Title: Differences between quantum and generalised non-locality

Date: Dec 07, 2006 02:00 PM

URL: http://pirsa.org/06120037

Abstract: TBA

Differences between quantum and generalised non-locality

Tony Short

University of Bristol

Pirsa: 06120037 Page 2/70

Differences between quantum and generalised non-locality

Tony Short

University of Bristol

Pirsa: 06120037 Page 3/70

Contrasting quantum and generalised non-locality

Non-local computation (with N.Linden, A.Winter, and S.Popescu)

Joint measurements and non-locality swapping (with J.Barrett)

Pirsa: 06120037 Page 4/70

Non-local computation

Pirsa: 06120037 Page 5/70

Non-local computation: Overview

- An elementary non-local task
 - Success probability bounds:
 - Classical (⇒ CHSH inequality)
 - Quantum (⇒ Tsirelson inequality)
 - Generalised non-locality
- Non-local Computation
 - Success probability bounds
 - Example: nonlocal-AND
 - Extensions.

Conclusions

Pirsa: 06120037 Page 6/70

An elementary non-local task.

Alice and Bob are set the following challenge: Given random input bits (x, y), they must generate output bits (a, b) such that

$$a \oplus b = xy$$

What is their maximum probability of success?

Computing the success probability

The average probability of success in this task is given by

$$P_{success} = \sum_{xy} P(x, y) P(a_x \oplus b_y = xy)$$

$$= \sum_{xy} \frac{1}{4} \left\langle \frac{1 + (-1)^{a_x + b_y + xy}}{2} \right\rangle$$

Writing $A_x = (-1)^{a_x}$ and $B_y = (-1)^{b_y}$,

$$P_{\mathit{success}} = \frac{1}{2} + \frac{1}{4} \left(\left\langle A_{\scriptscriptstyle 0} B_{\scriptscriptstyle 0} \right\rangle + \left\langle A_{\scriptscriptstyle 0} B_{\scriptscriptstyle 1} \right\rangle + \left\langle A_{\scriptscriptstyle 1} B_{\scriptscriptstyle 0} \right\rangle - \left\langle A_{\scriptscriptstyle 1} B_{\scriptscriptstyle 1} \right\rangle \right)$$

Maximal success probability: Classical

 The success probability for classical strategies is bounded by the Clauser-Horne-Shimony-Holt (CHSH) inequality:

$$\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2$$

Which gives

$$\max P_{success}^{C} = \frac{3}{4}$$

e.g.

У	b
0	0
1	0

Computing the success probability

The average probability of success in this task is given by

$$P_{success} = \sum_{xy} P(x, y) P(a_x \oplus b_y = xy)$$

$$= \sum_{xy} \frac{1}{4} \left\langle \frac{1 + (-1)^{a_x + b_y + xy}}{2} \right\rangle$$

Writing $A_x = (-1)^{a_x}$ and $B_y = (-1)^{b_y}$,

$$P_{\mathit{success}} = \frac{1}{2} + \frac{1}{4} \left(\left\langle A_{\scriptscriptstyle 0} B_{\scriptscriptstyle 0} \right\rangle + \left\langle A_{\scriptscriptstyle 0} B_{\scriptscriptstyle 1} \right\rangle + \left\langle A_{\scriptscriptstyle 1} B_{\scriptscriptstyle 0} \right\rangle - \left\langle A_{\scriptscriptstyle 1} B_{\scriptscriptstyle 1} \right\rangle \right)$$

Maximal success probability: Classical

 The success probability for classical strategies is bounded by the Clauser-Horne-Shimony-Holt (CHSH) inequality:

$$\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2$$

Which gives

$$\max P_{success}^{C} = \frac{3}{4}$$

e.g.

У	b
0	0
1	0

 If Alice and Bob share an entangled state, they can use it to generate non-local correlations:

$$P(a,b | x,y) \neq \sum_{i} P(i)P(a | x,i)P(b | y,i)$$

Their success probability is bounded by the Tsirelson inequality:

$$\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2\sqrt{2}$$

Which gives

$$\max P_{success}^{Q} = \frac{2 + \sqrt{2}}{4}$$

Maximal success probability: Generalised non-locality

 Now consider generalised non-local correlations, where any P(a,b|x,y) is allowed that does not allow signalling between Alice and Bob.

With such super-strong non-local correlations

$$\max P_{success}^G = 1$$

Pirsa: 06120037 Page 13/70

A hierarchy of success probabilities

- Bell and Tsirelson inequalities can be understood as bounds on the maximal success probability in non-local tasks.
- In this particular non-local task, the maximal success probability increases with the amount of attainable non-locality:

Greater non-locality ⇒ Greater success probability

$$\max P_{\mathit{success}}^{\mathit{C}} < \max P_{\mathit{success}}^{\mathit{Q}} < \max P_{\mathit{success}}^{\mathit{G}}$$

Is this a feature of all non-local tasks?

Pirsa: 06120037 Page 14/70

Non-local Computation

• Consider the non-local computation of a Boolean function c=f(z) from n bits $(z=z_1z_2...z_n)$ to 1 bit, in which each party individually learns nothing about c or z.

Given random input bit strings (x, y), Alice and Bob must generate output bits (a, b) such that

$$a \oplus b = f(x \oplus y)$$

Maximal success probabilities: Generalised non-locality.

We allow an arbitrary probability distribution P_{in}(z) of logical inputs z=x ⊕ y, although x and y individually remain maximally random so that Alice and Bob cannot learn z. Hence

$$P(x,y) = \frac{P_{in}(x \oplus y)}{2^n}$$

As before, generalised non-locality allows perfect success:

Pirsa: 06120037 Page 16/70

 When Alice and Bob share a quantum state, their success probability is given by

$$P_{success} = \frac{1}{2} \left(1 + \sum_{xy} P(x, y) (-1)^{\hat{a}_x + \hat{b}_y + f(x \oplus y)} \right)$$
$$= \frac{1}{2} \left(1 + \left\langle \alpha \mid \mathbf{1} \otimes \Phi \mid \beta \right\rangle \right)$$

where

$$|\alpha\rangle = 2^{-n/2} \sum_{x} (-1)^{\hat{a}_{x}} |\psi\rangle \otimes |x\rangle$$

$$|\beta\rangle = 2^{-n/2} \sum_{x} (-1)^{\hat{b}_{y}} |\psi\rangle \otimes |y\rangle$$

$$\Phi = \sum_{xy} (-1)^{f(x \oplus y)} P_{in}(x \oplus y) |x\rangle \langle y|$$

This means that the quantum success probability is bounded by

$$P_{success}^{\mathcal{Q}} \leq \frac{1}{2} \left(1 + \left\| \Phi \right\| \right)$$

$$\Phi$$
 has eigenstates $\left|u\right\rangle = \sum_{x} (-1)^{u.x} \left|x\right\rangle$

with eigenvalues
$$\varphi_u = \sum_z (-1)^{f(z)+u.z} P_{in}(z)$$
 hence

$$\max P_{success}^{\mathcal{Q}} = \frac{1}{2} \left(1 + \max_{u} \left| \sum_{z} (-1)^{f(z) + u.z} P_{in}(z) \right| \right)$$

Pirsa: 06120037 Page 18/70

 When Alice and Bob share a quantum state, their success probability is given by

$$P_{success} = \frac{1}{2} \left(1 + \sum_{xy} P(x, y) (-1)^{\hat{a}_x + \hat{b}_y + f(x \oplus y)} \right)$$
$$= \frac{1}{2} \left(1 + \left\langle \alpha \left| \mathbf{1} \otimes \Phi \right| \beta \right\rangle \right)$$

where

$$|\alpha\rangle = 2^{-n/2} \sum_{x} (-1)^{\hat{a}_{x}} |\psi\rangle \otimes |x\rangle$$

$$|\beta\rangle = 2^{-n/2} \sum_{x} (-1)^{\hat{b}_{y}} |\psi\rangle \otimes |y\rangle$$

$$\Phi = \sum_{xy} (-1)^{f(x \oplus y)} P_{in}(x \oplus y) |x\rangle \langle y|$$

This means that the quantum success probability is bounded by

$$P_{success}^{\mathcal{Q}} \leq \frac{1}{2} \left(1 + \left\| \Phi \right\| \right)$$

$$\Phi$$
 has eigenstates $\left|u\right\rangle = \sum_{x} (-1)^{u.x} \left|x\right\rangle$

with eigenvalues
$$\varphi_u = \sum_z (-1)^{f(z)+u.z} P_{in}(z)$$
 hence

$$\max P_{success}^{\mathcal{Q}} = \frac{1}{2} \left(1 + \max_{u} \left| \sum_{z} (-1)^{f(z) + u.z} P_{in}(z) \right| \right)$$

Pirsa: 06120037 Page 20/70

Maximal success probabilities: Classical

 Surprisingly, the same maximal success probability can be attained by adopting a classical strategy:

 $b = u.y \oplus \delta$

giving

$$\max P_{\mathit{success}}^{\,\mathit{C}} = \max_{u, \delta} \frac{1}{2} \bigg(1 + \sum_{z} (-1)^{f(z) + u.z + \delta} P_{\mathit{in}}(z) \bigg) = \max P_{\mathit{success}}^{\,\mathit{Q}}$$

Pirsa: 06120037 Page 21/70

This means that the quantum success probability is bounded by

$$P_{success}^{\mathcal{Q}} \leq \frac{1}{2} \left(1 + \left\| \Phi \right\| \right)$$

$$\Phi$$
 has eigenstates $\left|u\right\rangle = \sum_{x} (-1)^{u.x} \left|x\right\rangle$

with eigenvalues
$$\varphi_{u} = \sum_{z} (-1)^{f(z)+u.z} P_{in}(z)$$
 hence

$$\max P_{success}^{\mathcal{Q}} = \frac{1}{2} \left(1 + \max_{u} \left| \sum_{z} (-1)^{f(z) + u.z} P_{in}(z) \right| \right)$$

Pirsa: 06120037 Page 22/70

Maximal success probabilities: Classical

 Surprisingly, the same maximal success probability can be attained by adopting a classical strategy:

 $b = u.y \oplus \delta$

giving

$$\max P_{\mathit{success}}^{\,\mathit{C}} = \max_{u,\delta} \frac{1}{2} \bigg(1 + \sum_{z} (-1)^{f(z) + u.z + \delta} P_{\mathit{in}}(z) \bigg) = \max P_{\mathit{success}}^{\,\mathit{Q}}$$

 When Alice and Bob share a quantum state, their success probability is given by

$$P_{success} = \frac{1}{2} \left(1 + \sum_{xy} P(x, y) (-1)^{\hat{a}_x + \hat{b}_y + f(x \oplus y)} \right)$$
$$= \frac{1}{2} \left(1 + \left\langle \alpha \left| \mathbf{1} \otimes \Phi \right| \beta \right\rangle \right)$$

where

$$|\alpha\rangle = 2^{-n/2} \sum_{x} (-1)^{\hat{a}_{x}} |\psi\rangle \otimes |x\rangle$$

$$|\beta\rangle = 2^{-n/2} \sum_{x} (-1)^{\hat{b}_{y}} |\psi\rangle \otimes |y\rangle$$

$$\Phi = \sum_{xy} (-1)^{f(x \oplus y)} P_{in}(x \oplus y) |x\rangle \langle y|$$

This means that the quantum success probability is bounded by

$$P_{success}^{\mathcal{Q}} \leq \frac{1}{2} (1 + \|\Phi\|)$$

$$\Phi$$
 has eigenstates $\left|u\right\rangle = \sum_{x} (-1)^{u.x} \left|x\right\rangle$

with eigenvalues
$$\varphi_u = \sum_z (-1)^{f(z)+u.z} P_{in}(z)$$
 hence

$$\max P_{success}^{\mathcal{Q}} = \frac{1}{2} \left(1 + \max_{u} \left| \sum_{z} (-1)^{f(z) + u.z} P_{in}(z) \right| \right)$$

Pirsa: 06120037 Page 25/70

Maximal success probabilities: Classical

 Surprisingly, the same maximal success probability can be attained by adopting a classical strategy:

 $b = u.y \oplus \delta$

giving

$$\max P_{\mathit{success}}^{\,\mathit{C}} = \max_{u,\delta} \frac{1}{2} \bigg(1 + \sum_{z} (-1)^{f(z) + u.z + \delta} P_{\mathit{in}}(z) \bigg) = \max P_{\mathit{success}}^{\,\mathit{Q}}$$

Pirsa: 06120037 Page 26/70

Non-local Computation: Summary

For all non-local computations with a single output bit, where Alice and Bob must jointly compute c=f(z₁,z₂...z_n) without individually learning c or z, quantum non-locality is useless:

Greater non-locality

Greater success probability

$$\max P^{C}_{\mathit{success}} = \max P^{Q}_{\mathit{success}} \leq \max P^{G}_{\mathit{success}}$$

 Note that each choice of f(z) and P_{in}(z) also corresponds to a pair of identical Bell and Tsirelson inequalities.

Pirsa: 06120037 Page 27/70

Example: Nonlocal-AND

As a simple example, consider the non-local version of AND

For maximally random inputs $(P_{in}(z)=1/4)$, we obtain:

$$\max P_{success}^{C} = \frac{3}{4} = \max P_{success}^{Q} = \frac{3}{4} < \max P_{success}^{G} = 1$$

Maximal success probabilities: Classical

 Surprisingly, the same maximal success probability can be attained by adopting a classical strategy:

giving

$$\max P_{\mathit{success}}^{\,\mathit{C}} = \max_{u, \delta} \frac{1}{2} \bigg(1 + \sum_{z} (-1)^{f(z) + u.z + \delta} P_{\mathit{in}}(z) \bigg) = \max P_{\mathit{success}}^{\,\mathit{Q}}$$

Pirsa: 06120037 Page 29/70

Non-local Computation: Summary

For all non-local computations with a single output bit, where Alice and Bob must jointly compute c=f(z₁,z₂...z_n) without individually learning c or z, quantum non-locality is useless:

Greater non-locality

Greater success probability

$$\max P^{C}_{success} = \max P^{Q}_{success} \leq \max P^{G}_{success}$$

 Note that each choice of f(z) and P_{in}(z) also corresponds to a pair of identical Bell and Tsirelson inequalities.

Pirsa: 06120037 Page 30/70

Maximal success probabilities: Classical

 Surprisingly, the same maximal success probability can be attained by adopting a classical strategy:

giving

$$\max P_{\mathit{success}}^{\,\mathit{C}} = \max_{u, \delta} \frac{1}{2} \bigg(1 + \sum_{z} (-1)^{f(z) + u.z + \delta} P_{\mathit{in}}(z) \bigg) = \max P_{\mathit{success}}^{\,\mathit{Q}}$$

Example: Nonlocal-AND

As a simple example, consider the non-local version of AND

For maximally random inputs $(P_{in}(z)=1/4)$, we obtain:

$$\max P_{success}^{C} = \frac{3}{4} = \max P_{success}^{Q} = \frac{3}{4} < \max P_{success}^{G} = 1$$

Non-local computation: Extensions

- These results also extend to further cases:
 - Non-local computations by any number of parties:

- Non-local computations with multiple output bits where strategies are scored according to the number of correct bits.
- 3. Other non-local tasks requiring $a \oplus b = f(x,y)$, for which

$$\Phi' = \sum_{xy} (-1)^{f(x,y)} P(x,y) |x\rangle \langle y|$$

has a maximal-eigenvalue eigenstate $|u\rangle = \sum_{x} (-1)^{u.x} |x\rangle$

Distributed Computation: Conclusions

 Non-local computation provides a natural class of tasks in which generalised non-local correlations allow perfect success, yet quantum non-locality is useless.

$$\max P_{success}^C = \max P_{success}^Q < \max P_{success}^G$$

Do all non-quantum non-local correlations help in some nonlocal computation?

Pirsa: 06120037 Page 34/70

Joint measurements and non-locality swapping

Pirsa: 06120037 Page 35/70

Joint measurements and non-locality swapping: Overview

- A general framework for probabilistic theories.
 - Representing states
 - The no-signalling condition
 - Generalised Non-Signalling Mechanics (GNSM)
 - Representing measurements
- Measurements in GNSM
 - Limitation to post-selected fiducial measurements
 - Impossibility of `swapping' non-locality

Conclusions

Pirsa: 06120037 Page 36/70

Representing quantum states as probability vectors

- Instead of representing quantum states as density matrices, we take a more operational approach (Hardy, Barrett):
 - A state is completely represented by a vector P(a|x) of outcome probabilities (a) for some set of fiducial measurements (x).
 - E.g. For a single qubit, we might choose σ_x , σ_y , σ_z as fiducial measurements

$$\underline{P} = \begin{pmatrix} P(+1 \mid \sigma_x) \\ P(-1 \mid \sigma_x) \\ P(+1 \mid \sigma_y) \\ P(-1 \mid \sigma_y) \\ P(+1 \mid \sigma_z) \\ P(-1 \mid \sigma_z) \end{pmatrix}$$

 This framework can be used to express quantum, classical and more general theories, allowing comparisons between them.

Multipartite systems

 The state of a multipartite system can be given by specifying the output probabilities for every combination of fiducial measurements on the subsystems (I.e. $P(\mathbf{a}|\mathbf{x}) = P(a_1...a_n|x_1...x_n)$)

Representing quantum states as probability vectors

- Instead of representing quantum states as density matrices, we take a more operational approach (Hardy, Barrett):
 - A state is completely represented by a vector P(a|x) of outcome probabilities (a) for some set of fiducial measurements (x).
 - E.g. For a single qubit, we might choose σ_x , σ_y , σ_z as fiducial measurements

$$\underline{P} = \begin{pmatrix} P(+1|\sigma_x) \\ P(-1|\sigma_x) \\ P(+1|\sigma_y) \\ P(-1|\sigma_y) \\ P(+1|\sigma_z) \\ P(-1|\sigma_z) \end{pmatrix}$$

Pirsa: 06120037

 This framework can be used to express quantum, classical and more general theories, allowing comparisons between them.

Multipartite systems

 The state of a multipartite system can be given by specifying the output probabilities for every combination of fiducial measurements on the subsystems (I.e. $P(\mathbf{a}|\mathbf{x}) = P(a_1...a_n|x_1...x_n)$)

The no-signalling condition

All P(a|x) representing allowed states must satisfy:

Positivity:
$$P(\mathbf{a} \mid \mathbf{x}) \ge 0$$

Normalisation:
$$\sum_{\mathbf{a}} P(\mathbf{a} \mid \mathbf{x}) = 1$$

M. No-signalling: $\sum_{a_n} P(\mathbf{a} \mid \mathbf{x})$ is independent of x_n

Without knowing Alice's result, Bob cannot learn anything about which measurement she performed on her system

Generalised non-signalling mechanics (GNSM)

 However, there exist distributions P(a|x) satisfying the positivity, normalisation, and no-signalling constraints that do not correspond to any quantum system.

e.g.
$$\underline{P}_{\text{determinis tic}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad \qquad \sigma_x = \sigma_y = \sigma_z = +1$$

 Generalised Non-Signalling mechanics (GNSM) is an alternative to quantum theory in which all states satisfying positivity, normalisation, and no-signalling are allowed. (Barrett)

The no-signalling condition

All P(a|x) representing allowed states must satisfy:

Positivity:
$$P(\mathbf{a} \mid \mathbf{x}) \ge 0$$

Normalisation:
$$\sum_{\mathbf{a}} P(\mathbf{a} \mid \mathbf{x}) = 1$$

III. No-signalling: $\sum_{a_n} P(\mathbf{a} \mid \mathbf{x})$ is independent of x_n

Without knowing Alice's result, Bob cannot learn anything about which measurement she performed on her system

Generalised non-signalling mechanics (GNSM)

 However, there exist distributions P(a|x) satisfying the positivity, normalisation, and no-signalling constraints that do not correspond to any quantum system.

e.g.
$$\underline{P}_{\text{determinis tic}} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \qquad \sigma_x = \sigma_y = \sigma_z = +1$$

 Generalised Non-Signalling mechanics (GNSM) is an alternative to quantum theory in which all states satisfying positivity, normalisation, and no-signalling are allowed. (Barrett)

The no-signalling condition

- All P(a|x) representing allowed states must satisfy:
 - Positivity: $P(\mathbf{a} \mid \mathbf{x}) \ge 0$
 - Normalisation: $\sum_{\mathbf{a}} P(\mathbf{a} \mid \mathbf{x}) = 1$
 - Mo-signalling: $\sum_{a_n} P(\mathbf{a} \mid \mathbf{x})$ is independent of x_n

Without knowing Alice's result, Bob cannot learn anything about which measurement she performed on her system

Generalised non-signalling mechanics (GNSM)

 However, there exist distributions P(a|x) satisfying the positivity, normalisation, and no-signalling constraints that do not correspond to any quantum system.

e.g.
$$\underline{P}_{\text{determinis tic}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad \qquad \sigma_x = \sigma_y = \sigma_z = +1$$

 Generalised Non-Signalling mechanics (GNSM) is an alternative to quantum theory in which all states satisfying positivity, normalisation, and no-signalling are allowed. (Barrett)

GNSM contains stronger than quantum non-locality

 Because mixtures of allowed states are also allowed, the P form convex sets.

 Note that the set P^Q will depend on the precise choice of quantum fiducial measurements, whereas P^G depends only on the number of measurement choices and possible outcomes.

Pirsa: 06120037 Page 47/70

Generalised non-signalling mechanics (GNSM)

 However, there exist distributions P(a|x) satisfying the positivity, normalisation, and no-signalling constraints that do not correspond to any quantum system.

e.g.
$$\underline{P}_{\text{determinis tic}} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad \qquad \sigma_x = \sigma_y = \sigma_z = +1$$

 Generalised Non-Signalling mechanics (GNSM) is an alternative to quantum theory in which all states satisfying positivity, normalisation, and no-signalling are allowed. (Barrett)

The no-signalling condition

All P(a|x) representing allowed states must satisfy:

Positivity:
$$P(\mathbf{a} \mid \mathbf{x}) \ge 0$$

II. Normalisation:
$$\sum_{\mathbf{a}} P(\mathbf{a} \mid \mathbf{x}) = 1$$

Mo-signalling: $\sum_{a_n} P(\mathbf{a} \mid \mathbf{x})$ is independent of x_n

Without knowing Alice's result, Bob cannot learn anything about which measurement she performed on her system

Generalised non-signalling mechanics (GNSM)

 However, there exist distributions P(a|x) satisfying the positivity, normalisation, and no-signalling constraints that do not correspond to any quantum system.

e.g.
$$\underline{P}_{\text{determinis tic}} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \qquad \sigma_x = \sigma_y = \sigma_z = +1$$

 Generalised Non-Signalling mechanics (GNSM) is an alternative to quantum theory in which all states satisfying positivity, normalisation, and no-signalling are allowed. (Barrett)

GNSM contains stronger than quantum non-locality

 Because mixtures of allowed states are also allowed, the P form convex sets.

 Note that the set P^Q will depend on the precise choice of quantum fiducial measurements, whereas P^G depends only on the number of measurement choices and possible outcomes.

Pirsa: 06120037 Page 51/70

Non-local correlations

Some states yield non-local correlations, for which

$$P(a_1a_2 | x_1x_2) \neq \sum_{i} p(k)P_k(a_1 | x_1)P_k(a_2 | x_2)$$

 GNSM states can produce stronger non-local correlations than quantum theory. E.g. P_{nonlocal}∈ P^G that allows perfect success in the non-local task introduced earlier (based on the CHSH inequality):

Why doesn't nature allow the full state-space/non-locality of GNSM?

Pirsa: 06120037 Page 52/70

Introducing non-fiducial measurements

- In addition to the fiducial measurements used to characterise the state, a theory may admit many other measurements.
- E.g. in quantum theory

A joint Bell measurement on two qubits

• What are the allowed measurements in GNSM?

Representing generalised measurements

The probability p_i of obtaining a measurement output i with a mixed state must equal the mixture of output probabilities for the constituent states. It follows that measurements act linearly:

$$p_i = \underline{R}_i \cdot \underline{P} = \sum_{\mathbf{a}\mathbf{x}} R_i(\mathbf{a} \mid \mathbf{x}) P(\mathbf{a} \mid \mathbf{x})$$

Allowed measurements are represented by a set of vectors { R_i(a|x) } which satisfy:

Positivity: $\underline{R}_i \cdot \underline{P} \ge 0$ for all allowed \underline{P}

Normalisation: $\sum_{i} \underline{R}_{i} \cdot \underline{P} = 1$ for all allowed \underline{P}

GNSM allows less measurements than quantum theory

Like states, the allowed measurements form a convex set.
 However, as measurements in GNSM are constrained to give positive/normalised results for *more states*, the allowed measurement set is smaller.

Representing generalised measurements

The probability p_i of obtaining a measurement output / with a mixed state must equal the mixture of output probabilities for the constituent states. It follows that measurements act linearly:

$$p_i = \underline{R}_i \cdot \underline{P} = \sum_{\mathbf{a}\mathbf{x}} R_i(\mathbf{a} \mid \mathbf{x}) P(\mathbf{a} \mid \mathbf{x})$$

Allowed measurements are represented by a set of vectors { R_i(a|x) } which satisfy:

Positivity: $\underline{R}_i \cdot \underline{P} \ge 0$ for all allowed \underline{P}

Normalisation: $\sum_{i} \underline{R}_{i} \cdot \underline{P} = 1$ for all allowed \underline{P}

GNSM allows less measurements than quantum theory

Like states, the allowed measurements form a convex set.
 However, as measurements in GNSM are constrained to give positive/normalised results for *more states*, the allowed measurement set is smaller.

Results concerning GNSM measurements: I

I. All GNSM measurements can be represented by non-negative vectors $R_i(a|x) \ge 0$

The proof follows from applying Farkas Lemma to the convex cone of un-normalised states.

Note that measurements in quantum theory do not have this property:

e.g.
$$\sigma^{45^{\circ}}$$

$$\left\{ \underbrace{R}_{+1}^{45^{\circ}}, \underbrace{R}_{-1}^{45^{\circ}} \right\} = \left\{ \begin{pmatrix} 2^{-3/2} \\ -2^{-3/2} \\ 2^{-1} \\ 2^{-1} \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} 2^{-3/2} \\ 2^{-3/2} \\ 2^{-1} \end{pmatrix}, \begin{pmatrix} 2^{-1} \\ 2^{-1} \\ 2^{-1} \end{pmatrix}, \begin{pmatrix} 2^{-1} \\ 2^{-1} \\ 2^{-3/2} \end{pmatrix} \right\}$$

GNSM allows less measurements than quantum theory

Like states, the allowed measurements form a convex set.
 However, as measurements in GNSM are constrained to give positive/normalised results for *more states*, the allowed measurement set is smaller.

Pirsa: 06120037

Page 59/70

Results concerning GNSM measurements: I

I. All GNSM measurements can be represented by non-negative vectors $R_i(a|x) \ge 0$

The proof follows from applying Farkas Lemma to the convex cone of un-normalised states.

Note that measurements in quantum theory do not have this property:

e.g.
$$\sigma^{45^{\circ}}$$
 $\left\{ \underbrace{R_{+1}^{45^{\circ}}, \underbrace{R_{-1}^{45^{\circ}}} \right\} = \left\{ \underbrace{R_{+1}^{45^{\circ}}, \underbrace{R_{-1}^{45^{\circ}}} \right\} = \left\{ \underbrace{R_{-1}^{45^{\circ}}, \underbrace{R_{-1}^{45^{\circ}}} \right\} = \left\{$

$$\left\{ \underbrace{R}_{+1}^{45^{\circ}}, \underbrace{R}_{-1}^{45^{\circ}} \right\} = \left\{ \begin{bmatrix} 2^{-3/2} \\ -2^{-3/2} \\ 2^{-1} \\ 2^{-1} \\ -2^{-3/2} \end{bmatrix}, \begin{bmatrix} \left(-2^{-3/2} \\ 2^{-3/2} \\ 2^{-1} \\ 2^{-1} \\ -2^{-3/2} \end{bmatrix} \right\} \\
\left\{ \begin{bmatrix} 2^{-1} \\ 2^{-1} \\ 2^{-1} \\ 2^{-3/2} \end{bmatrix} \right\}$$

Results concerning GNSM measurements: II

II. All GNSM measurements on single and bi-partite systems can be performed using only fiducial measurements on the individual systems

This includes conditional sequences of measurements

e.g.
$$x_1 = 0$$
, $x_2 = a_1$, $i = a_2$

There is therefore no analogue of a Bell measurement in GNSM.

However, note that for tri-partite (or larger) measurements fiducial measurements alone are *not* sufficient. However...

Pirsa: 06120037 Page 61/70

Results concerning GNSM measurements: III

III. All GNSM measurements can be simulated using fiducial measurements on individual systems and post-selection

A protocol to obtain any particular $\{R_i\}$ is as follows:

- Perform a maximally random set of fiducial measurements x=x₁...x_n, obtaining outputs a
- b. Give measurement output i or fail with probabilities:

$$q_i = \frac{R_i(\mathbf{a} \mid \mathbf{x})}{\max_{\mathbf{a}\mathbf{x}} \sum_i R_i(\mathbf{a} \mid \mathbf{x})} \qquad q_{fail} = 1 - \frac{\sum_i R_i(\mathbf{a} \mid \mathbf{x})}{\max_{\mathbf{a}\mathbf{x}} \sum_i R_i(\mathbf{a} \mid \mathbf{x})}$$

$$\Rightarrow p_{i \mid success} = \frac{\sum_{\mathbf{a}\mathbf{x}} q_i P(\mathbf{a} \mid \mathbf{x}) P(\mathbf{x})}{\sum_{i} \sum_{\mathbf{a}\mathbf{x}} q_i P(\mathbf{a} \mid \mathbf{x}) P(\mathbf{x})} = \sum_{\mathbf{a}\mathbf{x}} R_i(\mathbf{a} \mid \mathbf{x}) P(\mathbf{a} \mid \mathbf{x})$$

No 'swapping' of non-locality in GNSM

 In quantum theory, non-local correlations can be `swapped' between parties.

 However, as all measurements in GNSM can be simulated by single-system measurements and post-selection (result III), there are no truly joint measurements in GNSN. Hence

'Swapping' non-locality is impossible in GNSM

Results concerning GNSM measurements: III

III. All GNSM measurements can be simulated using fiducial measurements on individual systems and post-selection

A protocol to obtain any particular $\{R_i\}$ is as follows:

- Perform a maximally random set of fiducial measurements x=x₁...x_n, obtaining outputs a
- Give measurement output i or fail with probabilities:

$$q_i = \frac{R_i(\mathbf{a} \mid \mathbf{x})}{\max_{\mathbf{a}\mathbf{x}} \sum_i R_i(\mathbf{a} \mid \mathbf{x})} \qquad q_{fail} = 1 - \frac{\sum_i R_i(\mathbf{a} \mid \mathbf{x})}{\max_{\mathbf{a}\mathbf{x}} \sum_i R_i(\mathbf{a} \mid \mathbf{x})}$$

$$\Rightarrow p_{i \mid success} = \frac{\sum_{\mathbf{a}\mathbf{x}} q_i P(\mathbf{a} \mid \mathbf{x}) P(\mathbf{x})}{\sum_{i} \sum_{\mathbf{a}\mathbf{x}} q_i P(\mathbf{a} \mid \mathbf{x}) P(\mathbf{x})} = \sum_{\mathbf{a}\mathbf{x}} R_i(\mathbf{a} \mid \mathbf{x}) P(\mathbf{a} \mid \mathbf{x})$$

Page 64/70

No 'swapping' of non-locality in GNSM

 In quantum theory, non-local correlations can be `swapped' between parties.

 However, as all measurements in GNSM can be simulated by single-system measurements and post-selection (result III), there are no truly joint measurements in GNSN. Hence

'Swapping' non-locality is impossible in GNSM

No 'swapping' of non-locality in GNSM

Performing a set of fiducial measurements collapses the state

Hence using fiducial measurements and post-selection we can only obtain separable (i.e. local) final states

$$P(\mathbf{ac} \mid \mathbf{xz}) = \sum_{\mathbf{b_1y_1b_2y_2}} P(\mathbf{b_1y_1b_2y_2} \mid \mathit{success}) P_{\mathbf{b_1y_1}}(\mathbf{a} \mid \mathbf{x}) P_{\mathbf{b_2y_2}}(\mathbf{c} \mid \mathbf{z})$$

Joint measurements and non-locality swapping: Conclusions

- We can construct a theory admitting generalised non-local correlations and quantum theory within a common framework.
- Generalised non-signalling mechanics allows any non-local correlations, but much less versatility in terms of measurements on a given state:
 - There are no truly joint measurements on separate subsystems, analogous to a Bell measurement.
 - There is no analogue of entanglement-swapping for generalised non-local correlations.
 - All measurements can be implemented using only fiducial measurements and (for >2 systems) post-selection.

Pirsa: 06120037 Page 67/70

Summary

Differences between quantum and generalised non-locality:

GNSM	Quantum
More allowed states	More measurements and dynamics
Stronger non-locality	More versatile ('swappable') non-locality
Allows perfect non-local computation	No advantage in non-local computation
?	?

By viewing it within a broader framework, can we better understand the particular properties of quantum theory?

