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Abstract: Quantum information theory has two equivalent mathematical conjectures concerning quantum channels, which are also equivalent to
other important conjectures concerning the entanglement. In this talk | explain these conjectures and introduce recent results.
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Spectral decomposition of a state

Take a state p. Since p iIs Hermitian it has a spectral
decomposition:

where A, are the eigenvalues and |v;) are the normalized
eigenvectors. The number of nonzero eigenvalues is the
rank of o. When the rank is one. the state is called 3 pure
state.
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Hilbert spaces and quantum states

A quantum state is represented as a positive semi-definite
Hermitian operator of trace one in a separable Hilbert space
H. The set of quantum states is written by D(H). (We
write B('H) for the algebra of operators in H.)

A separable Hilbert space H is a complex vector space
equiped with an inner product (. ) such that it is complete
with this norm. When the dimension is finite it is same
as C?. In the following we only consider finite dimensional
Hilbert spaces.

An operator 4 is Hermitian if A = A. Here the adjoint
A* of A is defined as (Av.v) = (v. A*v) for any vecror v. A
Hermitian operator is positive semi-definite if (v. Av) > 0 Tor
any vector v € H. The trace is defined as trd = Y, (v;. Av;),
where {v;}; is any orthonormal basis in H.
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Spectral decomposition of a state

Take a state p. Since p iIs Hermitian it has a spectral
decomposition:

o= Mafus) (v,

e——

where A, are the eigenvalues and |v;, are the normalized
eigenvectors. The number of nonzero eigenvalues is the
rank of o. When the rank is one. the state is called a pure
state.
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Quantum channels

Take a linear map
® : B(H1) — B(H>).

Then, @ is a (quantum) channel i it is completely positive
(CP) trace-preserving (TP). A map @ is CP if for any
Hilbert space K the product @ & 1 is positive, where 1
is the identity map on B(K).

A CP map ® can be written in the Kraus form:

N
D(p) = Y AppA;
=1
where 4. : Hy — H-> are linear maps. Then, & is TP if

i1

Y ALA—B,
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Stinespring dilation theorem

Take an N-dimensional space 4 to form the isometry:

'-41'
: : H]_ — A Hl-
AN
Here, dim4 = N. Then the above channel @ is
_-1:_ . ._—l‘il;_!_—ii S _—1 ]_I;Z'_-}Li-
P(p) =try| : |p(AT.-..AY) =1r4 : e, : J
AN ANPA; --. _l_\';_r_—li—_

Aside. Taking trace over H,, instead of A, gives another
channel:

(®(p))i; =trA;pAs.

This is called the complementary (conjugate) channel of
®. (Holevo: King, Matsumoto. Nathanson, Ruskai)
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Quantum channels

Take a linear map
® . B(H1) — B(H»>).

Then, ® is a (quantum ) channel if it is completely positive
(CP) trace-preserving (TP). A map & is CP if for any
Hilbert space K the product @ & 1 is positive, where 1
is the identity map on B(K).

A CP map ® can be written in the Kraus form:

N
D(p) = Y AppA;
=1
where Ap : Hy — Ho are linear maps. Then, ® is TP if

E _—ll;f_—lg e f_;_[-l_
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Stinespring dilation theorem

Take an N-dimensional space 4 to form the isometry:

'-41
: . H]_ — ..—1 H.Z'
AN
Here, dim4A = N. Then the above channel @ is
‘A AyphAy ... AjpAl
cbi},r) = tr_—L - 2 | _—11 . _—l_\ ;l = tr-—l - i E )
AN AxpA] ... AnpAy)

Aside. Taking trace over H-, instead of A, gives another
channel:

(®(p));; = trA;pAL.

This is called the complementary (conjugate) channel of
®. (Holevo: King, Matsumoto. Nathanson, Ruskai)
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Stinespring dilation theorem

Take an N-dimensional space 4 to form the isometry:

Ay
: : H]_ — A H:
AN,
Here, dim4A = N. Then the above channel @ is
J -_1:_ \ | __11“__1_;_- - _—]]_]_I.i.'-‘ii'
CD{\ j}:) = tr__L - o | _—1: o __]__\ | — tr-—l - —y :
~'_1—“f_' —‘i_"-,'!-}—"ll; _—_— _-i_‘a_' *I‘_i_\»

Aside. Taking trace over H,, instead of A, gives another
channel:

(D(p))i; = tra;pAs.

This is called the complementary (conjugate) channel of
®. (Holevo: King, Matsumoto. Nathanson, Ruskai)
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Measure of the noisiness

A natural class of measures of the noisiness of a quantum
channel is how close can the output be to a pure state
as measured by the minimal ouput entropy (MOE) or the
maximal output p-norm (MOpN).

1) The MOE of & is defined as

Smin(®) = inf _S(®(p))

2) The MOPpN of @ is defined as

vp(®) = sup |[[®(p)lp.
' p=D(H)
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A natural class of measures of the noisiness of a quantum
channel is how close can the output be to a pure state
as measured by the minimal ouput entropy (MOE) or the
maximal output p-norm (MOpN).

1) The MOE of & is defined as
Smin(P) = _igf__ S(®(p))
2) The MOpN of @ is defined as

LN

up  ||P(p)|p-
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Measure of the noisiness

A natural class of measures of the noisiness of a quantum
channel is how close can the output be to a pure state
as measured by the minimal ouput entropy (MOE) or the
maximal output p-norm (MOpN).

1) The MOE of & is defined as

Smin(®) = '[]f “““I”I’})

2) The MOpN of @ is defined as

vp(®) = sup ||[®(p)|p
' pD(H)
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Holevo capacity

The Holevo capacity of @ is defined as

[

x(®) = sup IH

E piP(p;i) ) — E p:S(P(p;) }} -

where {p;}; is a probability distribution and {p; }; are states.

The classical information capacity of a channel @ is

) : : 1 :
C(®) = lim —x(P").
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Conjectures

Suppose we have arbitrary two channels © and €2.

1) The additivity conjecture of the MOE is that

Smin(P @ ) = Smin(P) + Smin(£2).

2) The multiplicativity conjecture of the MOPN is that

vp(P @ Q) = vp(P)rp(L2).

for any p < [1.2]. The multiplicativity was conjectured to

be true for p < [1.x] before a counterexample was found
by Holevo and Warner.

3) The additivity conjecture of the Holevo capacity is that

(P 2 Q) = () + ().
Pirsa: 06120036 Page 18/63
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Entanglement

Think of the following two pure states:

1 1 000
; 0]_(0000_1{}" (l'i}
100“@‘000-&‘(00) 0-:3)
o/ \cooo
1/v/2 1/2 0 0 1//2
- sl o 0 00 O
f5 473 2 —
1"'.,._001\:_ [:._ O_OO 0
1/v2 1/V2 0 0 1/2

Definition. A state p < D(H @ K) is not entangled if

o= pi (o 2 )

for py)’ € D(H). ,_{;L’. D('H) and a probability distribution {p;}.
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Conjectures

Suppose we have arbitrary two channels © and 2.

1) The additivity conjecture of the MOE is that

.'_""**m(d:’ Q) £2) = ‘-'."'miﬂ':.(b) = 5 -'“-'-”Imir‘:'[ﬂ}'

2) The multiplicativity conjecture of the MOPpN is that

vp(D @ Q) = vp(D)p(2).

for any p < [1.2]. The multiplicativity was conjectured to

be true for p < [1.x] before a counterexample was found
by Holevo and Warner.

3) The additivity conjecture of the Holevo capacity is that

x(® 2 Q) = x(®) +x(Q).
Pirsa: 06120036 Page 20/63
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Entanglement

Think of the following two pure states:

1] (1 0 0 0
| ~loa] loooea]l (10 1 0
'100”(}_000&_(00) (00)
_C’.} \._O 0 00
1/~ /2 @ O 1 \EI
. — E} 0 0O 0O O
Fatl™) i 3
(1/v2 0 0 1/v2]| 0 G 00 0
__l_\. 1/~ O 0 1/2

Definition. A state p < D(H @ K) is not entangled if

P \ i L

o) = D(H). py- D(H) and a probability distribution {p;}.
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Obvious Inequalities

The following inequality is obvious:
'E:I“ ‘((D Q} ; "-.;rl“‘ir'! (C.t)} + hf:"“.ﬂﬂfﬂ)-
To see this

Smin(P @ Q) = inf S((® @ 2)(p))
g e . |

L N

< __inf {”"’i*ﬂb Q)p)) :p=)_pi(P3 }

= inf S((® 2 Q)(ex @ px))

= inf S(®(py) @ Lpx)) = Smin(P) + Smin(€2)-

r

Similarly we have

vp(D @ Q) > vp(P)rp(); X(P 3 €2) > x(P) +x(92).

.
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Ei
-

S. A. of convex closure
of output entropy

S. A. of entanglement
of formation

A. of Holevo capacity

-Global view-

A. of entanglement of
formation

A. of minimal output
entropy

M. of maximal output
p—norm

Shor; Pomeransky; Audenaert, Braunstein. =. Holevo.
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Definition. A channel © is called bistochastic if

{I’(fh_,’ — fr_f:,

Here [y, = Iy, /dimHK;, called the normalised identity.
where I3, is the identity operator in H; (I3, is similarly
defined). When H; = H, a bistochastic channel is called

a unital channel.

Theorem 1. Take a channel 2. The additivity of MOE of
P, @ Q for any bistochastic channel &y would imply that

of ® @  for any channel ®&.
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QOutline of proof. Suppose we have a channel

o B(H;y) B(H>).
Let d =dimH->. Then we construct a new channel @':

@' :‘{:(_""; H1)

B('H->)
p— Z II’_;d}{_’E_;EE'_T)H'___"_

Here W. are the Weyl operators in H, and E. = ((z| @ Iy, ).

where {|z)} forms the standard basis for C?". Note that
this channel is bistochastic.

To prove this theorem we show that
':-'"r']'] _"'|{:l¢'-).lr wl} — '.-"""‘”"l ((I) W}
for any channel ¥. Indeed, it would show that

‘-;I|‘r"|ir‘! (b Q) —— 'T-"Irﬂr‘:”“-{:q:)'I QJ == '51""‘5[1((1:}!:.} + “--".-ﬂir":'i. __)
—— "‘rT“‘{\CDE = = "‘w.‘I(Q} QED
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Corollary 2. The assumption of theorem 1 would be im-
plied by proving the conjecture on &, Q2 for all unital
channels ©,,.

Proof. Consider a unital channel:

®” : B(C* @ Hy)

B(C @ H»)

Here ¢ is the dimension of H;. Then
S((®” @ Q)(p)) =logcd + S((®' 2 Q)(p))

for any channel €2 and any state p < 'D(C“f: 2 Hy
The results follow obviously. QED

: f’\-l_}.

Corollary 3. The additivity of MOE of &y @ Qy for any
unital channels &y and <2y would imply that of ® & €2 for

any channels ® and 2.
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Remark.

1) We get similar results for the multiplicativity of maximal
output of p-norm.

2) The channel @' is a bistochastic extension of © and the
channel®” is a unital extension of ®.

3) In order to prove the theorem we generalized the channel
extension which Shor used to prove that the additivity of
Holevo capacity implies the additivity of MOE. Reading his
proof in view of our proof one can notice that proving the
additivity of Holevo capacity for all unital channels would
imply the additivity for all channels.
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Corollary 2. The assumption of theorem 1 would be im-
plied by proving the conjecture on &, 2 for all unital
channels &,,.

Proof. Consider a unital channel:

®”: B(C" @ H;1) — B(C™ @ Hy)
0 — f{:' CD{ ﬁ.}'

Here ¢ is the dimension of H;. Then
S((®" @ Q)(p)) =loged + S((®' @ Q)(p))

for any channel €2 and any state p <= 'D{C“f" Hi @ K1)
The results follow obviously. QED

Corollary 3. The additivity of MOE of &y @ Qy for any
unital channels &y and <2y would imply that of ® 2 €2 for
any channels ® and .
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Remark.

1) We get similar results for the multiplicativity of maximal
output of p-norm.

2) The channel @' is a bistochastic extension of ® and the
channel®” is a unital extension of ®.

3) In order to prove the theorem we generalized the channel
extension which Shor used to prove that the additivity of
Holevo capacity implies the additivity of MOE. Reading his
proof in view of our proof one can notice that proving the
additivity of Holevo capacity for all unital channels would
imply the additivity for all channels.
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Holevo capacity and minimal output entropy

Theorem 4. Take any channels ® and 2. Then

Y(®' @ @) =logdspd — Smin(®’ @ ).

Remark. Note that

f

x(®" 2 Q) =x(9' ?@ Q), 2.

i

Then we have the following local equivalence relations.

Smin (D" & QF} & x(” Q”:}
I I

Smin(®’ @ Q) & x(@'2Q)
)

-H-:""Ir":'“ n (_.CD Q .:5' X {.Cb Q)
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Holevo capacity and minimal output entropy

Theorem 4. Take anv channels ® and C2. Then

(@' @ Q) =logdyd;, — Smin(®’ @ Q).

Remark. Note that
x(®’' @ Q) =x(® @ Q), €2

Then we have the following local equivalence relations.

Smin(P" @ ") & x(¥"3 Q")
. !’
Smin(¥ @) o (¢ Q)

)
Smin(® 3 2) (2 Q)
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Results for unital channels

1. Unital qubit channels.
King (2002)

2. Depolarizing channel:

King (2002); Fujiwara, Hashizume (2002);
Amaosov (2004)

3. Transpose depolarizing channel:

D(p) = \p' + (1 — N)trp][.

Datta, Holevo, Suhov (2004)
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Results for non-unital channels

%
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. Entanglement-breaking channels.

Shor (2002): King (2002)

. A class;

d(p) =AM (p) + (1 — N)tr[p]I.

Here, M is a channel which has a rank one output.
Fukuda (2005)

. Another class:

Qb‘:..ﬁ’) —_

Here, A I1s a positive trace-preserving map which has
a rank one output. A special case i1s the W-H channel.
Wolf, Eisert (2004)
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Results for unital channels

1. Unital qubit channels.
King (2002)

N

. Depolarizing channel:
D(p) = Ap+ (1 — N)tr|p][.

King (2002); Fujiwara, Hashizume (2002);
Amosov (2004)

3. Transpose depolarizing channel:
D(p) = Np!" + (1 — N)tr|p][.
Datta, Holevo, Suhov (2004)
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Results for unital channels

1. Unital qubit channels.
King (2002)

N

Depolarizing channel:
CD{_'I,;_::} — “.1 — i E__2 }tr[,r..*] I.

King (2002); Fujiwara, Hashizume (2002);
Amasov (2004)

3. Transpose depolarizing channel:
®(p) =Mo" + (1 — N)tr[p]I.
Datta, Holevo, Suhov (2004)
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Results for unital channels

1. Unital qubit channels.
King (2002)

N

. Depolarizing channel:
(I)(I;:; —_— ,\..t.:' + {F l — .\'\ }tr[;'] f_-

King (2002); Fujiwara, Hashizume (2002);
Amosov (2004)

3. Transpose depolarizing channel:
D(p) =\p' + (1 — Ntr][.
Datta, Holevo, Suhov (2004)
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Results for non-unital channels

M
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. Entanglement-breaking channels.

Shor (2002): King (2002)

. B caEs

®(p) =AM (p) + (1 — \)tr[g]T.

Here, M is a channel which has a rank one output.
Fukuda (2005)

. Another class:

2 et trp
a— 1 - d—1

Here, Al is a positive trace-preserving map which has
a rank one output. A special case is the W-H channel.
Wolf, Eisert (2004)

D(p) = -
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Conclusion

To prove the additivity conjectures concerning quantum
channels: the additivity of MOE. the additivity of Holevo
capacity. the multiplicativity of MOpN we can focus on
the special class of unital cases. The next step is to find
examples of unital channels for which the conjecture is true
so that we can Tind useful techniques to be generalized
later. A candidate is the Weyl-covariant channel.

Acknowledgement

I would like to thank my supervisor Yuri Suhov for constant
encouragement and numerous discussions. [ also would
like to thank Alexander Holevo and Mary Beth Ruskai for
giving useful comments. Nilanjana Datta is also thanked
for useful discussions.
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Holevo capacity and minimal output entropy

Theorem 4. Take anyv channels ® and 2. Then

(@' @ Q) =l0gdpdy — Smin(®’ @ ).

Remark. Note that
\{_'CD"' ) — \.i_(tJf Q). Q2.

Then we have the following local equivalence relations.

Smin(®”2Q7) o ("3 ")
1t I
Smin(P’ @ Q) & x(d'2)

[
Smin(® ® Q) (P 2 Q)
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Outline of proof. Suppose we have a channel

® : B(Hq) B('H>).
Let d =dimH5. Then we construct 3 new channel @’;

P’ 5{;(:1,_.-; H1)

B(H>)

P Z W.D(E-pEX)W?.
Here W- are the Weyl operators in Hy and E: = ((z| @ I, ).
where {|z)} forms the standard basis for C?". Note that

this channel is bistochastic.

To prove this theorem we show that
Smin(®’ @ W) = Smin(® @ W)
for any channel V. Indeed. it would show that

Smin(® @ Q) Smin (@ Q2) = -l'-'.";Twn(cDr:} + Smin(£2)
= Smin(®P) + -5'r1=;r1(§2}, QED
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QOutline of proof. Suppose we have a channel

d : B(Hq) B('H>).
Let d =dimH5. Then we construct 3 new channel @;
@' B(C" @ Hy) — B(H2)
pr— Y W-(E-GEH)W?.

Here W. are the Weyl operators in Hy and E-. = ((z| @ I'y,).
where {|z)} forms the standard basis for C?". Note that

this channel iIs bistochastic.

To prove this theorem we show that
Smin(P' @ W) = Spin(P @ W)
for any channel V. Indeed. it would show that

Smin(® @ Q) = Smin(P @ Q) = Smin(P®) + Smin(2)
— -'.'."'Ir'r';g"‘ t"\-t)} —I;— -‘.'-"Ir"‘i."I(Q]" QED
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Definition. A channel © is called bistochastic if

Here Iy, = Iy, /dimK;, called the normalised identity.
where I3, is the identity operator in H; {f;,_L.: is similarly
defined). When H; = H, a bistochastic channel is called

a unital channel.

Theorem 1. Take a channel 2. The additivity of MOE of
P, @ Q2 for any bistochastic channel ®y would imply that

B

of ® @ 2 for any channel ®.
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Conclusion

To prove the additivity conjectures concerning quantum
channels; the additivity of MOE. the additivity of Holevo
capacity. the multiplicativity of MOpN we can focus on
the special class of unital cases. The next step is to find
examples of unital channels for which the conjecture is true

so that we can find useful techniques to be generalized
later. A candidate is the Weyl-covariant channel.

Acknowledgement

I would like to thank my supervisor Yuri Suhov for constant
encouragement and numerous discussions. [ also would
like to thank Alexander Holevo and Mary Beth Ruskai for
giving useful comments. Nilanjana Datta is also thanked
for useful discussions.
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Results for unital channels

1. Unital qubit channels.
King (2002)

2. Depolarizing channel:
d(p) = Ap+ (1 — N)tr|p]I.

King (2002); Fujiwara, Hashizume (2002);
Amaosov (2004)

3. Transpose depolarizing channel:
D(p) =\p" + (1 — Ntr|p][.

Datta, Holevo, Suhov (2004)
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Results for unital channels

1. Unital qubit channels.
King (2002)

2. Depolarizing channel:

D(p) = Ap+ (1 — N)tr|p]!.

King (2002); Fujiwara, Hashizume (2002);
Amosov (2004)

3. Transpose depolarizing channel:
Ct){:l,r_';} — ,\I,r-'_-i_ +(1 — \}tl[;']f
Datta, Holevo, Suhov (2004)
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Results for unital channels

1. Unital qubit channels.
King (2002)
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Depolarizing channel:
D(p) = Ap + (1 — N)tr|p][.

King (2002); Fujiwara, Hashizume (2002);
Amosov (2004)
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