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Abstract: Kolmogorov complexity is a measure of the information contained in a binary string. We investigate the notion of gquantum Kolmogorov
complexity, a measure of the information required to describe a quantum state. We show that for any definition of quantum Kolmogorov complexity
measuring the number of classical bits required to describe a pure quantum state, there exists a pure n-qubit state which requires exponentially many
bits of description. Thisis shown by relating the classical communication complexity to the quantum Kolmogorov complexity. Furthermore we give
some examples of how quantum Kolmogorov complexity can be applied to prove results in different fields, such as quantum computation and
communication.
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@ The SMP model and fingerprinting
@ A condition for quantum Kolmogorov complexity

@ One definition in (some) detail
© Kolmogorov complexity and entanglement
@ Applications for quantum Kolmogorov complexity
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Information and physics

Concepts from information theory have been successfully
adopted in quantum physics
The modification of the basic unit:

has changed the whole theory




Information and physics

Concepts from information theory have been successfully
adopted in quantum physics
The modification of the basic unit:

has changed the whole theory

Shannon entropy H(X) Von Neumann entropy S(o)
Error correction, Quantum error correction,
coding theorem,... coding theorem,...

Kolmogorov complexity Quantum Kolmogorov

K(x) complexity K(l¢p))




Random variable: X={xipi} (source: output x; with prob. p))

The Shannon entropy: H(x)=-2ipilogp: measures:
@ The information we gain on average knowing X

@ The uncertainty we have before knowing X
Related to information transmission over channels:
Shannons noiseless (noisy) channel coding theorem
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The Shannon eniropy: H(x)=-2ipilogpi measures:
@ The information we gain on average knowing X
@ The uncertainty we have before knowing X

Related to information transmission over channels:
Shannons noiseless (noisy) channel coding theorem

Successfully generalized fo quantum physics:
=» von Neumann entropy of quantum states: S(p)




Random variable: X={x;pi} (source: output x; with prob. p;)

The Shannon entropv: H{x)=->:p:loap; measures:

) The information we gain on-knowmg X

@ The uncertainty we have before knowing X
Related to information transmission over channels:
Shannons noiseless (noisy) channel coding theorem

Successfully generalized fo quantum physics:
=» von Neumann entropy of quantum states: S(p)

And what about the information contained in a
single output of the source?
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Consider 2 sequences of coin fosses:

aETTTT RS 7

b HTTHTHTTTH
They have the same probability, but very different
structure: b) seems "more random”

Also the two descriptions are different:
a) 10 times tails
b) head, 2 tails, head...



Consider 2 sequences of coin fosses:
aRTTTITFIET T
b HTTHTHTTTH
They have the same probability, but very different
structure: b) seems "more random”

Also the two descriptions are different:
a) 10 times tails
b) head, 2 tails, head...

There is a relation between what we see as
random and the complexity of its description

g



Def: The complexity of a N-bit string wn=w; wi, wiis the
length of the shortest program that has output wn when
running on a computer (universal Turing machine) U.

KU(wN)=an{l(P)| U(p)=wn}




Def: The complexity of a N-bit string wn=w;,wi, wiis the
length of the shortest program that has output wy when
running on a computer (universal Turing machine) U.

KU(wN)=an{l(P)| U(p)=wn;

» Invariance: does not depend (up to a constant) on
the machine =




Def: The complexity of a N-bit string wn=w; wi, wiis the
length of the shortest program that has output wn when
running on a computer (universal Turing machine) U.

KU(wN)=an{I(P) |U(p)=twns

= Invariance: does not depend (up to a constant) on
the machine = ¢

/-’i The time needed by the computer is not important!
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o there always exists a program of the form
"write Wn=wi Wi, Wi,

- wn is complex if K(wn)~N




Dt there always exists a program of the form
“write amzwiiwgz___wi;'

> wy is complex if K(wn)~N

@ The Kolmogorov complexity of a string is unc

» Upper bounds are computable, though




o N: there always exists a program of the form
“write cw=wiiwi2___wir:’

= wyis complex if K(wn)~N

@ The Kolmogorov complexity of a string is uncompui

» Upper bounds are computable, though

@ At most 2*-1 strings have complexity lower than k

There are 2" N-bit strings
» V' N there exists a complex string




d n: general proof method (diverse fields)
Idea: want to prove a property P
1) Choose wn complex
2) Show: P false = K(wn)<N




@ Application: general proof method (diverse fields)
Idea: want to prove a property P
1) Choose wn complex
2) Show: P false = K(wn)<N

» Ex. Godels theorem (logic)
Regularity of languages (finite automata)
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@ Applicat general proof method (diverse fields)
Idea: want to prove a property P
1) Choose wn complex
2) Show: P false = K(wn)<N
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Regularity of languages (finite automata)




@ Application: general proof method (diverse fields)
Idea: want to prove a property P
1) Choose wn complex
2) Show: P false = K(wn)<N

» Ex. Godels theorem (logic)
Regularity of languages (finite automata)

@ Relafion: expected Kolmogorov complexity equals
Shannon entropy rate (average entropy
production) of the source




@ Application: general proof method (diverse fields)
Idea: want to prove a property P
1) Choose wn complex
2) Show: P false = K(wn)<N

» Ex. Godels theorem (logic)
Regularity of languages (finite automata)
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Shannon entropy rate (average entropy
production) of the source




@ Application: general proof method (diverse fields)
Idea: want to prove a property P
1) Choose wn complex
2) Show: P false = K(wn)<N

» Ex. Godels theorem (logic)
Regularity of languages (finite automata)

@ Relation: expected Kolmogorov complexity equals
Shannon entropy rate (average entropy
production) of the source

@ Relafion: a complex string is incompressible




What is Kolmogorov complexity in the context of ¢

1) Kolmogorov complexity of what?
Classical: bits  {0,1} {0,1}N  string of bits
Quantum: qubits C%=Qn——> (C9)" string of qubits?
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What is Kolmogorov complexity in the context of quantum

1) Kolmogorov complexity of what?
Classical: bits  {0,1} {0,1}N  string of bits
Quantum: qubits C%=Qn«——> (C°N STATE

2) What do we want? Classically we reproduce the
sequence. Do we require fo reproduce the state? How?
And how should we measure it? Bits? Qubits?




What is Kolmogorov complexity in the context of quantum

1) Kolmogorov complexity of what?
Classical: bits  {0,1} {0,1}N  string of bits
Quantum: qubits C*=Qn<——> (C*/ STATE

2) What do we want? Classically we reproduce the
sequence. Do we require fo reproduce the state? How?
And how should we measure it? Bits? Qubits?

3) How do we define it? - Quantum Turing machine?
- Other models?
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@ Qubits needed to describe a state

Length of the shortest quantum program |m) that
outputs the state with high fidelity when running on
a cuaniis Rl T

(Length of ) =number of qubits needed to span the smallest
Hilbert space containing |m))
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@ Qubits needed to describe a state

Length of the shortest quantum program |m) that
outputs the state with high fidelity when running on
a quantum Turing

(Length of |m) =number of qubits needed to span the smallest
Hilbert space containing |m))

» |p) eQn=K(lp) )<N




@ Qubits needed to describe a si'afe

Length of the shortest quantum n |m) that
ou’rpu’rs fhe s’ra’re W|’rh hlgh fidelity when running on
a

(Length of |m) =number of qubl’rs needed fo span the smallest
Hilbert space containing |m))
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@ Qubits needed to describe a state

Length of the shortest quantum program |m) that
outputs the state with high fidelity when running on
a quar ur ' 1€

(Length of |m) =number of qubits needed to span the smallest
Hilbert space containing |m))

> |p) eQu=K(lp) )N

* Related to von Neumann entfropy rate




D Bits needed to describe a state

K> ly) = reigs kBRI idgalim PizgpFatimbirie 12 |

Two parts:
v — [-log(l {@lz) [?)] penalty for

approximation







@ Bits needed to describe a state

K(lp? ly) = pigsskal bidagm Papflilbrie W2 |

Two parts:
P ¥ |-log(| (plz) 1?)] penalty for

approximation
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@ Bits needed to describe a state

K(le) ly) = rige sl Hhdgalm wizsptatimbrie 52 |

Two parts:
P + r—log(l (plz) 1¥)] penalty for

approximation

@ Bits needed to describe how to prepare a state
Kuet(l®) ly)=complexity of the simplest classical

sh)*ing describing a circuit that prepares |
"




Typical scenario: Alice and Bob receive (binary) inputs x, vy
and want to compute a function f(x,y)

Alice Bob |
| xefo.1 ye{0,1}N |




Typical scenario: Alice and Bob receive (binary) iInpufs X, vy
and want to compute a function f(x,y)

To do ’rhis they are allowed (need) to communicate
' Alice <: > Bob
xe{O N ye{0, 1N

Def: The (classical) communication complexity Cc(f) is the
minimum number of bits that A and B need to
exchange




Typical scenario: Alice and Bob receive (binary) inputs x, y
and want to compute a function f(x,y)

To do this they are allowed (need) to communicate

Alice Bob
O11001...
o < oo > S,

Def: The (classical) communication complexity C(f) is the
minimum number of bits that A and B need to
exchange




Typical scenario: Alice and Bob receive (binary) inputs x, y
and want to compute a function f(x,y)

To do this they are allowed (need) to communicate

Alice = Bob

Def: The (classical) communication complexity C:(f) is the
minimum number of bits that A and B need to
exchange

=» Cc(F)<N: Alice can always send her whole input x




Different models:

@ Worst case scenario: interested in the communication
needed for the "worst” choice of x and vy

@ Expected communication: inferested in the average
(over x and y) communication needed




Different models:

@ Worst case scenario: interested in the communication
needed for the "worst” choice of x and vy

@ Expected communication: inferested in the average
(over x and y) communication needed

@ Without error: f(x,y) must be evaluated exactly
@ With error: an error probability € allowed
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Different models:

@ Worst case scenario: interested in the communication
needed for the "worst” choice of x and vy

© Expected communication: inferested in the average
(over x and y) communication needed

@ Without error: f(x,y) must be evaluated exactly
@ With error: an error probability £ allowed

Furthermore A and B might inifially share a random key
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Different models

6 Worst case scenario: mferes’red in the communlcahon
needed for the "worst” choice of x and Y

3 Expected communication: inferested in the average
(over x and y) communication needed

@ Without error: f(x,y) must be evaluated exactly

6 W|’rh error: an error probablllfy € allowed

Furthermore A and B might initially share a random key
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In addition to Alice and Bob there is a third party: Referee

Alice Bob |
| X€{0,1" ye{0,1N|

Referee
fx.y)




In addition to Alice and Bob there is a third party: Referee

There is no communication between Alice and Bob, but only
between each of them and the referee

. Alice __.: Bob
| x€40,13" <SS ye{0, 1N

N o/

Referee
f(x.y)




In addition to Alice and Bob there is a third party: Referee

There is no communication between Alice and Bob, but only
between each of them and the referee

|

| xe{O I yEO 1" |  Trivial solution: Alice
and Bob send x and vy
\XX // respectively
Referee Cc(f)<2N

f(x.y)




In addition to Alice and Bob there is a third party: Referee

There is no communication between Alice and Bob, but only
between each of them and the referee

| Alice Bob
xefo N 7 yeloY|  Trivial solution: Alice
and Bob send x and vy
h(x)\xx // respectively
Referee Cc(f)<2N
f(x.y)

Sometimes they can send only “fingerprints” of their inputs
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I itx=
Consider SMP model and f(x,y)=EQn(x,y)= { 0 -

if x#y
Alice Bob
xe{0, 1N ye{0, 1N

N 7/

ReFeree

J'




Consider SMP model and f(x,y)=EQn(Xx,y)=

1) A and B encode the inputs
(error correcting code) so
that Du[ZEx, E,]>(1-0)cN

[1if x=y
1

0 if x#y

Alice
xe40,1N

Bob
ye{0, 1N

xe{OR fﬁ{o 13N

ReFeree

fix.y




| [1 if x=y
Consider SMP model and f(x,y)=EQn(X,y)= 1 O iFieby
1) A and B encode the inputs | Alice Bob
(error correcting code) so XE{O 1N YG{O I
that Du[ZEx, E,J>(1-8)cN \ E,
Fef0,1}N *—FE{O 1™
2) They send only a part of Referee
the encoded string f(x.y)




Consider SMP model and f(x,y)=EQn(X.y)=

1) A and B encode the inputs
(error correcting code) so
that Du[ZEx, E,]>(1-0)cN

2) They send only a part of
the encoded string

3) The Referee draws his conc

(

I iEx=y

RO if x#y
Alice Bob
xe{0, 1N ye{0, 1N
i i; j-Ex,.' .if 115&1 l
F,40,1}N E,e{0,1}N
Referee
f(x.y)

usuon by comparlng the two

strings he receives Perror=P(Eq=E,;| x#y)<d




Consider SMP model and F(x,y):E(;).N(:-(,,y):1

1) A and B encode the inputs
(error correcting code) so
that Du[ZEx, E,]>(1-0)cN

2) They send only a part of
the encoded string

fl if x=y

0 if x#y

Alice Bob
xe$0,1N yeio, 1N

xe{OR /ﬁ{o 13N

Referee
f(x.y)

3) The Referee draws his conclusuon by comparlng the two

strings he receives Perror=P(Ex=F,;| x#y)dd) »<
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1 if x=
Consider SMP model and f(x,y)=EQn(X.y)=T v

0 if x#y

1) A and B encode the inputs | Alice Bob
(error correcting code) so | X€10,1}" yE€0,1

that Du[Ex, E,]>(1-8)eN 1 ke VT, 1
E«10,13 E,e40,1N

2) They send only a part of Referee
the encoded string f(x,y)

3) The Referee draws his concl usuon by comparlng the two

strings he receives Perror= P(fx.—ﬁy Jlxiy)<6 s *’ﬁf

of
0% 50
o o

=» C(EQN)=0(~/N) Proven to be optimal “'=




As in the classical case, :
but Alice and Bob share EA{IBCT}N < 5 eigbl}"*‘
a quantum channel o W




As in the classical case,
but Alice and Bob share
a quanfum channel

And so do the two of
them and the referee
in the SMP model

I

Alice
xe40,1}N

N

Bob
ye{0, 1M

|
%p(ﬂ) |

Referee
fx.y)

A R e



As in the classical case, Alice Bob

but Alice and Bob share b 2
a quantum channel x40, 11 y€{0,1}

And so do the two of |¢(& %p(m

them and the referee

in the SMP madl Referee
f(x,y)

Holevo: one qubit cannot be used to transmit more than
a single bit of (retrievable) information




As in the classical case, Alice Bob

but Alice and Bob share . :
a quantum channel X€4{0,1} yE€{0,1}

And so do the two of m& %p(v))

them and the referee

in the SMP meil Referee
f(x.y)

Holevo: one qubit cannot be used to transmit more than
a single bit of (retrievable) information

Can we expect any difference between classical
and quanfum communication scenarios?




As in the classical case, Alice Bob

but Alice and Bob share b >
a quantum channel x€{0,1} y€10,1}

And so do the two of MN %p(y))

them and the referee

in the SMP madil Referee
f(x,y)

Holevo: one qubit cannot be used to transmit more than
a single bit of (retrievable) information

Can we expect any difference between classical
and quanfum communication scenarios?

ATTENTION! we are inferested in f(x,y) : single bif




As in classical case: SMP model and f(x,y)=EQn(x,y)

Main idea: Classical procedure
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As in classical case: SMP model and f(x,y)=EQn(X,y)

Main idea: Classical procedure + Quantum parallelism
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As in classical case: SMP model and f(x,y)=EQn(X,y)

Main idea: Classical procedure + Quantum parallelism

: _.c‘&_ B < — L
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Referee: [@, 19,2010, I
lpy)
l EFH-@WAP-H
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Send
» O(logcN)

qubits



As in classical case: SMP model and f(x,y)=EQn(X,y)

Main idea: Classical procedure + Quantum parallelism

. C\D@\ - ~~\ qubit \
: - » O(logcN)
Bob: y—Z2>F, — |oy) = : ;_\_,_ S KE®) | qubits
2 k=1

Referee: [@. 19,2010, I
lpy)
l EFH—@WAPHH

[10) U @,) + I @)+ 1) (e, - o, )] /2




Referee measures the first qubit of

[10) U@, + o))+ 1) (oo, - o, o) /2




Referee measures the first qubit of

[10)10key) [0 lo)+ 1 E@koy) - o, ]/2

Can measure 1 only if
XFY
(no error here)




Referee measures the first qubit of

[10)1@ley) ko) + 1D @le, - ko o)/2

If he measures Can measure 1 only if
he concludes ey
!
l (no error here)
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Referee measures the first qubit of

[10)@koy) 0o+ 1)@ oy) - o, Mg 2

If he measures Can measure 1 only if
he concludes X£Y
l (no error here)

i Error can be reduced to
perror—'—p(Ol X#Y) € 2(1+62) — any £>0 Sending O(log(l/s))




Referee measures the first qubit of

[10)(1@l0y kol@u))+ D@0, - oo/

If he measures Can measure 1 only if
he concludes XZ£Y
l (no error here)

* i Error can be reduced to
perror-—p(ol )(:,\':y) - 2(1+62) = any £>0 sending O(log(l/S))

Communication
|(-p><> and |(-py> _y




Referee measures the first qubit of

[10)(101@, ko )+ D@0y - o, )] /2

If he measures Can measure 1 only if
he concludes x- XZ£Y
l (no error here)

i Error can be reduced to
perror=p(0| X:#Y) £ 2(1+62) = any £>0 Sending O(Iog(l/E))

Communication
|(<px> and |(py> —

Remember: Cd(EQn)=0(/N) (optimal)




Referee measures the first qubit of

[10)(1@1@,Y ko l)+ D@0y - o, )] /2

If he measures C Can measure 1 only if
he concludes x= X2y
l (no error here)
1
Perror=P(0 | x#y) < Error can be reduced to

2(1+82) = any £>0 sending O(log(1/€))

‘ Communication "l

Remember: C(EQn)=0(-/N) (optimal)

/




Classical implementation of the quantum protocol for EQn

1) A e applies £ to x
e describes state |,)
e sends the description

(K(lepx)) bits)




Classical implementation of the quantum protocol for EQn

1) A e applies E fo x 2) B e applies £ to y
e describes state |py) e describes state |@,)
e sends the description e sends the description

(K(lpx?) bits) (K(lpy)) bits)




Classical implementation of the quantum protocol for EQn

1) A o applies E tfo x 2) B e applies £ fo y
e describes state |@y) e describes state |,
e sends the description e sends the description
(K(lpx?) bits) (K(lpy?) bits)

3) Referee classically simulates the quantum circuit




Classical implementation of the quantum protocol for EQn

1) A e applies £ to x 2) B e applies £ fo y
e describes state |py) e describes state |,
e sends the description e sends the description
(K(lpx?) bits) (K(lpy?) bits)

3) Referee classically simulates the quantum circuit

Communication (classical):




Classical implementation of the quantum protocol for EQn

1) A e applies £ to x 2) B e applies £ fo y
e describes state |py) e describes state |,)
e sends the description e sends the description
(K(lpx?) bits) (K(lpy?) bits)

3) Referee classically simulates the quantum circuit

Communication (classical):
K(lpx?) +K(lpy)) bits

Classical optimal:
C(EQn)=O(VN)




Classical implementation of the quantum protocol for EQn

1) A e applies £ to x 2) B e applies £ fo y
e describes state |@y) e describes state |,
e sends the description e sends the description
(K(lepx?) bits) (K(lpy?) bits)

3) Referee classically simulates the quantum circuit

Communication (classical): |
K(lp:2) +K(lp,2) bits | K00)+K(le):2 0/

Classical optimal:
Cc(EQN)=0(/N) )




Classical implementation of the quantum protocol for EQn

1) A e applies £ to x 2) B e applies £ to y
e describes state |@y) e describes state |,)
e sends the description e sends the description
(K(lepx?) bits) (K(lpy?) bits)

3) Referee classically simulates the quantum circuit

Communication (classical): |
K(lp.) +K(l@,)) bits | K(lo,) +K(ip,)) > O(VN)

Classical optimal: |-_
CC(EQN)=O(~/N) ) EX]

'O

onential growth




If quantum Kolmogorov complexity measure the number
of bits needed to classically describe a state in such a
way that it can be reproduced

It must grow exponentially with the number of qubits




If quantum Kolmogorov complexity measure the number
of bits needed to classically describe a state in such a
way that it can be reproduced

It must grow exponentially with the number of qubits

=»Recall: two definitions for complexity based on
classical information(bits):
Quantum Turing machine: Kq(lg))
Quantum circuit: KNet(lp)




If quantum Kolmogorov complexity measure the number
of bits needed to classically describe a state in such a
way that it can be reproduced

It must grow exponentially with the number of qubits

=»Recall: two definitions for complexity based on
classical information(bits):
Quantum Turing machine: Kq(lp)?) <2N
Quantum circuit: Kiet(lp))<2Vlog(1/¢)




If quantum Kolmogorov complexity measure the number
of bits needed to classically describe a state in such a
way that it can be reproduced

It must grow exponentially with the number of qubits

=»Recall: two definitions for complexity based on
classical information(bits):
Quantum Turing machine: Kqllep?)—<2N— _
Quantum circuit: KNef(l‘;P))‘:ZNlOg(l/ 3)




If quantum Kolmogorov complexity measure the number
of bits needed to classically describe a state in such a
way that it can be reproduced

It must grow exponentially with the number of qubits

=»Recall: two definitions for complexity based on
classical information(bits):
Quantum Turing machine: Kqllep?)—<2N—_
Quantum circuit: KNef(lcp>)<2N|09(l/ )
Note: one should include error (g) in previous protocol!
Does not change the result (€ independent of N)




Alice wants to send a state to Bob, but has only a classical
channel = she can explain how fo prepare It!

They had previously agreed
1) to use the same "toolbox” to prepare their states;

2) to use the same words when referring fo the same
elements in the toolbox




Alice wants to send a state to Bob, but has only a classical
channel = she can explain how fo prepare It

They had previously agreed
1) to use the same "toolbox” to prepare their states;
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Alice wants to send a state to Bob, but has only a classical
channel = she can explain how fo prepare Iit!

They had previously agreed
1) to use the same "toolbox” 1'0 prepare their states;

2) to use the same words when referring fo the same
elements in the toolbox

.e. a "law” that associates a letter to each gate (or set of gates)
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Quantum state < > |CP> = QN

1 :
: 2 circuit o
Preparation procedure [Keplce<io)|21-€]
Description of the  _ codingword w((l;as)

procedure

l |

Compression of the __ classical
dESCI"ip'I’iOH complexity KC'[w(CB'E)]

There could be more circuits that prepare the state
with the required precision:
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How do we explain the dependence of Kret on N and £7?

@ The action of any unitary on |0) can be implemented with
precision € using O(2Vlog(1/€)) gates from a fixed basis

@ Length of the coding word ~ number of gates

Very different from the classical case, but not so strange

Normalized state "Patch” on a 2N-dim
with precision € hypersphere

There are V-'~2%¢®*! such patches

U
To specify one we need logV-'~ 2Nlog(1/¢)
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Consider an n-partite quantum system with parties Ay,...,An

Any state |d) in such space can be written as:
b)= 3;00lD @)@ Blegny

Let r be the minimum number of terms R needed to write
such a decomposition for |d), then

Def: The Schmidt measure” of |$) is Es(ldh))=logr

Considering the minimal partition (each party has one
qubit) there is a relation between Es(l$)) and Knet (1))
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And we have:

Each state |;)

r = \ __ is separable
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..quanfum Kolmogorov complexity properties lead fo results
In communication complexity theory...

@ The Kolmogorov complexity of a state is at most
exponential in the number of qubits

(Recall: classical simulation)

@ Only a highly entangled state can be maximally complex
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.and results from communication complexity theory give
insight on Kolmogorov complexity...

Recall: Exponential gap between Cc and Cq due to the fact
that complex states are sent (else the quantum
protocol could be easily implemented classically)

EQn: exponential quantum/classical gap
e T e
states of the form:(y:) = — z k) Es )
Note: Same idea (classical simulation of

quantum protocol) can be used tfo
prove: k

(first example)
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Computation complexity measures the time needed by a
computer fo find the solution fo a problem with input of
size n

Big question: how much faster are quantum computers?
What we knew (in 12 words): only using entanglement a

quantum computer has a chance to be
exponentially faster !

We can contribute too! all states that appear in the
computation must have complexity that grows at
most polinomially with n (and no less than log)!
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=» Found necessary property for any definition of quantum

Kolmogorov complexity (that allows to prepare a

state): exponential growth in N

=» Given a definition of quantum Kolmogorov complexity
that satisfies said condition and studied some
properties: relation fo entanglement and classical
complexity

=» Shown how this quantity can be used to prove

statements in communication and computation
complexity theory

To do: Are there other applications?
What is the relation between the various
definitions that scale exponentially?







Computation complexity measures the time needed by a
computer to find the solution fo a problem with input of
size n

Big question: how much faster are quantum computers?
What we knew (in 12 words): only using entanglement a

quantum computer has a chance to be
exponentially faster !

We can contribute too! all states that appear in the
computation must have complexity that grows at
most polinomially with n (and no less than log)!

= only few special states (if any) can do the trick!
(Proof holds only for network complexity)




