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Abstract: It is a fundamental property of quantum mechanics that non-orthogonal pure states cannot be distinguished with certainty, which leads to
the following problem: Given a state picked at random from some ensemble, what is the maximum probability of success of determining which state
we actually have? | will discuss two recently obtained analytic lower bounds on this optimal probability. An interesting case to which these bounds
can be applied is that of ensembles consisting of states that are themselves picked at random. In this case, | will show that powerful results from
random matrix theory may be used to give a strong lower bound on the probability of success, in the regime where the ratio of the number of states
in the ensemble to the dimension of the states is constant. | will aso briefly discuss applications to quantum computation (the oracle identification
problem) and to the study of generic entanglement.
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Distinguishing quantum states

We will consider a basic question in quantum measurement theory.

Alice | Bob
. )
k — |Wg)  |Uk) —k

@ Alice encodes a number k. 1 < k < n, as a quantum state vy )
picked from a known set of # states. and sends it to Bob.

@ Bob measures |v) in the hope of determining 4.

@ What 1s Bob’s optimal probability of success?
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Distinguishing quantum states

More formally:

Consider a known ensemble £ of # quantum states {\a i) with known
a priori probabilities p;. Given an unknown state |v7), picked at

random from &, what is the optimal probability P??"(£) of identifying
|¢02)? That is,

PP(E) —mai E i M)

—1

where we maximise over all POVMs M = {M;}.

We think of P7'(&) as the distinguishability of the ensemble &
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Previous work

@ This problem has been considered by many authors since the
1970s. under titles like “quantum hypothesis testing”, “quantum
detection”. ““quantum state discrimination” efc.

@ Many other optimality criteria have also been considered (e.g.:
maximise information gain).

'C. Helstrom, Quantum detection and estimation theory (1978)
Prsa: 0012005 2y Eldar, A. Megretski, G. Verghese, quant-ph/0205178 (2002) ki




Distinguishing quantum states

More formally:

Consider a known ensemble £ of n quantum states {\a i)} with known
a priori probabilities p;. Given an unknown state [¢7), picked at

random from &, what is the optimal probability P?’"(£) of identifying
1202)? That is,

FRE) = > it Mi| i)

where we maximise over all POVMs M = {M;}.

We think of P?P(£) as the distinguishability of the ensemble &
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Previous work

@ This problem has been considered by many authors since the
1970s. under titles like “quantum hypothesis testing”, “quantum
detection”. “quantum state discrimination” etc.

@ Many other optimality criteria have also been considered (e.g.:
maximise information gain).

@ Helstrom derived an analytic expression for P°7'(£) in the case
where £ contains 2 states .

@ In general, producing an analytic expression for P (&) appears
to be intractable (although good numerical solutions can be
- g,
found-)

'C. Helstrom, Quantum detection and estimation theory (1978)
Prsa: 0012005 2y Eldar, A. Megretski. G. Verghese, quant-ph/0205178 (2002) ke




Previous work

This problem has been considered by many authors since the
1970s. under titles like “quantum hypothesis testing”’, “quantum
detection”, “quantum state discrimination” etc.

Many other optimality criteria have also been considered (e.g.:
maximise information gain).

Helstrom derived an analytic expression for P7"(£) in the case
where £ contains 2 states .

In general, producing an analytic expression for P?7'( &) appears
to be intractable (although good numerical solutions can be

~ )

found-)

We are therefore led to producing lower bounds on PP (£).

'C. Helstrom, Quantum detection and estimation theory (1978)

Prsa: 0012005 2y Eldar, A. Megretski, G. Verghese, quant-ph/0205178 (2002) e




I will discuss:

@ Part [: the distinguishability of quantum states
@ Using a specific measurement to lower bound P (&)
@ Two lower bounds on PP (£): a “local™ bound and a “global™
bound

© Part II: random quantum states

Random quantum states and random matrix theory

Lower bounds on the distinguishability of random quantum states
Application: how mixed is my subsystem?

Application: the “oracle identification problem™ in quantum
computation

Q00O
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[ will use the following notation throughout the talk:
@ & = {|u;)}: the ensemble of states to distinguish
@ p;: the a priori probability of the i'th state
@ n = |£|: the number of states in £

@ d: the dimension of the states in &
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[ will use the following notation throughout the talk:
@ £ = {|u;)}: the ensemble of states to distinguish
@ p;: the a priori probability of the i'th state
@ n = |&|: the number of states in £

@ d: the dimension of the states in &

@ S: the d X n state matrix S = (\/P1|¥1) /P2|V2) -~ /Pn|¥n))
@ p: the density matrix p = ) _. p;|v;) (]

o G: the Gram matrix Gj; = /p;,/Pj! i)

o PM(&): the probability of success of measurement M applied to

&
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Part I: the distinguishability of quantum states

@ Using a specific measurement to lower bound P77" (&)
© Two lower bounds on P7/(£): a “local” bound and a “global”™
bound
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@ The lower bounds are obtained by putting a lower bound on the
probability of success of a specific measurement that can be
defined for any ensemble of states, the Pretty Good Measurement

(PGM)°.
@ For pure states, the PGM 1s defined by the set of measurement
operators {|u;)(ui|}, where |u;) = /pip~ /% |3).

@ It’s easy to show that this always gives a valid measurement
O g =D
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The canonical nature of the PGM

The PGM has a number of desirable properties, including that:
@ It can be defined analytically for any ensemble of states
o It’s almost optimal for any ensemble & *:
-~ Ppg.-.n( f) > Pupr( g)l-’

For us. the important fact 1s that it’s easy to analyse.

Prsx: 0012005 H Barnum and E. Knill. quant-ph/0004088 (2000) RRE R



The canonical nature of the PGM

The PGM has a number of desirable properties, including that:

@ It can be defined analytically for any ensemble of states
e It’s almost optimal for any ensemble £ *:
& Ppg.-n( g) ~ Pc:rpr( E)E

For us. the important fact 1s that it’s easy to analyse.

Key fact
[.et G be the rescaled Gram matrix of the ensemble &,
Gi; = /PiPj{¥i|w;). Then the probability of success of the PGM is

n

Fl
PPEM(E) = pil{wilu)? = ) (VG);

Our two lower bounds will be based on lower bounding this sum.

Prsx 06120055 +H_ Barnum and E. Knill, quant-ph/0004088 (2000) ok



The pairwise inner product bound

@ The first lower bound 1s based on a strategy used by Hausladen et
al.” to get a bound in terms of the entries of the Gram matrix.

@ A lower bound on the square root function by an “easier”
function (a parabola) gives a lower bound on the (/G );;.

e Works because /x > ax + bx> = (VG);; > aG;; + b > 1Gi |2

— 3 2
Red: +/x. Blue: 5x — %x-

Pis2: 06120035 3P Hausladen, R. Jozsa. B. Schumacher. W. Wootters (1996) B




The canonical nature of the PGM

The PGM has a number of desirable properties, including that:

@ It can be defined analytically for any ensemble of states

o It’s almost optimal for any ensemble &£ *:
o PPEM(E) > PoP(E)?

For us. the important fact is that it’s easy to analyse.

Key fact
Let G be the rescaled Gram matrix of the ensemble &,
Gi; = /PiPj{¥i|tj). Then the probability of success of the PGM is

n

ol ) Z[?;\xr iluid) |? = Z,(v’ﬁ)ﬁ:

=1 —1

Our two lower bounds will be based on lower bounding this sum.
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The pairwise inner product bound

@ The first lower bound is based on a strategy used by Hausladen et
al.” to get a bound in terms of the entries of the Gram matrix.

@ A lower bound on the square root function by an “easier”
function (a parabola) gives a lower bound on the (/G);;.

4 = = > F s : o)
@ Works because /x > ax + bx~ = (v G);; > aG;; + b Z;‘ G|~

— 3 2,
Red: /x. Blue: 5x — %..r-
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The pairwise inner product bound

@ We can improve their bound by producing (for a given set of
states) a set of optimal parabolae.

- - — 5
@ For each i, we look for a and b such that \/x > ax + bx~ for
x > 0, and aGj; + b _;|G;|” is maximised.

Pirsa: 06120035
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The pairwise inner product bound

@ The first lower bound is based on a strategy used by Hausladen et
al.” to get a bound in terms of the entries of the Gram matrix.

@ A lower bound on the square root function by an “easier”
function (a parabola) gives a lower bound on the (/G);;.

@ Works because /x > ax + hy? = (v"'ﬁ);; > aGy; + b Z j \Gg\z.

—_— ¥ ,-}
Red: /x. Blue: S5x — %.t:-
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The pairwise inner product bound

Pirsa: 06120035

@ We can improve their bound by producing (for a given set of
states) a set of optimal parabolae.

o For each i, we look for a and b such that \/x > ax + bx* for
x > 0, and aGj; + b Z ; \G,;};F 1s maximised.
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The pairwise inner product bound

@ We can improve their bound by producing (for a given set of

states) a set of optimal parabolae.
. - g TE & L
@ Foreach i, we look for a and b such that \/x > ax + bx~ for
. e

x > 0, and aGj; + b _;|G;|” is maximised.

@ Only basic calculus 1s required to find these values of @ and b,
and substituting in gives the result:

Pairwise inner product bound

Let £ be an ensemble of n states {|«+;) } with a priori probabilities p;.

4

n
oF - pT
Then PPP™(E) > E ’ =
J,-:'Z_]l‘*f“-' s
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The eigenvalue bound

The second lower bound 1s based on a global measure of
distinguishability of the states in £: the eigenvalues { \; } of the Gram
matrix G. The proof is simple:
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The eigenvalue bound

The second lower bound 1s based on a global measure of
distinguishability of the states in £: the eigenvalues { \; } of the Gram
matrix G. The proof 1s simple:

Fl

Z(\/E)ff = i Vi (1)

— =1
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The eigenvalue bound

The second lower bound 1s based on a global measure of
distinguishability of the states in £: the eigenvalues { \; } of the Gram
matrix G. The proof is simple:

1

Y (VG = i Vi (1)

i—1 —

- (i(*G)n)_ = (i‘ \//\,)_ (2)

—
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The eigenvalue bound

The second lower bound 1s based on a global measure of
distinguishability of the states in £: the eigenvalues { \; } of the Gram

matrix G. The proof is simple:

Fl

Pirsa: 06120035

|V

i; VA

i—1

)
(i‘ \//\;‘) L (3)
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The eigenvalue bound

The second lower bound 1s based on a global measure of
distinguishability of the states in £: the eigenvalues { )\; } of the Gram
matrix G. The proof is simple:

FI

Z(\/E);g = i: \/,/\f (1)

i—1 —

= (Z(\G),-,) - (L \/,\,) (2)
= ui(\/ﬁ)ﬁ. (i‘ \/,\;) - (3)

|V

= PEm(E) > — Y VA 4
&) = (Z;\/ ) (4)
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The eigenvalue bound

The second lower bound 1s based on a global measure of
distinguishability of the states in £: the eigenvalues { \; } of the Gram
matrix G. The proof is simple:

I

Z(\/E);g = i: \/./\f (1)

i=1 —

|

P

Ql

=T

|\
/“‘P_'/‘“\

Q

Nt
i =
[ ]

Z

(4)

1 n
prem(g) > N
. ponge) > L (;\/ ;

— N HSHI —n (Z; (T;(LS.)) : Page 29/88




Comparison with previous bounds

@ Previous authors (e.g. Burnashev and Holevo ©) have used
bounds based on similar principles.

@ But the bounds here are stronger, especially for low values of
PPE™(E), and always give a non-trivial value.

®M. V. Burnashev and A. S. Holevo, On reliability function of quantum
Ommunication channel, quant-ph/9703013
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Comparison with previous bounds

@ Previous authors (e.g. Burnashev and Holevo ©) have used
bounds based on similar principles.

@ But the bounds here are stronger, especially for low values of
PPEM(E), and always give a non-trivial value.

@ Assuming the states in £ have equal probabilities:

Comparison of bounds

Previously known lower bound |

Ppg-,wﬂ( E') > = % Zf%j | Eﬁ‘j“'-'-'j}' 2

pprsm ( E) -

New lower bound

| . i Fl l
f Pp‘ H?(E) 2 = ZEZI Z_;T:I_|<L‘F|dj:}|l
PPsm(£) > ﬁtr( V":'G)z

®M. V. Burnashev and A. S. Holevo, On reliability function of quantum
Ommunication channel. quant-ph/9703013

Pirsa: 061200,
C
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A local bound and a global bound

@ It 1s interesting to note that the inner product bound only
considers the pairwise distinguishability between states, while
the eigenvalue bound is based on global features of the ensemble.

@ We might therefore expect the latter to be stronger...

PrEm(£) > 1 — L5 (i) [ prem(£) > 1 '
Pp;::fm(f_-) o 7tI.( \/E} 1 Ii PP rn;r(f) . itI’( \‘5)2

®M. V. Burnashev and A. S. Holevo, On reliability function of quantum
Pres S mmunication channel, quant-ph/9703013
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Comparison with previous bounds

@ Previous authors (e.g. Burnashev and Holevo ©) have used
bounds based on similar principles.

@ But the bounds here are stronger, especially for low values of
PPE™M(E), and always give a non-trivial value.

@ Assuming the states in £ have equal probabilities:

Comparison of bounds

Previously known lower bound |r New lower bound
omf c\ - 1 Lod B XA o | |
Pp‘ J?’!(E) 2 1 — E E#I | U ‘ E_M. ‘ { PP‘ ”?(5) 2 E Z;;l Z_;l:l HL-'r |‘I*:I_‘f:}|:
o : 2 | o -y - Y,
pPEm(£) > ﬁtr( VG) —1 | pPPE™(E) > f—itr(v G)-

®M. V. Burnashev and A. S. Holevo, On reliability function of quantum
Ommunication channel, quant-ph/9703013
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A local bound and a global bound

@ It 1s interesting to note that the inner product bound only
considers the pairwise distinguishability between states, while
the eigenvalue bound is based on global features of the ensemble.

@ We might therefore expect the latter to be stronger...

Page 34/88
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A local bound and a global bound

@ It 1s interesting to note that the inner product bound only
considers the pairwise distinguishability between states, while
the eigenvalue bound is based on global features of the ensemble.

@ We might therefore expect the latter to be stronger...

@ Consider an ensemble of 7 states, each pair of which have the
same inner product, Kk € R™. Then it is possible to show that:
e The inner product bound gives an almost trivial bound:
pPrem(&) > O(1/n)
e The eigenvalue bound gives a strong bound:
Prem(€) > (1 — k) —o(1)
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A local bound and a global bound

Pirsa: 06120035

[t 1s interesting to note that the inner product bound only
considers the pairwise distinguishability between states, while
the eigenvalue bound is based on global features of the ensemble.

We might therefore expect the latter to be stronger...

Consider an ensemble of 7 states, each pair of which have the
same inner product, X € R™. Then it is possible to show that:

e The inner product bound gives an almost trivial bound:
PPE™(E) > O(1/n)

e The eigenvalue bound gives a strong bound:
PPem(€) > (1 — k) —o(1)
(NB: 1n this trivial case we can actually diagonalise the Gram
matrix and calculate the probability of success of the PGM
exactly)
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Part II: random quantum states

e 0

S
o

Pirsa: 06120035

Random quantum states and random matrix theory

Lower bounds on the distinguishability of random quantum
states

Application: how mixed is my subsystem?

Application: the “oracle identification problem™ in quantum
computation
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Random quantum states

@ We will now apply the eigenvalue bound to the case where the
states in £ are random.
@ To be precise, for all i:
e |y) is distributed uniformly at random on the d-dimensional
complex unit sphere (according to Haar measure)
e p; = | /n (the states are equiprobable)
@ We will calculate the expected probability of success of
identifying | ) in this case.
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Random quantum states

@ We will now apply the eigenvalue bound to the case where the
states in £ are random.
@ To be precise, for all i:
e |uy) is distributed uniformly at random on the d-dimensional
complex unit sphere (according to Haar measure)
e p; = 1 /n (the states are equiprobable)
@ We will calculate the expected probability of success of
identifying |«7) in this case.

So we are given a state picked at random from a known set of states
which are themselves randomly picked, and asked to determine which
random state our randomly picked state actually 1s ©
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Random quantum states

How do we produce a state |¢) distributed uniformly at random?

@ Generate a vector v whose components v; are complex
Gaussians, then set |¢7) = v/||v]].
e 1.e.v;’s real and complex parts are independently normally
distributed with variance 1/2: both parts have probability density

L gy

function EJ__FF_-" 2 and E(|vi|*) = 1.

@ This works because of the spherical symmetry of the multivariate
normal distribution.
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Random quantum states

How do we produce a state |¢) distributed uniformly at random?

@ Generate a vector v whose components v; are complex
Gaussians, then set |¢7) = v/||v]|.
e 1.e. v;’s real and complex parts are independently normally
distributed with variance 1/2: both parts have probability density

e oy

function EJ__?F-" 2 and E(|vi]?) = L.

@ This works because of the spherical symmetry of the multivariate
normal distribution.

@ It turns out that the normalisation step becomes “almost™
unnecessary in high dimension (qv): rescaling v by 1/v/d will
give a complex vector whose norm 1s approximately 1.

@ So the state matrix S 1s (almost!) a rescaled matrix of Gaussians:

~ j ,
Sij ~ N(0,1/nd), and we need to calculate E(HSHI 2
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Random matrix theory

@ Random matrix theory deals with the properties of matrices
whose entries are random variables.

Pisa: 06120035 TNy A Marcenko and L. A. Pastur (1967) Page 42188




Random matrix theory

@ Random matrix theory deals with the properties of matrices
whose entries are random variables.

@ In particular, infinite-dimensional random matrix theory allows
us to answer questions like “what is the limiting density of the
eigenvalues of a family of n X n random matrices, as n — o>c?".

e By density, we mean the function f(x) which integrates to

Ftx) = %(,’;’ef\gmrm’ues < x)

e It's not a priori obvious that such a limit should exist!

Page 43/88
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Random matrix theory

@ Random matrix theory deals with the properties of matrices
whose entries are random variables.

@ In particular, infinite-dimensional random matrix theory allows
us to answer questions like “what 1s the limiting density of the
eigenvalues of a family of n X n random matrices, as n — 7.

o By density, we mean the function f(x) which integrates to
1

F(x) = - (Freigenvalues < x)

e It's not a priori obvious that such a limit should exist!

@ Statisticians have long studied the density of eigenvalues of the
matrix G = SS'. where S 1s a random matrix: under certain
conditions. it’s given by the Marcenko-Pastur law .

e This 1s the equivalent of the famous Wigner semicircle law for
random Hermitian matrices...

Preac 06120035 Ty A MarCenko and L. A. Pastur (1967)
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The MarCenko-Pastur law

The Marcenko-Pastur law gives the limiting density of the eigenvalues
of a sample covariance matrix G = SS' under very weak conditions.
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The MarCenko-Pastur law

The Marcenko-Pastur law gives the limiting density of the eigenvalues
of a sample covariance matrix G = SS' under very weak conditions.

Marcenko-Pastur law

et R, be a family of d x n matrices withn > d andd/n — r € (0. 1]
as n,d — oc, where the entries of R, are 1.1.d. complex random
variables with mean O and vanance 1. Then, as n,d — oc, the
eigenvalues of the rescaled matrix ﬁRer. tend almost surely to a
[imiting distribution with density

forA> < x < B*> (whereA =1 — \/r, B= 1+ /), and density 0

elsewhere.

Pirsa: 06120035 Page 46/88




The MarCenko-Pastur law

The Marcenko-Pastur law gives the limiting density of the eigenvalues
of a sample covariance matrix G = SS' under very weak conditions.

Marcenko-Pastur law

Let R, be a family of d x n matrices withn > d andd/n — r € (0. 1]
as n,d — oc, where the entries of R, are 1.1.d. complex random
variables with mean 0 and variance 1. Then, as n.d — oc. the
eigenvalues of the rescaled matrix ﬁRer. tend almost surely to a
l[imiting distribution with density

p-"('r) = : )

forA> < x < B> (whereA =1 — \/r, B= 1+ /r), and density 0
elsewhere.

We can easily tweak this result to tell us the density of the singular
rsoszo¥ €S Of R, 1nstead! ——




Experimental results

Blue: singular value density predicted by Marcenko-Pastur law
oo (s empirical singular value distribution of a S00x500 matrix e ssse




Applying the MarCenko-Pastur law

We can use the M-P law to give us the expected trace norm of a
random matrix, again under very weak conditions.

Expected trace norm

et R, be a tamily of d x n matrices withk/m — r € (0. 1] as

n,d — oo, where k = min(n, d) and m = max(n, d), and the entries
of R, are 1.1.d. complex random variables with mean O and variance 1.
Then. as n.d — ~c, the expected trace norm of R, tends almost surely
o

I

3/2 B
/ ,V/(}J - AZ)(BE = f'-f:) d_‘f
. JA

E(lIR 1) =

i

whereA=1—/r,B=1+ /r.
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Applying the Marcenko-Pastur law (2)

We want to evaluate the following integral:

[ Vo

Unfortunately, this 1s an elliptic integral with no analytic solution. But
we can find a good lower bound on the integral...
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Applying the Marcenko-Pastur law (2)

We want to evaluate the following integral:

/ V02— 42)(B2 — ) dy

Unfortunately, this 1s an elliptic integral with no analytic solution. But
we can find a good lower bound on the integral...

Elliptic integral lower bound

[et0<r<landA=1-—/r,B=1+ /r. Then

/
| 64
f \/ )(B* — 2)d1'>rr\/1r<19_2)

with equalltw atr— 0 r—1L

(The proof 1s fairly long and involves representing the integral as the
difference of two hypergeometric series and performing several
e oszpFANSfOrmations on these hypergeometric series...) Page Sua8




The asymptotic lower bound

Main theorem

Let £ be an ensemble of n equiprobable d-dimensional quantum states
{|)} withn/d — r € (0. ) as n.d — oc, and let the components
of |[¢’;) in some basis be 1.1.d. complex random variables with mean 0
and variance 1/d. Then, as n.d — ~,

{%((:( onr)) ifn>d

' ) otherwise

E(P,{JQ.F?’I(E‘)) -

s

and in particular E(PP$"(E)) > 0.720 when n < d.

Concentration of measure results can be used to show that for almost
all ensembles £, PPE™(E) =~ E(PPS™(E)).
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Comparison with numerical results (1)

(0 < n < 2d)

1 = T -
O Analytic lower bound
&= Numerical results
09 SN 7
0.8 e
C. --- ‘.
e o7} M :
z \
o .
06 | N\ ]
:‘3'&-'“\.
05 e
0.4 :
0 0.5 1 15 2
r

Figure: Asymptotic bound on PP3™(£) vs. numerical results (averaged over
10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.
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Comparison with numerical results (2)

(0 < n < 10d)

] ]
y Analytic lower bound
09 % Numerical results

08 1

06 | :
05 | 3 :

PPIT(E)

04

I:}E _ -----.... _..__...,..---' |

0.1 — |

Figure: Asymptotic bound on PP#™(£) vs. numerical results (averaged over
10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.
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A finite-dimensional lower bound

@ The M-P law holds in the asymptotic limit. Can we find a lower
bound on the expected distinguishability of an ensemble of
finite-dimensional random states”?

@ Also, I glossed over the 1ssue of normalising the states we
produce...

Pirsa: 06120035
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A finite-dimensional lower bound

Pirsa: 06120035

@ The M-P law holds in the asymptotic limit. Can we find a lower
bound on the expected distinguishability of an ensemble of
finite-dimensional random states”?

@ Also, I glossed over the 1ssue of normalising the states we
produce...

@ There are two “bad events™ that we have to take into account:
© The eigenvalue distribution in finite dimension d will not be given
by the M-P law, but some approximation
© The normalisation of the states might perturb the state matrix
excessively
@ Actually. both of these problems can be overcome:

© There 1s a convergence result bounding the rate at which the
eigenvalues converge to the M-P law

© We can produce a tail bound that says that the normalisation step
makes little difference
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A finite-dimensional lower bound
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@ The M-P law holds in the asymptotic limit. Can we find a lower
bound on the expected distinguishability of an ensemble of
finite-dimensional random states”?

@ Also, I glossed over the 1ssue of normalising the states we
produce...

@ There are two “bad events™ that we have to take into account:
@ The eigenvalue distribution in finite dimension d will not be given
by the M-P law, but some approximation
© The normalisation of the states might perturb the state matrix
excessively
@ Actually. both of these problems can be overcome:

© There is a convergence result bounding the rate at which the
eigenvalues converge to the M-P law

© We can produce a tail bound that says that the normalisation step
makes little difference
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Convergence in low dimension

Empirical probability of success of the PGM applied to n states in n
dimensions (averaged over 100 runs).
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Why study random states anyway?
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Why study random states anyway?

Almost all states are random!

Other reasons:
@ Random states provide an interesting case where we can
determine the distinguishability of an ensemble based only on
two parameters: n and d.
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Why study random states anyway?

Almost all states are random!

Other reasons:
@ Random states provide an interesting case where we can
determine the distinguishability of an ensemble based only on
two parameters: n and d.
@ We can get very tight analytic results in this case: even for low
dimensions. the bound seems to be within 1% of the observed
probability of success of the PGM.
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Why study random states anyway?

Almost all states are random!

Other reasons:

@ Random states provide an interesting case where we can
determine the distinguishability of an ensemble based only on
two parameters: n and d.

@ We can get very tight analytic results in this case: even for low
dimensions, the bound seems to be within 1% of the observed
probability of success of the PGM.

@ These results allow one to say: my states are like random states
= they re (quite) distinguishable.
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Why study random states anyway?

Almost all states are random!

Other reasons:

@ Random states provide an interesting case where we can
determine the distinguishability of an ensemble based only on
two parameters: n and d.

@ We can get very tight analytic results in this case: even for low
dimensions, the bound seems to be within 1% of the observed
probability of success of the PGM.

@ These results allow one to say: my states are like random states
= they re (quite) distinguishable.

But what if we don’t care about quantum measurement theory?
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Application: how mixed is my subsystem?

@ There is another interpretation of these results which doesn’t
come from quantum measurement.

o It turns out that -||S||{ gives the fidelity of the Gram matrix G
with the n-dimensional maximally mixed state [ /n.

e where the fidelity F(p.o) = (trvf"p'fl ,;rpl_,-"-‘)l

@ We may thus interpret the lower bound on the distinguishability
of a set of states as how close its Gram matrix is to the
maximally mixed state.
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Application: how mixed is my subsystem?

@ Let p, 4 be the density matrix obtained by picking a pure state
uniformly at random from a n x d-dimensional Hilbert space,

and tracing out the z-dimensional portion of it.

- n T S . .
e It's easy to show that p, 4 ~ mo PE |25 ) (1|, where |i) 1s picked

uniformly at random in the d-dimensional space
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Application: how mixed is my subsystem?

@ Let p, 4 be the density matrix obtained by picking a pure state
uniformly at random from a » x d-dimensional Hilbert space,
and tracing out the #-dimensional portion of it.

e It’s easy to show that p, 4 ~ ;l: Z:ZI |24) (|, where |i) 1s picked
uniformly at random in the d-dimensional space

@ It's possible to show that the non-zero eigenvalues of p, 4 are the
same as those of the Gram matrix of a set of 7 equiprobable

d-dimensional random states®

I

1S |7 gives the approximate

@ Using this, one can show that
fidelity of p,, ;s with I/d!
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Application: how mixed is my subsystem?

Let p, 4 be the density matrix obtained by picking a pure state
uniformly at random from a » x d-dimensional Hilbert space,

and tracing out the n-dimensional portion of it.

- n v o . 5
o It’s easy to show that p, 4 ~ ) . | [¢3)(2i|. where |i) is picked

uniformly at random in the d-dimensional space
[t’s possible to show that the non-zero eigenvalues of p, 4 are the
same as those of the Gram matrix of a set of #n equiprobable

d-dimensional random states®

I

N |+ gives the approximate

Using this, one can show that
fidelity of p,, ; with I/d!
The previous results thus predict the distance of p, 4 from the
maximally mixed state very closely.
e (Popescu, Short, and Winter previously obtained a similar result
by different methods)
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Application: oracle identification

Given an unknown Boolean function f as a black box, picked
uniformly at random from a set S of N Boolean functions on 7 bits,
identify f with the minimum number of uses of f.
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Application: oracle identification

Given an unknown Boolean function f as a black box, picked
uniformly at random from a set S of N Boolean functions on 7 bits,
identify f with the minimum number of uses of f.

@ This is a particular case of the oracle i1dentification problem
studied by Ambainis et al”.

@ We consider the case where we are allowed a bounded
probability of error in our quest to identify f.

@ Many important problems fit into this framework (e.g.
unstructured search as in Grover’s algorithm).
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Oracle identification: classical

@ A classical algorithm must make at least log N queries
e (each query can only reduce the size of the search space by halt)
@ Note that being allowed some probability of error < /2 1s
useless for classical algorithms.
@ We can actually show a classical upper bound of O(log V)
queries for almost all sets of functions
e (because every query will reduce the search space by almost half
whp)
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Oracle identification: quantum

We will show that, when 2” is large relative to N, for almost all sets of
functions, f can be 1dentified with a constant number of quantum
queries.
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Oracle identification: quantum

We will show that, when 2” is large relative to N, for almost all sets of
functions, f can be 1dentified with a constant number of quantum
queries.

@ Consider the following single-query quantum “algorithm™:

@ Create the state |) = =5 (—1)Y™|x) using one query to f.
e Vol g ’ = :
© Use the PGM to distinguish the states in the ensemble
é’: — { i_'f?} :‘.
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Oracle identification: quantum

We will show that, when 2" is large relative to N, for almost all sets of
functions, f can be identified with a constant number of quantum
queries.

@ Consider the following single-query quantum “algorithm™:
@ Create the state |v) = =5 (—1)Y®)|x) using one query to f.

o L
W

@ Use the PGM to distinguish the states in the ensemble
£ = {J¥y)}-

@ When the functions are random. the state matrix
S = ({|¥r)/ V/N'}) is random, in the sense that the M-P law can
be applied to it.

@ Why? Because each entry of N 275 is i.i.d. with expectation 0
and variance 1.
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Oracle identification: quantum (2)

@ So the results here can be used to put the same lower bound on
the probability of success of distinguishing these states.

@ And 1n particular, the input size and the number of functions
determine this probability (unlike the classical case where we
can't use all the input)...
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Oracle identification: quantum (2)

@ So the results here can be used to put the same lower bound on
the probability of success of distinguishing these states.

@ And 1n particular, the input size and the number of functions
determine this probability (unlike the classical case where we
can’t use all the input)...

@ Concentration of measure can be used again (but on the
hypercube this time) to show that this bound holds for almost all
sets of functions.

e In fact, the proof is easier as there is no difficulty with
normalisation.
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Oracle identification: quantum (2)
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So the results here can be used to put the same lower bound on
the probability of success of distinguishing these states.
And 1n particular, the input size and the number of functions
determine this probability (unlike the classical case where we
can't use all the input)...
Concentration of measure can be used again (but on the
hypercube this time) to show that this bound holds for almost all
sets of functions.

e In fact, the proof is easier as there is no difficulty with

normalisation.

When the probability of success 1s a constant > 1/2, we can
repeat the algorithm a constant number of times for an arbitrarily
good probability of success.
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Summary and further work

@ Good lower bounds have been obtained on the probability of
distinguishing pure quantum states.
@ These bounds can be applied to distinguishing random quantum
states. For example:
e For large n, n random states in n dimensions can be distinguished
with probability > 0.72.
e Almost all sets of 2" Boolean functions on 7 bits can be
distinguished with a constant number of quantum queries.
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Summary and further work

@ Good lower bounds have been obtained on the probability of
distinguishing pure quantum states.

@ These bounds can be applied to distinguishing random quantum
states. For example:
e For large n, n random states in n dimensions can be distinguished
with probability > 0.72.
e Almost all sets of 2" Boolean functions on 7 bits can be
distinguished with a constant number of quantum queries.

Possible future directions:
@ Upper bounds on PP#"(£)?
@ Multiple copies?

@ Further applications to quantum computation?
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e Further reading:
“On the distinguishability of random quantum states™
Communications in Mathematical Physics, to appear
quant-ph/060701 1

@ Thanks for your time!
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Why study random states anyway?

Almost all states are random!

Other reasons:

@ Random states provide an interesting case where we can
determine the distinguishability of an ensemble based only on
two parameters: n and d.

@ We can get very tight analytic results in this case: even for low
dimensions, the bound seems to be within 1% of the observed
probability of success of the PGM.

@ These results allow one to say: my states are like random states
= they re (quite) distinguishable.

But what if we don’t care about quantum measurement theory?
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A finite-dimensional lower bound

@ The M-P law holds in the asymptotic limit. Can we find a lower
bound on the expected distinguishability of an ensemble of
finite-dimensional random states”?

@ Also, I glossed over the 1ssue of normalising the states we
produce...

Pirsa: 06120035
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Applying the MarCenko-Pastur law (2)

We want to evaluate the following integral:

[ V02— 42)(B2 — ) dy

Unfortunately, this 1s an elliptic integral with no analytic solution. But
we can find a good lower bound on the integral...

Elliptic integral lower bound
[et0<r<landA=1—-—/r,B=1+ /r. Then

64
f\/ )(B2 — y2)dy > rr. 1r(19_3)

with equalltw at r = br—1L

(The proof 1s fairly long and involves representing the integral as the
difference of two hypergeometric series and performing several
e oszpFANSfOrmations on these hypergeometric series...) Page 82168




Applying the MarCenko-Pastur law

We can use the M-P law to give us the expected trace norm of a
random matrix, again under very weak conditions.

Expected trace norm

et R, be a tamily of d x n matrices withk/m — r € (0. 1] as

n,d — oo, where k = min(n, d) and m = max(n, d), and the entries
of R, are 1.1.d. complex random variables with mean 0 and variance 1.
Then. as n.d — o, the expected trace norm of R, tends almost surely
to

m

32 (B
/ ‘Vf (y2 — A%)(B> — y?)dy
i o :i

E(lIR-1) =

i

whereA=1—/r,B=1+ /.
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Comparison with numerical results (1)

(0 < n<2d)

1 < .
e Analytic lower bound
T MNumencal resulis
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Figure: Asymptotic bound on PP3™(£) vs. numerical results (averaged over
10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.
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Application: how mixed is my subsystem?

@ Let p, 4 be the density matrix obtained by picking a pure state
uniformly at random from a » x d-dimensional Hilbert space,

and tracing out the #-dimensional portion of it.

- n v T -
e It's easy to show that p, 4 ~ = e |24 (1|, where |i) 1s picked

uniformly at random in the d-dimensional space
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Application: oracle identification

Given an unknown Boolean function f as a black box, picked
uniformly at random from a set S of N Boolean functions on 7 bits,
identify f with the minimum number of uses of f.

@ This 1s a particular case of the oracle identification problem
studied by Ambainis et al”.

@ We consider the case where we are allowed a bounded
probability of error in our quest to identify f.

@ Many important problems fit into this framework (e.g.
unstructured search as in Grover’s algorithm).
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Oracle identification: classical

@ A classical algorithm must make at least log N queries
e (each query can only reduce the size of the search space by half)
@ Note that being allowed some probability of error < /2 1s
useless for classical algorithms.
@ We can actually show a classical upper bound of O(logN)
querles for almost all sets of functions
e (because every query will reduce the search space by almost half
whp)
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Oracle identification: quantum

We will show that, when 2" is large relative to N, for almost all sets of
functions, f can be 1dentified with a constant number of quantum
queries.
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