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Abstract: If spacetime is"quantized" (discrete), then any equation of motion compatible with the Lorentz transformations is necessarily non-local. |
will present evidence that this sort of nonlocality survives on length scales much greater than Planckian, yielding for example a nonlocal effective
wave-equation for a scalar field propagating on an underlying causal set. Nonlocality of our effective field theories may thus provide a
characteristic signature of quantum gravity.
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Discreteness can respect the Lorentz group

(Kinematic randomness plays a role - Poisson pro-

cesses — and causets require this)

But locality must be abandoned

= radical nonl cality at fundamental level
(micro-scale ¢)

Une can recover locality appr ximately at large scales

(macero-scale L)

But residual nonlocality survives at intermediate scales
(meso-scale \)
An effective meso-theory would be continuous but

nonloeal

[Mlustrate these claims with scalar field & on a fixed
causet (- Recovery of 7 &.
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A theorem on Poisson processes
{2 = space of all sprinklings of M* (sample space)
Poisson process induces a measure g on 0

Let f be a rule for deducing a direction from a
sprinkling f : Q -+ H = unit vectors in nM?

Require f eguivariant (fA =Af. A Lorentz)

Assume that f is measurable (hardly an assump-
tion)

Tueorem No such f erxists (not even on a partial

domain of positive measure)

(So with probability 1, a sprinkling will not deter-
mine a frame.)
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Whence the nonloeality? ’
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These ideas lead to expressions like
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One can prove that, as £ — 0

S=E Z Bior — 0Oo(z;)
=

using e.g.

E T olr) = / .;Ilh,lrlll. exp{—uv/{~]

Problem: AS — oo (fAuctuations) as £ — 0!
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IDEA: Our averaged sum is a continuum expression.

where

with p(§) =1-26+3¢%, €= Kuv. and K = 1/62.

But can decouple K from £2. We get a nonlocal contin-
uum analog of the D’alembertian! Call it 0.

Umkehren: replace the intesral by a sum over causet
elements whose sprinkling-average is just (] itself! This
A

produces the causet expression:

4= 1 e : i

2 "3’-‘”'1-” == E Il 'I.J'.y};.;‘l @lx)
where s = 2K and
)rf”-:_}‘—_—H“:‘_I”"—f:'.!i'i1—;""']-%;‘:HUJ—1][I—;‘}"_:.

This “trick”™ works. It drives down the fluctuations. but

pushes the nonlocality up to the “mesoscopic” length-
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IDEA: Our averaged sum is a continuum expression,

where

Bilr) = i |—2ARd(x) + 4K il

™

with p(€) =1—-2£+ £ E=Kuv. and K = 1;’{-’_

But can decouple K from £2. We get a nonlocal contin-
uum analog of the D’alembertian! Call it 0.

A

Umkehren: replace the intesral by a sum over causet
elements whose sprinkling-average is just 7 itself! This

!

produces the causet expression:

ds 1 \
7= | 52+ fl(z.y)|, =) é(x)
£ - =Ly
where ¢ = (K and
f(n,e) = (1—2)"—2en(1—2) 1+ 12p(n— 18 =

This “trick” works. It drives down the fluctuations, but
pushes the nonlocality up to the “mesoscopic” length-
scale Ay = 1/VK.




Remarks and applications

Analogous expressions exist in other dimensions.

Ind=4

Can now study propagation on sprinkled causet (Ride-
out) cf. swerves

mtinuum theorv's free field is stable:

But response to sources and curvature differs

Quantum Field Theory version? New approach to
renormalization? Our nonlocality does not remove
xo’s, but perhaps it will allow an invariant (Lorentzian)
cutoff.

How big is Ag? Must balance fluctuations against non-
locality. L = Hubble™!, ¢ = Planck length.

Ao 2 (EL)'/3

if want [J pointwise accurate. = nuclear size!!
Ll
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