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Abstract: Ancillary state construction is a necessary component of quantum computing.

Ancillae are required both for error correction and for performing universal computation in a fault-tolerant way. Computation to an arbitrary
accuracy, however, is effectively achieved by increasing the number of qubits in order to suppress the variance in the expected number of errors.
Thus, it is important to be able to construct very large ancillary states. Concatenated quantum coding provides a means of constructing ancillae of
any size, but, this fact aside, concatenation is not a particularly efficient form of coding. More efficient codes exist, but these codes lack the
substructure of concatenated codes that enables fault-tolerant preparation of large ancillae.

In this talk | will discuss the advantages of coding in large blocks, both from the perspective of efficiency and analysis, and | will describe my
progress in developing construction procedures for moderately large ancillae.
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Imtroductan Themes

Engineering a Quantum Computer

Today's themes

Threshold - The error rate below which an arbitrary
quantum algorithm can be implemented efficiently.

Fault Tolerance - A design strategy that seeks to avoid
the spread or compounding of errors.

Ancillae - Ancillary states that aid computation.
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Introducton Themes

Engineering a Quantum Computer

Today's themes

Threshold - The error rate below which an arbitrary
quantum algorithm can be implemented efficiently.

Fault Tolerance - A design strategy that seeks to avoid
the spread or compounding of errors.

Ancillae - Ancillary states that aid computation.

Real themes

@ Using large ancillae with homogeneous errors

@ Constructing ancillae with homogeneous errors

Bryan Eastin Ancillze with Homogeneous Errors




Introduction Background
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Introduction Background

Concatenated vs. Block Coding

Concatenated coding encodes and corrects in layers.
2
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o __pjlog [ t+1) H : e
Crash probability ~ KCN s Preskill, quant-ph /9712048

Block coding utilizes a single layer of encoding.

2
9900000000000000000000000000

Crash probability ~ Kgm Steane, quant-ph /9601029

Kc.Kg > 1 N —total # of qubits

Concatenation is performed using an [[n. 1.2t + 1]] code.
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Introduction Background

Concatenated vs. Block Coding

Concatenated coding encodes and corrects in layers.
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Crash probabﬂlt\; ~ KCN s Preskill, guant-ph /9712048

Block coding utilizes a single layer of encoding.

99000000000000000000000090000

Crash probability ~ Kgm Steane, quant-ph /9601029

Problem
No efficient way of directly making block code ancillae is known.
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Introduction Background

Concatenation T hresholds

Approximately, error rates are below threshold if

Encoded L Unencoded
error rate error rate |
Complications. however, abound

Diverse species of error

10, Rigorous thresholds bypass these
problems by careful analysis of worst
case scenarios.

Dy De
Inexact mapping of good qubits with error propagation are used to
produce threshold estimates.

Monte-Carlo routines, in conjunction

LO L1 L2 L3
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Intreduction Background

Crashing the Infinite (and Uniform)

As the number of samples increases the frequency of errors
approaches the expectation.

In the limit n — r— hm t

F—o

{ Failure } . {1 g = Probability vs. error fraction

probability 0 ifp<rt

Failure becomes a deterministic
function of the error probability.

Threshold criterion:

im { Encoded }—D.

A—2C error rate
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Ancillae with Homogeneous Errors

Homogeneous gates

Homogeneous - Transversal and identical e

Homogeneous errors are independent and
identically distributed (i.i.d).

| assume that ancillae errors are homogeneous and that they are
trace preserving and unbiased, i.e. for an error operator £ s.t.

E(p) = Z EjpE; . Z E'E;=1 and Conjugate[€]
;
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Error Finding in the Limit

Steane 7-qubit-code bit correction

r—LEs

Often, error diagnosis is
homogeneous but for syndrome
interpretation and recovery.

When syndrome extraction
succeeds. the interpretation of the
syndrome yields an error pattern
equivalent to those that occurred.

Since success is deterministic, it is
sufficient to reveal the error
locations.
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Error Recovery

Error propagation
Error recovery can be dispensed |

d s :
with. I
ra .L"

Once detected, the effect of errors
is tracked by error propagation.

P
H|

Teleporting on the 7 /4 Rotation If non-Clifford gates are never

directly applied, recovery
operators are unnecessary.

Konill, guant-ph
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T hreshold Determination

Having eliminated the inhomogeneities, threshold analysis is
particularly simple.

Method for Threshold Determination

@ By exhaustive counting and error propagation find the

probability of error at every time in the circuit assuming that
all syndrome decodings succeed.

© Determine the maximum the probability of a bit-flip error for
any measurement used in error diagnosis.

© If this number is less than the correctable error fraction, then
the error rate is below threshold.
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What's it all for?

Review of assumptions:
@ Logical ancillae of any size can be prepared.

@ Ancillae can be prepared such that their error distribution is
homogeneous.

Possible applications:

. . Thresholds for Homogeneous Ancillae
Obvious: Rigorous threshold : - T
: : : in units of the correctable error fraction
surface given ancillae with

homogeneous errors. - . Error Model

| 10.15 |0.06 |0.24 | 10.29
=1 Full depolarizing gate errors —
Strong measurement errors _D':'“h!’: Steane| 0.16 10.10 10.18 1 0.29

Error madels:

epolarizing 2-qubit gate errors Knill D 35 [0.15 |0.50 [0.67 |

stricted Z-qubit ';:;5:1'.'; Eerrors
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Homogeneous Procedures

What's it all for?

Less obvious: Simple, flexible method of generating threshold
estimates.

Reichardt's Steane-procedure depolarizing threshold ~ .9%
My Steane-procedure depolarizing threshold ~ 1%

Knill's telecorrection depolarizing threshold ~ 3 — 5%

My telecorrection depolarizing threshold ~ 4%

Long shot: Recipe for achieving some threshold.

This last use would require a means of preparing ancillae in logical
encoded states.

Reichardt, quant-ph /0406025 1ll, quant-ph /0410199
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Preparing Logical Ancillae

Making Large Ancillae

Direct preparation is problematic for two reasons.

First, the number of gates applied to each qubit typically scales
with the size of the ancilla. Thus the final error probability on each

qubit should likewise increase.

5-qubit |0) preparation

P
[P]

Second, befare the first problem can become an issue, the spread
of errors becomes fatal.
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Preparing Logical Ancillae

Concatenated Coding for Ancilla Construction

Concatenated coding avoids the aforementioned difficulties by
preparing ancillae in stages interspersed with error correction.

High level ancillae, that consist of many layers of encoding, are
prepared starting from the lowest level of encoding and working up.

This method requires the code to have a concatenated
substructure however.

How do we prepare an arbitrary ancilla?
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Preparing Logical Ancillae

Concatenated Coding for Ancilla Construction

Concatenated coding avoids the aforementioned difficulties by
preparing ancillae in stages interspersed with error correction.

High level ancillae, that consist of many layers of encoding, are
prepared starting from the lowest level of encoding and working up.

This method requires the code to have a concatenated
substructure however.

How do we prepare an arbitrary stabilizer state?
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Preparing Logical Ancillae

Aside: Graph States

Stabilizer generator Graph-form generator
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Preparation Circuit

0
0
a graph state. 0
0
10

- : . |
Any stabilizer state is equivalent. '

— . |
up to local Clifford operations, to
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Preparing Logical Ancillae

Compact Graph-state Construction

An n-qubit graph state can be constructed from the state |0)
applving H to every qubit and then applying “Zs in r = 2| 2

rounds.

This is proven by showing that the complete graph can be
constructed in that way.

Compact preparation circuit
Complete graph |

10

G
. "-.._ _.z"'.l':
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Preparing Logical Ancillae

Aside: Controlled-Z Gates

Properties of the €Z gate:

o Z12Un = “Un“Zy

@ 2571 = 71225

2 X:':le — CZ12X221

X|-e

Z errors are not spread by Z gates and X errors spread only Z
errors.
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Preparing Logical Ancillae

Compact Graph-state Construction

An n-qubit graph state can be constructed from the stat
applving H to every qubit and then applving “Zs in r =
rounds.

This is proven by showing that the complete graph can be
constructed in that way.

Compact preparation circuit
Complete graph |

1)
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Preparing Logical Ancillae

Aside: Controlled-Z Gates

Properties of the €Z gate:

= = '
o 71,3 = U7

@ 2571 = 71225

° X:':le — CZIEXEZI

i X|-e

Z errors are not spread by Z gates and X errors spread only Z
errors.
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Preparing Logical Ancillae

Fault-tolerant Graph-state Construction

Logical circuit for fault-tolerant 5-qubit-graph-state construction

CATS

All qubits are initially in the |0) state, and R; is the ith round of
phase gates in graph state construction.

Error tracking fails if the CATS portion contains correlated errors,
so the five 7-qubit cat states must be prepared separately.
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Preparing Logical Ancillae

Error Tracking

Examining the X-error tracks reveals noisy streaks.

Error tracks (30 qubits, Recorded)
3 -n

Applying a filter based on the relative frequencies of error events
yields a guess about the actual X-error track.

The location of X errors provides a clue to the location of Z errors.
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Preparing Logical Ancillae

Error Tracking

Examining the X-error tracks reveals noisy streaks.

Error tracks (30 qubits, Filtered)

Applying a filter based on the relative frequencies of error events
yields a guess about the actual X-error track.

The location of X errors provides a clue to the location of Z errors.
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Preparing Logical Ancillae

Error Tracking

Examining the X-error tracks reveals noisy streaks.

Error tracks (30 qubits, Change)

Applying a filter based on the relative frequencies of error events
vields a guess about the actual X-error track.

The location of X errors provides a clue to the location of Z errors.
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Preparing Logical Ancillae

Construction Summary

Graph-state construction procedure

@ Prepare n (r + 2)-qubit cat states.
Q@ Whilei<r+1
©® Apply the ith round of phase gates to the n qubit block
consisting of the first qubit in every cat state.
@ Apply “X from the first to the (i + 1)st n qubit block of the

cat states.
@ Measure the target qubits.

© Infer the error locations from the filtered error track.

Properties (preliminary)

@ [ he total number of residual X and Z errors is no more than
twice the number of errors that occurred.

@ [ he residual error probability on each qubit scales like n.

@ For base error probability p, construction fails when n > i
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Condusicn

Roadmap

@ [hresholds

Thresholds for ancillae with homogeneous errors
Threshold estimates for single-level encoding with liberal qubit
discard
Constructive method of block coding for moderately sized
ancillae
@ Graph-state preparation
Graph-state construction s.t. minimal correlations arise using
l.i.d. cat states
?  Graph-state preparation for non-depolarizing Pauli channels

@ (Cat-state preparation

Improved cat-state verihication
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Preparing Logical Ancillae

Construction Summary

Graph-state construction procedure

© Prepare n (r + 2)-qubit cat states.
Q@ Whilei <r+1
©® Apply the ith round of phase gates to the n qubit block
consisting of the first qubit in every cat state.
@ Apply “X from the first to the (i + 1)st n qubit block of the

cat states.
@ Measure the target qubits.

© |Infer the error locations from the filtered error track.

Properties (preliminary)

@ [ he total number of residual X and £ errors is no more than
twice the number of errors that occurred.

@ [ he residual error probability on each qubit scales like n.

@ For base error probability p, construction fails when n > i
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Roadmap

@ [ hresholds

Thresholds for ancillae with homogeneous errors

Threshold estimates for single-level encoding with liberal qubit
discard

Constructive method of block coding for moderately sized
ancillae

@ Graph-state preparation

Graph-state construction s.t. minimal correlations arise using
l.i.d. cat states
?  Graph-state preparation for non-depolarizing Pauli channels
e Cat-state preparation

Improved cat-state verihication
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