperfections (cont. parameter; will not discuss)

Approximation of Evolution

Decoherence (will not discuss)

Def.: an algorithm is efficient with respect to N
(problem size) if the amount of resources needed (#

of bits and operations) scales at most as poly(N) and
I POIY(1/¢).




Algorithms in the Standard Model of QC
-QC is made of qubits
Y(1)) =a,[0..0)+ a|0.1)+ ..+ a, [1.1)

-Language given by the Pauli Algebra

fe Ny (o N @
=Y @l T e ) ¥ e =i

-Possible elementary gates: single qubit rotations + two-qubit interactions

R, (8) = o=/2 v-11v,

) _ e—zwcr"’ﬂ'h/z

-Measurement: Projection onto an eigenstate of H oa
J.1
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Algorithms in the Standard Model of QC

Resources:

-Number of qubits — O(N)
-Number of single and two-qubit gates — (O(NP?)
- Number of repetitions — (O(1/€*)

-Time required to prepare desired initial state — (O(?77?)

N is the volume of the system to be simulated
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Quantum Simulations: Computation of Correlation Functions

G(t)=(¢W|¢)|9)=U0,..0, ;W* =W U =U"

N = Size of quantum system to be simulated.... Can we obtain G efficiently (poly (N))?

Circuit:

Controlled in 1),

)a+[1)a)/ V2 /
@ : - (o3 +ioy) = G(t)

Jufle] w [— \
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Example of a Quantum Circuit

time .
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Quantum Simulations: Computation of Correlation Functions

G(1) = <¢|W|¢>= ‘P) & U|01“'0N>;W+ =WhUt=U"

N = Size of quantum system to be simulated.... Can we obtain G efficiently (poly (N))?

Circuit:

Controlled in 1),

(10)a +[1)a)/ V2 /
@ S S—

U [le)] W E\
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Quantum Simulations: Computation of Correlation Functions

1- # of qubits is|N+1

£l (product of elementary gates:
2- Assume | [J = H Uj  The initial state can be easily prepared)
7—1
. - poly(N)
3-Assume W =e™ —~H= Y ¢;H;: H; =[]0l (Physical Hamittonian)
poly(N) j=1 k.p

— ElHt ~ I l Wj
j=1

4- Single qubit measurement (flipping coin)

=) | A QC can obtain G(t) efficiently (i.e., poly(N) resources)

It is not known, in general, how to compute G(t) efficiently on a CC (2V)
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Exponential Speed-up
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Quantum Simulations: Trotter Approximation

poly(N)
3-Assume W =¢™ — H= Y ¢;H;: H=]]oL (Physical Hamittonian)
poly(N) = e
_, ot HE H Wj
j=1

ot =Heiﬂm;eiﬂm ~ gl HiAt  icpHpAt c, ml[HHZIAt

Fixed error = O(N?)

3 : | . E_F - 1 : e : P

/4 —imo_ /4 ic.oo. imo /4 imoc’/4 imo; /4
: e T e e e
L} J

: 2 .
H. -'-i.ﬂ.'UF /4 _.m_s'g

2 3 ic ;
H. =00.0,=¢"" =¢

ina} /14 ixo} /4 -incloll4 -imo] 4 —imo] /4

€ e € € (4

h
12 single qubit rotations + 3 phase gates
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Quantum Simulations: Computation of Ground-State Properties

H|n) = En|ln) n =0 — Ground state
T Complex quantum Hamiltonian

Eq=7 lﬂ: S sem
Don’t know how to prepare GS o000 - T e ]
1 - | BT 1
6) =Y ealn) = G(O) = 3 leal?eEt = il
; ; J_1 Jﬁ
Some trial state; easy to prepare (poly(N)) e
G(t)=(gle™|p)  G(1).G(t,),....G(ty) Fourier transform!

The method is efficient if ¢, is finite [i.e., c,7 exp(-N)]
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Quantum Simulations: Computation of Ground-State Properties

-In general, it is exponentially hard to obtain the ground-state energy E,
Why? | poly(N)
9)

-We don’t know how to prepare T
Exactly solvable models

(no quantum advantage)

0) / (¢lg) # exp(—aN)

-0y)

|
—
S
2

Perform the algorithm
exponentially many times

e.g., mean-field solution:
e -

I'b_.,'._.ll'
Exactly solvable

That's true for simulating
irsa: 07010006 the water molecule. ras 1733
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Quantum Simulations: Computation of Ground-State Properties

Also....
) = colg) + c1|1)

eﬂth'qb) . Coe——iEgtlg> i Clez‘(Eg—?ﬁ)tH) .

Energy gap

Sometimes we need to resolve both frequencies....

!

O(1/A) repetitions for the DFT

How does the gap close with the system size?
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Computation of Ground-State Properties: Adiabatic QC

- The complexity relies on the preparation of a
particular state (or a state close to it)

: 8

Adiabatic QC repare its ground state easily
e |
Hy=(1—A)Hp+AH ; M0)=0; A(oo) =1

El

Exactly solvable: we know how to
)\ 4

Lo

M
N | Gt

g\_ =1

M x A~

. (glU]0r -+ 0x)|— 1

If the gap closes exponentially = Inefficient
If the gap closes polynomially = Efficient

p—

t
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Quantum Simulations of Fermionic Systems

T.
H_}ermifcﬂcfg clellvac) — @D2@ @ 5

Creation; annihilation —
{cie;} =6, Jordan-Wigner Transf. {C; — [

=1

lvac) — |1112---1n)
I cllvac) — [0112031415) Mapped fermionic model

f

G ferm(t) = (vac|UTe"HrermtUvac) — G(t) = (0, - - -On U P10, - - - O)

The transformation is efficient: it can be efficiently




Quantum Simulations of Bosonic Systems

H — Hios(b];5;)
e

Creation; annihilation bT bT |n1 = n:}) o
[bs.?bj]=6ﬁ 1¥3

If the number of bosons is preserved, a mapping is possible... @

n==>0 L 2 3

.. l*ﬂ‘

: = 3 ﬂ v v Max. 3 bosons/site

2909 = =0 Np= 1\/7 e
-—z- n+ lo™ gt

e B4 2
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Quantum Simulations of Classical Systems

4_‘_.._,_~ B =(k,T)":S. = (z|S|z)|z) =(010..0)
T:H = f(07)
* flo |w(2_,)>=2€_ﬂ£r.n‘2 T>=E-ﬂm22‘r>

G i * ’_ Hfsiﬂg=2.fqﬂ;ﬂ'j T
S 1

il Sl 24 A

$-0) Ee-ﬁﬁf (WD) [y(T))

- :
/

# resources required for its preparation determines the
complexity of simulating classical systems with QCs
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Many Classical (optimization) problems are NP-hard (Barahona'85)



Quantum Simulations of Classical Systems

[w(T)) = 'ﬁ’*”E r)  (Gibbs state)

Thermalization with unitaries

Purification
. Actual thermal state
0) Jan
|0> {} L/
0) ———P
EU:>J —~P :\J - —BE, /2 -BH
} : |lp(T)>=Ze T)®|T) = ps xe
: I L 2 T
wer) T
=

A

0)o|@ 1+ 11| @0,

Classical entropy < (bipartite)Entanglement
of formation
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Quantum Simulations of Classical Systems

One dimensional Ising model: Efficient Quantum Simulation

\ ’ H—‘ HI sin g = %}U;gzjﬂ
3 4 :

W)= e'ﬁH”i’”uz\ﬁ = H(aj - bjajﬂj'”)2|r>

(ﬂa + 53‘7330: ) :az + b?_afaj )(al + blgigf )E [T>

>

5k A ’ 3 8 8,0 0] i&iﬁ;{rfaf% f&zagaf‘ 60’0
(a3 +b3azﬂzax)=a3 +ib,0 0, xe = |1p(T)> =e . e |1')

T
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Quantum Simulations of Classical Systems

Trees and Matrix Product States: Efficient Classical Simulation

= Z Jijcriag -+ ZBiJi
(2,5) i

i

|1/)(T)) can be represented with a tree tensor network
(F. Verstraete, et. al.)

Any classical lattice model in a tree
can be efficiently classically simulated

(G. Vidal, et. al. ; H. Briegel, et. al.)
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Quantum Simulations of Classical Systems

Quantum Adiabatic Evolution |: Simulated Annealing

W(T)) = WE\ )= ollY(T)) = e ™ [y(T))

o/Ho!=H-2H ;H.=0!®n,

@ fluctuations

' T>> 1 D) = Be)=[+), @@ 4] +)=0)+ )

H,(T) =E_€&Hj ~o/=H,(Dy(D)=0 (unique ground state)

H, = AMA™
;

Trans. matrix

» Adiabatic evolution by slow decrease of parameter T

(quantum v. simulated annealing)

T(t) = N/log(t) = VH
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Quantum Simulations of Classical Systems

Classical Adiabatic Evolution: Equivalence of rates

— N
e o6 (p,_,ll, ‘o ,pz ) (distribution at time step a)
_._>.

Peq ox (E_BEI, e 7re_*f’)ET’V) (equilibrium)
I_D}a = [M(T)]GJ_D}O 3 ]_::eq = I_D)a—:»oo

) Rate of convergence is determined by the gap of M

T(t)=N/log(t)—VH

(similar scaling obtained by S.
Geman and D. Geman '84)

v

- oocors 1 NE Classical system is always close to equilibrium | ........




Quantum Simulations of Classical Systems

Quantum Adiabatic Evolution |: Simulated Annealing

Y(T)) = ﬁ“'”E\ )= ol lY(D) =™ [y(D))

o!Ho!=H-2H ;H.=0!®n,

@ fluctuations

H,(T) =E_‘fﬂHj -0/ =H,(D{y(D))=0 (unique ground state)

H = AMA™
» T>>1= [y(T)) E‘T W ® @ |+),:+) =(0) +|1) ! .

Trans. matrix
» Adiabatic evolution by slow decrease of parameter T
(quantum v. simulated annealing)

T(t) = N/log(t) — VH| (remain in equilibrium
" Worst-case: ineffitig&ht)




Quantum Simulations of Classical Systems

Classical Adiabatic Evolution: Equivalence of rates

3 1 > g — :
P, x (p,,---,p5; ) (distribution at time step a)
=3

P eq o (E_BEI, s s ,e_ﬁEzN) (equilibrium)
I_D}a = [M(T)]GI_D}O 3 I_D}’eq = Tj}a—z»oo

) Rate of convergence is determined by the gap of M

T(t) = N/log(t) = VH

(similar scaling obtained by S.
Geman and D. Geman '84)

v

et 1 NE Classical system is always close to equilibrium | .......,




Quantum Simulations of Classical Systems

Quantum Adiabatic Evolution |I: Quantum Annealing 7>0

H,(y) = Jj)—'}/zo'f"; 0)>1,v(t>1)—0 ; (T=0)

(Farhi, et. al.)

H,(y)= Y " —yo! = H,(y=Djp(D)=0 (T > 0)
® r>>1=yp(D) =~ Y|7)=[+), ® ..8+),

e Adiabatic evolution by slow decrease of parameter y
(quantum annealing for 7>0)

y(t) = (Nt)-UN —> Y H/| (remain in equilibrium

Worst-case: inefficient)

For particular problems: see how the gap closes...
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A similar rate was obtained for the classical simulation of QA with Monte-Carlo Techniques (H. Nishimori'08)



Quantum Simulations of Classical Systems

Adiabatic evolution

W)=Y |t);H(y=1) = pH
Classical ph;e transition T 5> 18 =0:(7) =0 (quantum annr.-'laiing)
disorder 7
Quantum phase transition “?(' Can we find its
WV,

‘ classical path?

L
)=l L7 S
(Qv simulated annealing) ""a‘"’

Classical H’s
Time is determined by the energy gap:

E E
_...---"f—-_
= A A | Is QA (T>0)
e more efficient?

>
irsa: 07010006 T

SA QA 4
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Conclusions + Future Work:

-A QC seems to be a powerful tool for quantum simulations
(Exponential Speed-Up in some cases)

G(t) = (gle"""¢)

-However, a CC can efficiently compute G(f) in some particular
cases (Clifford algebra, Gen. Coh. States, etc...)

-Ground state properties.... Adiabatic QC?

-Efficient quantum simulations of fermionic and bosonic systems
through algebra and Hilbert space mappings
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Conclusions + Future Work:

-Simulation of Classical Systems: Quantum annealing for finite T
Convergence rates, etc.

Open questions:

Is there any (quadratic) speed-up by simulating classical
systems on QCs?

Is there a classical interpretation of quantum annealing
(without going to d+1)?
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