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Abstract: Using results from models of the atmosphere/ocean/sediment carbon cycle, the impacts of fossil-fuel CO2 release will be examined A—
including the effect on climate many thousands of years into the future, rather than for just a few centuries as commonly claimed. Prof. Archer will
explain how aspects of the Earth system, such as the growth or melting of the great ice sheets, the thawing of permafrost, and the release of methane
from the methane hydrate deposits in the deep ocean, take thousands of years to respond to a change in climate. The duration of our potential
climate adventure is comparable to the pacing of climate changes in the past, which enables us to use the geologic record of past climate changes to
predict the trajectory of global warming into the deep future. In particular, the record of sealevel variations in the past suggests that the ultimate sea
level response to fossil fuel CO2 use could be 10 to 100 times higher than the Intergovernmental Panel on Climate Change (IPCC) forecast for the
year 2100. <kw>models, greenhouse gas, temperature forecast, medieval warm, little ice age, Greenland, Heinrich Events, fossil fuel, Climber
Model Hysteresis, Ganopolski, Buffett, methane hydrates, Palaeocene, Eocene, Thermal Maximum Event </kw>
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L. Introduction : Observations of Langley on |
Atmospherical Absorption. ) B NOW s Of course, we
GREAT. deal has been written on . the influence of g, o .
. the absorption of the atmosphere upon the __clin:-l'ai:ﬂ._"'- prec}l(-'t 3 _5 C (a Lentury

Tyndail f in partieular has pointed ount . the enormous im-
portance of this question. To him it was chiefly the diurnal of progress M.
and annual variations of the temperature that were lessened by,

this circumstance. Another side of the question, that haslong }
attracted the attention of physicists, is this :* Is the mean
temperature of the ground In any way influenced by the
presence of hen.tmahsor%i.ug gases in the almosphere ?. -Fouriert
maintained that the atmosphere acts like the glass of a hot-
house, because it lets through the light rays of the sun!but
retains the dark rays from the ground. This idea |was
elaborated by Pouillet § ; and Langley was by some of his
researches led to the view, that * the temperature of |the

earth under ‘direct sunshine, even though our atmosphere

were present as now, would probably fall to —200° C., if

that ‘atmosphere did not vossess the aualitv fof selective
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The Earth 1s Warming
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Ice sheets and glaciers are melting
around the world
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Temperature Forecast:
2-4° C warming
by 2100

General increase
in precipitation
In a warmer
world.
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Global Average Change, °C
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Temperature changes
from 1750 (natural)

For the year 2100

And 2300

Warming is most
intense in high
latitudes
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Temperature Rise from 2000 to 2100, °C
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Land Biomes Year 2000

Tropical Evergreen

Climate determines
the landscape of the
Earth.

Tropical Deciduous
Temperate Evergreen Broadleaf
Gemperate Evergreen Conifer

Temperate Deciduous Forest

Tundra is lost by 2300.

Boreal Evergreen Forest
Boreal Decduous Forest
Mixed Forest

Savana

Grassland

Dense Shrubland Year 2300

Open shrubland
Tundra
Desert
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The Past

Medieval Warm, Little Ice Age,
0.5° Warm 1° Colder

Present,
0.6° Warmer
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Lessons from the past

Present-day climate 1s comparable to medieval warm.
Real, noticable, but not globally catastrophic.
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Glacial cycles in ice sheets and CO,
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Lessons from the past

Present-day climate is comparable to medieval warm.
Real, noticable, but not globally catastrophic.

Temperature change in the coming century is more
comparable to the end of the last glacial time.
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3° Warmer 5 Million Years Ago
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Early Eocene Optimum
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Lessons from the past

Present-day climate i1s comparable to medieval warm.
Real, noticable, but not globally catastrophic.

Temperature change in the coming century i1s more

comparable to the end of the last glacial time,
but to a warmth unlike any in millions of years.
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Lessons from the past

Present-day climate 1s comparable to medieval warm.
Real, noticable, but not globally catastrophic.

Temperature change in the coming century is more
comparable to the end of the last glacial time,
but to a warmth unlike any in millions of years.

Another note from the past: climate changes can be
abrupt and unpredictable, rather than the smooth
changes that the models predict.
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The Future

Fate of fossil fuel CO,

Dissolves in the ocean (centuries)
Uptake / release from terrestrial biosphere  (centuries)
Neutralization by CaCO, (5-10 kyr)

Lithification by weathering of silicate rocks (400 kyr)
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Most of the CO, goes away in
a few centuries, but a fraction

i (~25%) remains in the atmosphere
_ ' for thousands, even hundreds of
5 thousands of years.
= 1200
g
3 1000
E 1,0cean Invasion, 300 years
@ 800 :
E .
e — P\, Reaction with CaCO3, 5000 years
400
200 -
0 5000 10000 15000 20000 25000 30000 35000 40000

Year AD.
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IPCC 2001 got this wrong

Table 1 Examples of greenhouse gases hatl ar affected by human actvies. [Based upon Chapter 3 and Table £ 1]

Co, CHa N.O CFC-11 HEC-23 L £
{Carbon {Methane) i Nitrous (Chloroflnoro {Hydrofluoro  (Perflnoro-
Dioxide) Oxide) -carbon-11) -carbon-23) methane)
Pre-industrial concentration about 280 ppm  about 700 ppb about 270 ppb zero Zero 40 ppt
Conceniration in 1998 365 ppm 1745 ppb 314 ppb 268 ppt 14 ppt 30 ppt
Rate of concentration 1.5 ppmiyr 7.0 ppbiyr @ 0.8 ppbévr —1.4 pptivr 0.55 pptivr 1 pptivr
change®
Armospheric lifetime 5 to 200 yr°© llj.l'r'i 1141,?!'EI 45yt 260 yr =>50,000 yr

=3

2 Raie has fuciusted betwesn 0.9 pplly

L

8 ppmufyr for GOy and between 0 and 13 ppbiyr tor CH, over the penod 1980 1o 1955
¥ Hate i3 calcuisted over the penod 1920 1o 1999
 No single lilsiime can be defined lor GO, because of the ditferent rates of uptake by diffierent removal processes

2 Thig Ifettme has been dedined as an "sdusiment tme™ that takes into account e indiect efiect of the gas on 118 own resdence ime

=)

Since then, it’s repeated everywhere
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Airborne Fraction of a Large CO, Release

Peak 1 kyr 10 kyr
Archer 2005 60% 33% 15%
Lenton 2006 67-75% 14-16% 10-15%
Brovkin in prep. 67% 57% 26%
Goodwin subm. 50% 40%
Ridgwell subm. 50% 34% 12%
Tyrell subm. 70% 42% 21%

irsa: 06120045 Page 21/51



Pirsa: 06120045

313G of CaCOg, %pq

3180 of CaCOg, %

55 Myr Ago
-2
g COz
recovers in
0 - COq2 release | 1} .. 100,000 yrs
T+ . :
ol -
3
-1 E
Oceantemp. 14
I Deep ocean 1 recovers in 3
warms , 1,100,000 yrs 12
0 - | -
\ - 10
- A \ o
—— 2 -8
+1 T T T

Age, million years

Paleocene/Eocene Thermal Maximum Event

A natural release

of CO,, comparable
to the potential
fossil fuel release.

Warming, with a
recovery that took
100,000 years.
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Long-Term Temperature Impact

1 kyr 10 kyr
2000 Gton C > LY
5000 Gton C 3 S 2
(all the coal)

Assumes 3°C warming for doubling CO,
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Sea Level

Sea Level, m 100 -

Eocene
@ 40 Myr ago
50 4 o
_* Pliocene
4 3 Myrago
Global Mean T, °C Today | -~ yras
L] ) J.- . L
5 10 .2 115 IPCC 29
Fas Forecast
o~ B Year 2100
Last Glacial ,~ S
Maximum @ .
20 kyr ago - The forecast is low

because
melting ice Is slow
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Long-Term Temperature Impact

2000 Gton C 1.5
5000 Gton C 50

Assumes 3°C warming for doubling CO,
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Sea Level

Sea Level, m 100 -

Eocene
# 40 Myr ago
50 - ’f‘ 3° C warming
,." Pliocene
Global Mean T, °C Today | ,- 3 Myr ago
T L] .r. :
3 10 b 20
.7 50
Last Glacial .* .
Maximum @ ' '
e - Historically,

3° C warming
IS a big deal.
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Ice sheet models are probably too sluggish.

It takes thousands

of years to respond
to climate changes.

Ice flows if there’s water at the bed
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The real Greenland
ice sheet responds

in a few months.
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We don’t know how water gets through the igg...




A moulin in Greenland
where water submerges
mto the ice.
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Zwallev et al (2002)



Earthquakes under
Greenland ice

Fig. 1. Topographic map of southern Greenland
and wicinity. The locations of 136 gladsl earth-
quzkes defining seven groups sre ndicsted with
red crdes: 0)G, Dougsard Jensen Glacer (5
evenisl; KG {angerdlogssusn Glscer (61) HG
Helheim Glacer (26); 56, southess: Greenlsnd
glaciers (6); ], Jskobshawm ishrse (113 R, Rinks
shrae (103; NG northwest Greentand glacers
(17). Owing 1o the tight dustering of the earth-
Y quekes, many of the individusl symbols on the
BOW sOW ADW 0w 20W map overlap.

Fig. 2. (A) Histogrmm  No. = i =
ﬂ'lm-lgmt[ﬂf e A ST O | B pean g
glecial esrthquakes on X @] @
Greenland. Green bars @ oo peco @ _g‘ -
show the number of 5 E S —y
detected Greenland .o swog & 2
glacial esrthquakes n  © & B fso0 3
each month during the @ o wy o A -
period 1993 o 2004. % E §'-’ -.-:-..E_
Gray bars show the l'.% - "“GE & Lo B
numter of esrthguakes = o

of smiler magniude
detecied elsewhere
north of 45°N during
the same period. (B} Histogram showing the incressing number of Greenland glac=l esrthquakes {green bars} since at Least 2002, No general indease in the
detection of earthguakes north of 25°Y (gray bard is observed during this time period.
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Heinrich Events 30-70 kyr ago

Ice sheet collapsed
into the ocean

Raised sea level ~5 m

Ice Rafted Debris in a few centuries.
(layers of rocks in Could the Greenland

- = . . ;?
ocean sediments) ice sheet start doing this’
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Meltwater Pulse 1A 19kyr ago

Or v
;IBarhadns
t | ® New Guinea

25+
|

50 mwp-IB

E I

5¢

100}

B
20 15 10

(ka)

Figure 1. Coral records of sea level dated by L/Th from Barha-
dos [Bard et ai., 19902, 1993] and New Guinea [Edwards et ai.,
1993]. Two periods of rapid rise of sea level are identified as
mwp-1A and mwp-I1B.

1.5 to 3 Greenlands
in 1-5 centuries.

We’'re not even sure

where this water
came from.
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Sea Level

Sea Level. m 100 -

Eocene
# 40 Myr ago
50 - & 3°C warming
,‘Q' Pliocene
Global Mean T, °C Today | ,- 3 Myr ago
: = n :
o 10 o 20
.7 50
Last Glacial .* -100 -
Maximum @ ;
20 kyr ago . How long will

it take for sea
level to rise?
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Low Countries of Europe
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Yangtze Delta, China
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Fossil Fuel Carbon and Ice Ages

Summer sunlight at 65°N

rises above some threshold.
Interglacial < Unstable

State Glacial

The ice sheet gets
Summer sunlight at 65°N > too laree

drops below a threshold. Glacial
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35 kyr sticky switch model

Insolation forcing
(summer, 65°N])

Normalized insolation

Maodel results
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Fossil Fuel Carbon and Ice Ages

Summer sunlight at 65°N

rises above some threshold.
Interglacial < Unstable

State Glacial

The ice sheet gets
Summer sunlight at 65°N > too laree

drops below a threshold. Glacial

The Trigger
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CLIMBER Model Hysteresis

Northern Hemisphere ice volume

01 1gg
-
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Max. summer solar isloation 65°N (W/m?)
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Past Future
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Archer and Ganopolski, 2005
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pCOy, patm

Global T Offset, °C
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pCOy, patm

Global T Offset, °C

Past Future
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Methane Hydrates
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Methane Hydrates
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Bubble Volume, %
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Bubble volume upon melting, %
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Hydrates bottom line

Probably won’t catastrophically blow out in the coming
century, because it takes a long time to warm the
deep ocean and into the sediment.

On time scales of millennia and longer, the hydrates

could release carbon to match our fossil fuel
carbon release.
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From Here to Eternity

The long lifetime of nuclear waste matters to people.

Why would the long lifetime of global warming
be any different?
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What to do?

We have already emitted about 300 billion metric tons
of carbon from fossil fuels and deforestation.

We could ultimately emit about 700 billion metric tons
and just avoid a “dangerous climate change of

2C.

The 400 billion metrics tons we haven’t released yet 1s
about equivalent to the remaining o1l and gas
reservoirs. Just stop burning coal.
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