Title: Differences between quantum and generalised non-locality
Date: Dec 07, 2006 02:00 PM

URL.: http://pirsa.org/06120037

Abstract: TBA

Pirsa: 06120037 Page 1/70



1 Ee—

ifferences between quantum and
generalised non-locality

Tony Short

University of Bristol

irsa: 06120037 Page 2/70|



Differences between quantum and
generalised non-locality

Tony Short

University of Bristol

irsa: 06120037 Page 3/70|









Non-local computation: Overview

= An elementary non-local task
= Success probability bounds:
- Classical (= CHSH inequality)
- Quantum (= Tsirelson inequality)
- Generalised non-locality

= Non-local Computation
= Success probability bounds
= Example: nonlocal-F-AND
= Extensions.

= Conclusions

irsa: 06120037 Page 6/70



An elementary non-local task.

Alice and Bob are set the following challenge: Given random input
bits (x, y), they must generate output bits (g, £) such that

asb=xy

What is their maximum probability of success?
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Maximal success probability: Classical

= The success probability for classical strategies is bounded by
the Clauser-Horne-Shimony-Holt (CHSH) inequality:

(4,B,)+(4,B,)+{AB,)—(4B,)<2

Which gives

e.g.

v b
| 0|0
10
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Maximal success probability: Classical

= The success probability for classical strategies is bounded by
the Clauser-Horne-Shimony-Holt (CHSH) inequality:

(4,B,)+(4,B,)+(AB,)—(4B,)<2

Which gives

~
i -
' max P.sm:eess i J

v|b
| 0|0
1|0
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e.g.
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I Maximal success probability: Quantum
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If Alice and Bob share an entangled state, they can use it
to generate non-local correlations:

P(a.b

.r.}‘)iZP(f)P(a\I-f)P(b\Jf’-.f)

Their success probability is bounded by the Tsirelson inequality:

(4,B,)+{4,B,)+(4B,)—(AB)<2VJ2

Which gives

o N
max PS¢ — 2442

SHECESS
4
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Maximal success probability: Generalised non-locality

= Now consider generalised non-local correlations, where any
P(a,b|x,y) is allowed that does not allow signalling between
Alice and Bob.

With such super-strong non-local correlations

[ mafoﬁmzl ]

e.g.

a = random
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A hierarchy of success probabilities

= Bell and Tsirelson inequalities can be understood as bounds on
the maximal success probability in non-local tasks.

= In this particular non-local task, the maximal success probability
increases with the amount of attainable non-locality:

Greater non-locality — Greater success probability

Flccess FHCCess Jlicce sy

( max P <maxP? < maxP®

!

= Is this a feature of a#/ non-local tasks?
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Non-local Computation

= Consider the non-local computation of a Boolean function c=£z)
from n bits (z=z,z....z,) to 1 bit, in which each party individually
learns nothing about c or z.

z

c=f(z)

Given random input bit strings (x, y), Alice and Bob must
generate output bits (a, 4) such that

asb= f(xey)
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Maximal success probabilities: Generalised non-locality.

= We allow an arbitrary probability distribution P, (z) of logical
inputs z=x ¢ y, although x and y individually remain maximally
random so that Alice and Bob cannot learn z. Hence

P(x,y)= Rﬂ (;:3 V)

= As before, generalised non-locality allows perfect success:

SHECESS

[ max P° =
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Maximal success probabilities: Classical

= Surprisingly, the same maximal success probability can be attained
by adopting a classical strategy:

X
a=ux

giving
= ==
> \ :

1 |

max PSECCESS —max _ . ;‘ L Z (_Df{z}m.ﬂﬁan{:) ‘ — maxpgiceﬁ |
- - T ;.-' |
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Maximal success probabilities: Classical

= Surprisingly, the same maximal success probability can be attained
by adopting a classical strategy:

giving

o Ty

maxP. = maxuﬁél. 1+ Y (DI @*=°P, (2) ‘ = max P~ ‘

SHCCESS SHOCESE

k'\_\_\_‘_ _",/I
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Maximal success probabilities: Classical

= Surprisingly, the same maximal success probability can be attained
by adopting a classical strategy:

X
a=1.x
giving
o o Z i z+ 8 s e ”
m’ahpmccess :maxu.§;| l—I—Z(—l)f{ Y Pfﬁ{;) ‘_m&}LPSE’:CESS |

h =
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Non-local Computation: Summary

= For all non-local computations with a single output bit, where Alice
and Bob must jointly compute c=f(z,,z....z,) without individually
learning ¢ or z, quantum non-locality is useless:

Greater non-locality ;é Greater success probability

| o
max P =maxP¢ < maxP° W

SHccesy Jlccess SHccess
. A

= Note that each choice of f(z) and P, (z) also corresponds to a
pair of identical Bell and Tsirelson inequalities.
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Example: Nonlocal-AND

As a simple example, consider the non-local version of AND

L L

¥ 9

\/ |

C

c=zz, = (asb)=(xey)x,ey,)

For maximally random inputs (P, (z)=1/4), we obtain:

+ |

3 .
[m&m?g :I — = < maxP°® =1 J
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Maximal success probabilities: Classical

= Surprisingly, the same maximal success probability can be attained
by adopting a classical strategy:

giving

SHCCESS SHOCESS

l-'/ \
C ZHie.z+ &
max P :maxuﬁgl 1+ Y (D7 @*=?P, (2) I‘:ma};PQ

irsa: 06120037 Page 29/70



Non-local Computation: Summary

= For all non-local computations with a single output bit, where Alice
and Bob must jointly compute c=f(z,,z....z,) without individually
learning ¢ or z, quantum non-locality is useless:

Greater non-locality ]-é Greater success probability

max P =maxP? < maxP° W

SUCCcesy Jlccess SHCcess
¥

= Note that each choice of f(z) and P, (z) also corresponds to a
pair of identical Bell and Tsirelson inequalities.
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Maximal success probabilities: Classical

= Surprisingly, the same maximal success probability can be attained
by adopting a classical strategy:

giving

F =N

SHCCESE SHOCESS

- pE (@ruztp oy | ooae
1 max P —maxu_g;‘ 1+ Y (DI @*=°P, (2) ‘—m&\PQ
=R z

\ =
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Example: Nonlocal-AND

As a simple example, consider the non-local version of AND

Z, L

A

\/ |

C

c=zz, = (asb)=(xesy)x,ey,)

For maximally random inputs (P, (z)=1/4), we obtain:

3
[mm{Pc :‘1 — mamlt = < maxP__ -1 J

+ |

irsa: 06120037 Page 32/70



Non-local computation: Extensions

= These results also extend to further cases:
+  Non-local computations by any number of parties:

X Xs X2 Xy =l ) _ i
c = aea,ea,ed,

> Non-local computations with multiple output bits where
strategies are scored according to the number of correct bits.

Other non-local tasks requiring a ¢ b= f{x, y), for which
O'=> (-7 P(x. )| x|
Xy

has a maximal-eigenvalue eigenstate |i1)=>"(-1)*"

Lad

x)
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Distributed Computation: Conclusions

= Non-local computation provides a natural class of tasks in
which generalised non-local correlations allow perfect success,
yet quantum non-locality is useless.

Succesy Juccess SHuccess

max P =maxP? < maxP° J

= Do all non-quantum non-local correlations help in some non-
local computation?
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Joint measurements and non-locality swapping: Overview

= A general framework for probabilistic theories.
= Representing states
= The no-signalling condition
= Generalised Non-Signalling Mechanics (GNSM)
= Representing measurements

= Measurements in GNSM
= Limitation to post-selected fiducial measurements

= Impossibility of “swapping’ non-locality

= Conclusions

Pirsa: 06120037 Page 36/70



Representing quantum states as probability vectors

= Instead of representing quantum states as density matrices, we
take a more operational approach (Hardy, Barrett):

= A state is completely represented by a vector P(a|x) of outcome
probabilities (a) for some set of fiducia/ measurements (x).

= E.g. For a single qubit, we might choose ¢, ¢

measurements e
TP

| P(—1
( P(+]
| P(—1
[ P(+1
|| Pt

!

yr Oz as fiducial

o )}
o))
@)
o.),
o)

O-Z' -] A

= This framework can be used to express quantum, classical and
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more general theories, allowing comparisons between them.
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Multipartite systems

= The state of a multipartite system can be given by specifying the
output probabilities for every combination of fiducial measurements
on the subsystems (L.e. P(a|x)= P(a,...a,| %;...x,) )

e.g. The singlet state ﬁ ______________________________
, 2 WA

>
g
)

.
Y I
(o oY £ 2 2 Wi
2 4 4 4 4
1 0 SN L
\ 2 P, 4 4/ 4 4/
I."" l i \': ‘.-"' O l."-. £ l l-\\l
12 21 2 % 1
E e 11 ¥ o T X > %%
i 4) \Z AV
(1 1y (1 1y ({1} |
4 4 4 2 \2 = = 2 i
‘ = l N ‘ £ g - — Play=+Llay=—1|x,=0,.x,=0,)
\ 4 4 _;"I L F. | __--'I \ 2 r : _;'I _j

l".
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Representing quantum states as probability vectors

= Instead of representing quantum states as density matrices, we
take a more operational approach (Hardy, Barrett):

= A state is completely represented by a vector P(a|x) of outcome
probabilities (a) for some set of fiducia/ measurements (x).

= E.g. For a single qubit, we might choose c,, 5, . as fiducial

measurements e
| { P

 P(—1
( P(+]
| P(-1
( P(+1
L P—1

a )\

O - )
J}’ }_x'

g,))

O-z .} J J

yr Vz

= This framework can be used to express quantum, classical and
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more general theories, allowing comparisons between them.
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Multipartite systems

= The state of a multipartite system can be given by specifying the
output probabilities for every combination of fiducial measurements

on the subsystems (L.e. P(a|x)= P(a,...a,| %;...x;) )

e.g. The singlet state ﬂ ______________________________ s
: o [ AN

>
I:'I
)

_f\_
£ N
(6 Y\ (@ ¥y (L T}
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(: X% @ E\ (: 1
|12 a2 2 4 4
Posu=||1 1| |1 o) |1 1]| @l
\ 4;; | _-"I 4 _____‘g-_{_."'l
(1 1y (1 1y (gL
4 4 4 4 =30 T T = = - i
‘ i ‘ -1 [ \Tj" ——— P(a,=+la,=—1|x,=0..x,=0,)
st 41 \4 & \2 ar

%
Pirsa: 06120037 Page 40/70



The no-signalling condition

= All P(a|x) representing allowed states must satisfy:
1 Positivity: P(a \ x)=>0
i Normalisation: Z P@a|x)=1

i1

u.  No-signalling: ZP("“I) 1s independent of x
ay

Without knowing Alice’s result, Bob cannot learn anything
about which measurement she performed on her system
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Generalised non-signalling mechanics (GNSM)

= However, there exist distributions P(a|x) satisfying the
positivity, normalisation, and no-signalling constraints that do
not correspond to any quantum system.

e.g.

= determmms the ~

T T "\\. o T %
o~ o =0
o,

L FalF.

= Generalised Non-Signalling mechanics (GNSM) is an
alternative to quantum theory in which a// states satisfying
positivity, normalisation, and no-signalling are allowed.
(Barrett)
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The no-signalling condition
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All P(a|x) representing allowed states must satisfy:
. Positivity: P(a|x)=0
= Normalisation: ZP(;} | x)=1

1

. No-signalling: " P(a|x) isindependentof x

Without knowing Alice’s result, Bob cannot learn anything
about which measurement she performed on her system
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Generalised non-signalling mechanics (GNSM)

= However, there exist distributions P(a|x) satisfying the
positivity, normalisation, and no-signalling constraints that do
not correspond to any quantum system.

%N

e.g.

= determmns tie ~

T o "\\. F T 5
o R T S

I'k_ % y. __."

= Generalised Non-Signalling mechanics (GNSM) is an
alternative to quantum theory in which a// states satisfying
positivity, normalisation, and no-signalling are allowed.
(Barrett)
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The no-signalling condition
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All P(a|x) representing allowed states must satisfy:
1 Positivity: P(a [ x)>0
. Normalisation: ZP(a |x)}=1

1

. No-signalling: ZP(:]\I) is independent of x

Without knowing Alice’s result, Bob cannot learn anything
about which measurement she performed on her system
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Generalised non-signalling mechanics (GNSM)

= However, there exist distributions P(a|x) satisfying the
positivity, normalisation, and no-signalling constraints that do
not correspond to any quantum system.

Fi
f

e.g.

= deternmms tie ~

o I = B e = B

.\\. '.L..

= Generalised Non-Signalling mechanics (GNSM) is an
alternative to quantum theory in which a// states satisfying
positivity, normalisation, and no-signalling are allowed.
(Barrett)
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GNSM contains stronger than quantum non-locality

= Because mixtures of allowed states are also allowed, the P form
convex sets.

GNSM states

Quantum states (PQ e PG)

= Note that the set P? will depend on the precise choice of
quantum fiducial measurements, whereas P depends only on
the number of measurement choices and possible outcomes.
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Generalised non-signalling mechanics (GNSM)

= However, there exist distributions P(a|x) satisfying the
positivity, normalisation, and no-signalling constraints that do
not correspond to any quantum system.

VN

e.g.

—determmms tie ~

"\\._.-' '-\-.\
B e SN w0 e

.\\. '.\‘

= Generalised Non-Signalling mechanics (GNSM) is an
alternative to quantum theory in which a// states satisfying
positivity, normalisation, and no-signalling are allowed.
(Barrett)
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The no-signalling condition
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All P(a|x) representing allowed states must satisfy:
. Positivity: P(a|x)=0
. Normalisation: Z P(a|x)=1

i

. No-signalling: %" P(a|x) isindependentof x

Without knowing Alice’s result, Bob cannot learn anything
about which measurement she performed on her system
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Generalised non-signalling mechanics (GNSM)

= However, there exist distributions P(a|x) satisfying the
positivity, normalisation, and no-signalling constraints that do
not correspond to any quantum system.

e.g.

= determwms tie ~

T Foa "\\. P '-\-.\
RPN
M e

% % PP,

= Generalised Non-Signalling mechanics (GNSM) is an
alternative to quantum theory in which a// states satisfying
positivity, normalisation, and no-signalling are allowed.
(Barrett)

irsa: 06120037 Page 50/70



GNSM contains stronger than quantum non-locality

= Because mixtures of allowed states are also allowed, the P form
convex sets.

GNSM states

Quantum states (PQ C PG)

= Note that the set P? will depend on the precise choice of
quantum fiducial measurements, whereas PS¢ depends only on
the number of measurement choices and possible outcomes.
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Non-local correlations

= Some states yield non-local correlations, for which

Plaa, |xx,)# Zp(.k)Pk (a, | x, )P, (a,

=)

= GNSM states can produce stronger non-local correlations than
quantum theory. E.g. 2 ...o=P° that allows perfect success in the
non-local task introduced earlier (based on the CHSH inequality):

II/ Il/l 0 x__l lrz l 0 \‘. \II
2 2
lo 1) lo 2]
P - % F. \. i
— nonlocal £1 N/ 1\
= 0 0 =
1 i
=ae XV 9 -} 1= O
a =random b=as ) N 2 \ 2 / J

Why doesn't nature allow the full state-space/non-locality of GNSM?
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Introducing non-fiducial measurements

= In addition to the fiducial measurements used to characterise the
state, a theory may admit many other measurements.

= E.g. in quantum theory

Y= (o.+0.) onasingle qubit

V2

| ) A joint Bell measurement on two qubits
= What are the allowed measurements in GNSM?
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Representing generalised measurements

= The probability p; of obtaining a measurement output /with a
mixed state must equal the mixture of output probabilities for
the constituent states. It follows that measurements act linearly:

= Allowed measurements are represented by a set of vectors
{ R(a|x) } which satisfy:

. Positivity: R -P>0 forallallowed P
1. Normalisation: ZEE P =1 forallallowed P

L
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GNSM allows less measurements than quantum theory

= Like states, the allowed measurements form a convex set.
However, as measurements in GNSM are constrained to give
positive/normalised results for more states, the allowed
measurement set is smaller.

Quantum
measurements
GNSM 5312 (( ~-ii2
measurements Eg o ‘k_g—ﬂf_z | j—mi
(R° cR?) s el (VL] (2
' e y—1 : | 51
--_,-3;2. \ ,/_"__,'_3!,'2 .
‘ I 32 ~—3i2
Y % - P -
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Representing generalised measurements

= The probability p; of obtaining a measurement output /with a
mixed state must equal the mixture of output probabilities for
the constituent states. It follows that measurements act linearly:

= Allowed measurements are represented by a set of vectors
{ R(a|x) } which satisfy:

. Positivity: R -P>0 forallallowed P
1. Normalisation: ZEE P =1 forallallowed P

L
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GNSM allows less measurements than quantum theory

= Like states, the allowed measurements form a convex set.
However, as measurements in GNSM are constrained to give
positive/normalised results for more states, the allowed
measurement set is smaller.

Quantum
measurements
GNSM >~3i2 C( 430
measurements Eg o ‘k_g-ﬁf_l 3312
G Q 45.:» 45.: 4 2—]. ' :_1
R = R +1 =R-1 = '
- ')_]- ! .2_1

T T S [ ~—3Z

‘ _ A-32

| % J b g
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Results concerning GNSM measurements: 1

I. All GNSM measurements can be represented by
non-negative vectors R(a|x) >0

The proof follows from applying
Farkas Lemma to the convex cone of
un-normalised states.

Note that measurements in quantum
theory do not have this property:

. £F. -~ SFENY

i
|

-4

== 5 ‘ | > —3132
—~—F ™%

|

oy —FE2

| I I |

| _ R ‘ | » — 3 ED ‘

- ' d [ -
A %,
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GNSM allows less measurements than quantum theory

= Like states, the allowed measurements form a convex set.
However, as measurements in GNSM are constrained to give
positive/normalised results for more states, the allowed
measurement set is smaller.

Quantum
measurements

GNSM _
measurements Eg

a : y
. i / 2—]. A { :—1 b
(R” = R?) =zl (Z]) . |

V, .
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Results concerning GNSM measurements: I

I. All GNSM measurements can be represented by
non-negative vectors R(a|x) >0

irsa: 06120037

+ &
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|?l::l
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o’

I
| R S R
| |
[ ad [ and
fd  bd Lk
|

The proof follows from applying
Farkas Lemma to the convex cone of
un-normalised states.

Note that measurements in quantum
theory do not have this property:

£ p-5E2 Y E £ —5E2N
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Results concerning GNSM measurements: 11

II. All GNSM measurements on single and bi-partite
systems can be performed using only fiducial
measurements on the individual systems

This includes conditional sequences of measurements

There is therefore no analogue of a Bell measurement in GNSM.

However, note that for tri-partite (or larger) measurements
fiducial measurements alone are nof sufficient. However...
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Results concerning GNSM measurements: III

III. All GNSM measurements can be simulated using
fiducial measurements on individual systems and
post-selection

A protocol to obtain any particular { R, } is as follows:

= Perform a maximally random set of fiducial
measurements x=x,...x., obtaining outputs a

5. Give measurement output /or 7@/ with probabilities:

. R.(a|x) : > R(a|x)
i G =1
m'“nzf& (a|x) 1 111&1*{“2}%(5“ X)

> qP@@|x)P(x) R(a| 5P
=% — = = (a|X)(a|XxX)
pl|5ﬂcc£'ss Z Zn {}IP[;] | K}P{K} ; z %
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No ‘swapping” of non-locality in GNSM

= In quantum theory, non-local correlations can be "swapped’
between parties.

= However, as all measurements in GNSM can be simulated by
single-system measurements and post-selection (result 111), there
are no truly joint measurements in GNSN. Hence

‘Swapping’ non-locality is impossible in GNSM

irsa: 06120037 Page 63/70



Results concerning GNSM measurements: III

III. All GNSM measurements can be simulated using
fiducial measurements on individual systems and
post-selection

A protocol to obtain any particular { R, } is as follows:

= Perform a maximally random set of fiducial
measurements x=x,...x., obtaining outputs a

5. Give measurement output /or 7a/ with probabilities:

. R.(a|x) 1 > R(a|x)
£ Gz =1
max ;o Z:Ri (a]x) e max __ Z R(a|x)

> gP@|x)P(x) e
— - ax — (alxX)(a|Xx)
pI|EﬂEcESS Zznqu[ﬂ|I}P{I} ; £ %
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No ‘swapping” of non-locality in GNSM

= In quantum theory, non-local correlations can be swapped’
between parties.

= However, as all measurements in GNSM can be simulated by
single-system measurements and post-selection (result 111), there
are no truly joint measurements in GNSN. Hence

‘Swapping’ non-locality is impossible in GNSM
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No ‘swapping’ of non-locality in GNSM

= Performing a set of fiducial measurements collapses the state

Hence using fiducial measurements and post-selection we
can only obtain separable (i.e. local) final states

P(ac|xz)= > P(by,b,y, |suces:)F, (a|X)F, _(c|z)

by¥b, ¥,
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Joint measurements and non-locality swapping: Conclusions

= We can construct a theory admitting generalised non-local
correlations and quantum theory within a common framework.

= Generalised non-signalling mechanics allows any non-local
correlations, but much less versatility in terms of
measurements on a given state:

= There are no truly joint measurements on separate
subsystems, analogous to a Bell measurement.

= There is no analogue of entanglement-swapping for
generalised non-local correlations.

= All measurements can be implemented using only fiducial
measurements and (for >2 systems) post-selection.
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Summary
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Differences between quantum and generalised non-locality:

GNSM

Quantum

More allowed states

Stronger non-locality

Allows perfect non-local
computation

More measurements and
dynamics
More versatile
( swappable’) non-locality

Neo advantage in non-local
computation

By viewing it within a broader framework, can we better
understand the particular properties of quantum theory?
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