Title: Generalizing the Kodama State

Date: Dec 06, 2006 03:30 PM

URL: http://pirsa.org/06120032

Abstract: TBA

Pirsa: 06120032 Page 1/117

Generalizing the Kodama State

Andrew Randono
Center for Relativity
University of Texas at Austin

Pirsa: 06120032 Page 2/117

Pirsa: 06120032 Page 3/117

 Kodama State is one of the only known solutions to all constraints with well defined semi-classical interpretation

Pirsa: 06120032 Page 4/117

- Kodama State is one of the only known solutions to all constraints with well defined semi-classical interpretation
- Represents quantum (anti)de-Sitter space

Pirsa: 06120032 Page 5/117

- Kodama State is one of the only known solutions to all constraints with well defined semi-classical interpretation
- Represents quantum (anti)de-Sitter space
- Cosmological data suggest we are in increasingly lambda dominated universe
 World appears to be asymptotically de-Sitter

Pirsa: 06120032 Page 6/117

- Kodama State is one of the only known solutions to all constraints with well defined semi-classical interpretation
- Represents quantum (anti)de-Sitter space
- Cosmological data suggest we are in increasingly lambda dominated universe
 World appears to be asymptotically de-Sitter
- Exact form in connection and spin network basis

Pirsa: 06120032 Page 7/117

Pirsa: 06120032 Page 8/117

- Not normalizable under kinematical inner product
 - Not known to be under physical inner product
 - Linearized solutions not normalizable under linearized inner product

Pirsa: 06120032 Page 9/117

- Not normalizable under kinematical inner product
 - Not known to be under physical inner product
 - Linearized solutions not normalizable under linearized inner product
- Not invariant under CPT
 - Violates Lorentz invariance?
 - CPT inverted states have negative energy?

Pirsa: 06120032 Page 10/117

- Not normalizable under kinematical inner product
 - Not known to be under physical inner product
 - Linearized solutions not normalizable under linearized inner product
- Not invariant under CPT
 - Violates Lorentz invariance?
 - CPT inverted states have negative energy?
- Not invariant under large gauge transformation
 - (This could be a good thing)

Pirsa: 06120032 Page 11/117

- Not normalizable under kinematical inner product
 - Not known to be under physical inner product
 - Linearized solutions not normalizable under linearized inner product
- Not invariant under CPT
 - Violates Lorentz invariance?
 - CPT inverted states have negative energy?
- Not invariant under large gauge transformation
 - (This could be a good thing)
- Loop transform in complex variables not as rigorous as with real variables

Pirsa: 06120032 Page 12/117

- Not normalizable under kinematical inner product
 - Not known to be under physical inner product
 - Linearized solutions not normalizable under linearized inner product
- Not invariant under CPT
 - Violates Lorentz invariance?
 - CPT inverted states have negative energy?
- Not invariant under large gauge transformation
 - (This could be a good thing)
- Loop transform in complex variables not as rigorous as with real variables
- Reality constraint must be implemented

Pirsa: 06120032 Page 13/117

Outline

- Problems stem from complexification of phase space
 - •Complexification comes from choice of Immirzi parameter: $\beta = \pm i$
- Need to extend state to real values of Immirzi parameter
- •Can be done and answer is surprising:
 - Solves most of the problems associated with original
 - Opens up a large Hilbert space of states
- Existence of state stems from deep connection with underlying local de Sitter symmetry
 - Connection with Macdowell-Mansouri formalism
 - •Freedom from gauge fixing?

Pirsa: 06120032 Page 14/117

Review of Kodama State

Begin with left handed part of Lorentz group

$$so(3,1) \simeq su(2)_R \times su(2)_L$$

- Action is Einstein-Cartan of left handed curvature with cosmological constant
- Dynamical variables are complex su(2) connection and conjugate momentum

$$\begin{bmatrix} A_{(L)}^{ij}|_{P}, \Sigma_{jk}|_{Q} \end{bmatrix} = 2ik \, \delta_{jk}^{ij} \, \tilde{\delta}(P,Q)$$

$$A = \Gamma + iK \qquad \hat{A} = A$$

$$\Sigma = E \wedge E \qquad \hat{\Sigma} = 2k \frac{\delta}{\delta A}$$

Pirsa: 06120032

The Kodama State

Hamiltonian constraint annihilates Chern-Simons state:

$$\int_{\Sigma} *\Sigma \wedge \left(F - \frac{\Lambda}{3}\Sigma\right) \Psi[A] = 0 \qquad \frac{\delta}{\delta A} \int_{M} Y_{CS}[A] = 2F$$

$$\Psi[A] = Ne^{\frac{3}{4k\Lambda}\int Y_{CS}[A]}$$

- Solution is unique in Lorentzian signature
- Generally interpreted as de-Sitter space
- Reality conditions have yet to be implemented
 - Implemented through inner product
 - May change physical interpretation

Pirsa: 06120032 Page 16/117

Construction of Generalized State

- Start with arbitrary imaginary value of Immirzi parameter
- Imaginary values are measure of chiral asymmetry

$$S_{H} = \frac{1}{k} \int_{M} \star e \wedge e \wedge R + \frac{1}{\beta} e \wedge e \wedge R$$
$$= \frac{2}{k} \int_{M} \alpha_{L} \star \Sigma_{L} \wedge R_{L} + \alpha_{R} \star \Sigma_{R} \wedge R_{R}$$

$$\alpha_L + \alpha_R = 1$$

$$\beta = \frac{-i}{\alpha_L - \alpha_R}$$

- Begin quantization assuming left/right pieces are independent
- •Impose primary constraint later: $\Sigma_L = \Sigma_R \quad (= \frac{1}{2}E \wedge E)$

Pirsa: 06120032 Page 17/117

Construction of Generalized State

Canonical variables

$$\omega_{L/R} = \omega \pm iK$$

$$[\omega_R, \Sigma_L] = [\omega_L, \Sigma_R] = 0$$

$$[\omega_L, \Sigma_L] = -2k/\alpha_L \tilde{\delta}$$

$$[\omega_R, \Sigma_R] = +2k/\alpha_R \tilde{\delta}$$

Constraints split into left/right pieces

$$H = \alpha_L \int_M *\Sigma_L \wedge (F_L - \Lambda/3 \Sigma_L) + \{L \to R\}$$

Chiral asymmetric Chern Simons state is immediate

$$\Psi[\omega_L, \omega_R] = N e^{\frac{3}{4k\Lambda} \int (\alpha_L Y_{CS}[\omega_L] - \alpha_R Y_{CS}[\omega_R])}$$

•Need to impose constraint $C = \Sigma_L - \Sigma_R \sim 0$

Construction of Generalized State

- Constraint has several implications
- Vanishing 3-torsion is second class constraint

$$[H,C] \sim D_{\omega} * \Sigma \rightarrow T = 0 \quad (\omega = \Gamma[E])$$

Can define new variables

$$A_{\frac{1}{\beta}} = \Gamma + \frac{1}{\beta}K$$

$$A_{\beta} = \Gamma - \beta K$$

$$\Sigma = \Sigma_L + \Sigma_R$$

Constraint becomes

$$[A_{1/\beta}, C] = -4k \tilde{\delta}$$

$$[A_{\beta}, \Sigma] = -i2k\beta \tilde{\delta}$$

$$[A_{1/\beta}, \Sigma] = 0$$

$$[A_{\beta}, C] = 0$$

$$\frac{\delta}{\delta A_{1/\beta}} \Psi = 0 \rightarrow \Psi = \Psi[A_{\beta}]$$

Check that our state is in kernel of C

Pirsa: 06120032 Page 20/117

- Check that our state is in kernel of C
- Write state in new variables:

Pirsa: 06120032 Page 21/117

- Check that our state is in kernel of C
- Write state in new variables:

$$\Psi[A_{\beta}, A_{1/\beta}] = N \exp\left[\frac{3i}{4k\Lambda\beta^{3}} \int_{\Sigma} Y_{CS}[A_{\beta}] - (1+\beta^{2})(Y_{CS}[\Gamma] - 2\beta K \wedge R_{\Gamma})\right]$$

$$\Gamma = \Gamma[A_{\beta}, A_{1/\beta}]$$

$$K = (1/\beta)(\Gamma - A_{\beta})$$

Pirsa: 06120032 Page 22/117

- Check that our state is in kernel of C
- Write state in new variables:

$$\Psi[A_{\beta}, A_{1/\beta}] = N \exp\left[\frac{3i}{4k\Lambda\beta^3} \int_{\Sigma} Y_{CS}[A_{\beta}] - (1+\beta^2)(Y_{CS}[\Gamma] - 2\beta K \wedge R_{\Gamma})\right]$$

$$\frac{\delta}{\delta A_{1/\beta}} \Psi \neq 0 !!#@$\&!!$$

$$\Gamma = \Gamma[A_{\beta}, A_{1/\beta}]$$

$$K = (1/\beta)(\Gamma - A_{\beta})$$

Pirsa: 06120032 Page 23/117

- Check that our state is in kernel of C
- Write state in new variables:

$$\Psi[A_{\beta}, A_{1/\beta}] = N \exp\left[\frac{3i}{4k\Lambda\beta^3} \int_{\Sigma} Y_{CS}[A_{\beta}] - (1+\beta^2)(Y_{CS}[\Gamma] - 2\beta K \wedge R_{\Gamma})\right]$$

$$\frac{\delta}{\delta A_{1/\beta}} \Psi \neq 0 \quad !!#@\$\&!!$$

$$\Gamma = \Gamma[A_{\beta}, A_{1/\beta}]$$

$$K = (1/\beta)(\Gamma - A_{\beta})$$

•Recast the problem: $\Psi = \Psi[A_{\beta}, \Sigma]$

Pirsa: 06120032

- Check that our state is in kernel of C
- Write state in new variables:

$$\Psi[A_{\beta}, A_{1/\beta}] = N \exp\left[\frac{3i}{4k\Lambda\beta^3} \int_{\Sigma} Y_{CS}[A_{\beta}] - (1+\beta^2)(Y_{CS}[\Gamma] - 2\beta K \wedge R_{\Gamma})\right]$$

$$\frac{\delta}{\delta A_{1/\beta}} \Psi \neq 0 \quad !!#@\$\&!!$$

$$\Gamma = \Gamma[A_{\beta}, A_{1/\beta}]$$

$$K = (1/\beta)(\Gamma - A_{\beta})$$

- •Recast the problem: $\Psi = \Psi[A_{\beta}, \Sigma]$
- Solution
 - Analytically extend to real Immirzi
 - Reinterpret role of momentum dependence

Pirsa: 06120032

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_p[x] = \mathcal{N}exp[i\ x\cdot p - i\ E\ t]$$

Pirsa: 06120032 Page 26/117

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_p[x] = \mathcal{N}exp[i\ x\cdot p - i\ E\ t]$$

$$\varepsilon = \frac{3}{4k\Lambda\beta^3}$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i\ \alpha\int A\wedge R_{\Gamma} - i\ \epsilon\ Y_{CS}[A]\right]$$

Pirsa: 06120032 Page 27/117

- Check that our state is in kernel of C
- Write state in new variables:

$$\Psi[A_{\beta}, A_{1/\beta}] = N \exp\left[\frac{3i}{4k\Lambda\beta^3} \int_{\Sigma} Y_{CS}[A_{\beta}] - (1+\beta^2)(Y_{CS}[\Gamma] - 2\beta K \wedge R_{\Gamma})\right]$$

$$\frac{\delta}{\delta A_{1/\beta}} \Psi \neq 0 \quad !!#@\$\&!!$$

$$\Gamma = \Gamma[A_{\beta}, A_{1/\beta}]$$

$$K = (1/\beta)(\Gamma - A_{\beta})$$

- •Recast the problem: $\Psi = \Psi[A_{\beta}, \Sigma]$
- Solution
 - Analytically extend to real Immirzi
 - Reinterpret role of momentum dependence

Pirsa: 06120032

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_p[x] = \mathcal{N}exp[i\ x\cdot p - i\ E\ t]$$

$$\varepsilon = \frac{3}{4k\Lambda\beta^3}$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i\ \alpha\int A\wedge R_{\Gamma} - i\ \varepsilon\ Y_{CS}[A]\right]$$

Pirsa: 06120032 Page 29/117

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_{p}[x] = \mathcal{N}exp[i \ x \cdot p - i \ E \ t]$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i \ \alpha \int A \wedge R_{\Gamma} - i \ \epsilon \ Y_{CS}[A]\right]$$

$$\varepsilon = \frac{3}{4k\Lambda\beta^{3}}$$

Infinite set of states parameterized by curvature

Pirsa: 06120032 Page 30/117

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_p[x] = \mathcal{N}exp[i \ x \cdot p - i \ E \ t]$$

$$\varepsilon = \frac{3}{4k\Lambda\beta^3}$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i \ \alpha \int A \wedge R_{\Gamma} - i \ \varepsilon \ Y_{CS}[A]\right]$$

Pirsa: 06120032 Page 31/117

- Check that our state is in kernel of C
- Write state in new variables:

$$\Psi[A_{\beta}, A_{1/\beta}] = N \exp\left[\frac{3i}{4k\Lambda\beta^3} \int_{\Sigma} Y_{CS}[A_{\beta}] - (1+\beta^2)(Y_{CS}[\Gamma] - 2\beta K \wedge R_{\Gamma})\right]$$

$$\frac{\delta}{\delta A_{1/\beta}} \Psi \neq 0 \quad !!#@\$\&!!$$

$$\Gamma = \Gamma[A_{\beta}, A_{1/\beta}]$$

$$K = (1/\beta)(\Gamma - A_{\beta})$$

- •Recast the problem: $\Psi = \Psi[A_{\beta}, \Sigma]$
- Solution
 - Analytically extend to real Immirzi
 - Reinterpret role of momentum dependence

Pirsa: 06120032

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_p[x] = \mathcal{N}exp[i\ x\cdot p - i\ E\ t]$$

$$\varepsilon = \frac{3}{4k\Lambda\beta^3}$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i\ \alpha\int A\wedge R_{\Gamma} - i\ \varepsilon\ Y_{CS}[A]\right]$$

Pirsa: 06120032 Page 33/117

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_p[x] = \mathcal{N}exp[i\ x \cdot p - i\ E\ t]$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i\ \alpha \int A \wedge R_{\Gamma} - i\ \epsilon\ Y_{CS}[A]\right]^{\alpha = \frac{3(1+\beta)}{2k\Lambda\beta^3}}$$

Infinite set of states parameterized by curvature

Pirsa: 06120032 Page 34/117

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_{p}[x] = \mathcal{N}exp[i \ x \cdot p - i \ E \ t]$$

$$\varepsilon = \frac{3}{4k\Lambda\beta^{3}}$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i \ \alpha \int A \wedge R_{\Gamma} - i \ \epsilon \ Y_{CS}[A]\right]$$

- Infinite set of states parameterized by curvature
- Expect different curvature states to be orthogonal

$$\langle p'|p\rangle \sim \int dx \ e^{-ix\cdot(p'-p)} = \delta(p'-p)$$

Pirsa: 06120032 Page 35/117

Generalized Kodama state is like NR momentum state

$$\langle x|p\rangle = \Psi_p[x] = \mathcal{N}exp[i \ x \cdot p - i \ E \ t]$$

$$\langle A|R_{\Gamma}\rangle = \Psi_{R_{\Gamma}}[A] = \mathcal{P}exp\left[i \ \alpha \int A \wedge R_{\Gamma} - i \ \epsilon \ Y_{CS}[A]\right]$$

$$\varepsilon = \frac{3}{4k\Lambda\beta^3}$$

- Infinite set of states parameterized by curvature
- Expect different curvature states to be orthogonal

$$\langle p'|p\rangle \sim \int dx \ e^{-ix\cdot(p'-p)} = \delta(p'-p)$$

 $\langle R'|R\rangle \sim \int \mathcal{D}A \ e^{-i\alpha\int A\wedge(R'-R)} = \delta(R'-R)$

Pirsa: 06120032 Page 36/117

Gauge Invariant Inner Product

- Need to address gauge invariance of inner product
- Kodama States are not invariant under SU(2) or diffeos
 - Curvature acts as "background" structure
 - Familiar from spin network states

$$U_{\phi}\Psi_{\Gamma}[A] = \Psi_{\Gamma}[\phi(A)] = \Psi_{\phi^{-1}(\Gamma)}[A] \qquad \phi = \phi_{\bar{N}}$$

$$U_{\phi}\Psi_{R}[A] = \Psi_{R}[\phi(A)] = \Psi_{\phi^{-1}(R)}[A] \qquad \phi = \phi_{\{\bar{N},g\}}$$

•Allows us to define gauge invariant inner product:

$$\langle R'|R\rangle_{kin} = \int \mathcal{D}\phi \ \langle U_{\phi^{-1}}\Psi_{R'}|\Psi_{R}\rangle = \delta(\mathcal{R}'-\mathcal{R})$$

Pirsa: 06120032 Page 37/117

Progress Report

Normalizability
Invariance Under Large Gauge T-forms
Solve Hamiltonian Constraint
Semi-Classical Interpretation
CPT Invariance
Negative Energies
True Inner Product and MM Gravity
Freedom from Gauge Fixing

Pirsa: 06120032 Page 38/117

Pirsa: 06120032 Page 39/117

•Momentum operator in momentum basis:

$$\hat{p} = \int dp \ p |\Psi_p\rangle\langle\Psi_p| \rightarrow \hat{p}|\Psi_p\rangle = p|\Psi_p\rangle$$

Pirsa: 06120032 Page 40/117

Momentum operator in momentum basis:

$$\hat{p} = \int dp \ p |\Psi_p\rangle\langle\Psi_p| \rightarrow \hat{p}|\Psi_p\rangle = p|\Psi_p\rangle$$

- Similarly can construct gauge covariant curvature operator
 - Introduce test function lambda
 - Integrate over all curvatures and gauges

Pirsa: 06120032 Page 41/117

Momentum operator in momentum basis:

$$\hat{p} = \int dp \ p |\Psi_p\rangle\langle\Psi_p| \rightarrow \hat{p}|\Psi_p\rangle = p|\Psi_p\rangle$$

- Similarly can construct gauge covariant curvature operator
 - Introduce test function lambda
 - Integrate over all curvatures and gauges

$$\int_{\Sigma} \lambda \wedge \hat{R}_{\Gamma} = \int \mathcal{D}\phi \mathcal{D}\Gamma' \left[\left(\int_{\Sigma} \lambda \wedge \phi R'_{\Gamma'} \right) |\Psi_{\phi R'}\rangle \langle \Psi_{\phi R'}| \right]$$

Pirsa: 06120032 Page 42/117

Momentum operator in momentum basis:

$$\hat{p} = \int dp \ p |\Psi_p\rangle\langle\Psi_p| \rightarrow \hat{p}|\Psi_p\rangle = p|\Psi_p\rangle$$

- Similarly can construct gauge covariant curvature operator
 - Introduce test function lambda
 - Integrate over all curvatures and gauges

$$\int_{\Sigma} \lambda \wedge \hat{R}_{\Gamma} = \int \mathcal{D}\phi \mathcal{D}\Gamma' \left[\left(\int_{\Sigma} \lambda \wedge \phi R'_{\Gamma'} \right) |\Psi_{\phi R'}\rangle \langle \Psi_{\phi R'}| \right]$$

$$\int_{\Sigma} \lambda \wedge \hat{R}_{\Gamma} |\Psi_{R}\rangle = \int_{\Sigma} \lambda \wedge R_{\Gamma} |\Psi_{R}\rangle$$

Pirsa: 06120032 Page 43/117

Pirsa: 06120032 Page 44/117

Can now address issue of Hamiltonian constraint

Pirsa: 06120032 Page 45/117

- Can now address issue of Hamiltonian constraint
- Standard representation of Hamiltonian constraint:

$$H = \int_{\Sigma} *\Sigma \wedge \left(F + (1 + \beta^2) \left(\frac{1}{\beta} D_{\Gamma} K - K \wedge K \right) - \frac{\Lambda}{3} \Sigma \right)$$

Pirsa: 06120032 Page 46/117

- Can now address issue of Hamiltonian constraint
- Standard representation of Hamiltonian constraint:

$$H = \int_{\Sigma} *\Sigma \wedge \left(F + (1 + \beta^2) \left(\frac{1}{\beta} D_{\Gamma} K - K \wedge K \right) - \frac{\Lambda}{3} \Sigma \right)$$

"Ricci minus Ficci" representation

$$H = \int_{\Sigma} *\Sigma \wedge \left((1 + \frac{1}{\beta^2}) R_{\Gamma} - \frac{1}{\beta^2} F - \frac{\Lambda}{3} \Sigma \right)$$

Pirsa: 06120032 Page 47/117

- Can now address issue of Hamiltonian constraint
- Standard representation of Hamiltonian constraint:

$$H = \int_{\Sigma} *\Sigma \wedge \left(F + (1 + \beta^2) \left(\frac{1}{\beta} D_{\Gamma} K - K \wedge K \right) - \frac{\Lambda}{3} \Sigma \right)$$

"Ricci minus Ficci" representation

$$H = \int_{\Sigma} *\Sigma \wedge \left((1 + \frac{1}{\beta^2}) R_{\Gamma} - \frac{1}{\beta^2} F - \frac{\Lambda}{3} \Sigma \right)$$

Using our definition of curvature operator:

Pirsa: 06120032 Page 48/117

- Can now address issue of Hamiltonian constraint
- Standard representation of Hamiltonian constraint:

$$H = \int_{\Sigma} *\Sigma \wedge \left(F + (1 + \beta^2) \left(\frac{1}{\beta} D_{\Gamma} K - K \wedge K \right) - \frac{\Lambda}{3} \Sigma \right)$$

"Ricci minus Ficci" representation

$$H = \int_{\Sigma} *\Sigma \wedge \left((1 + \frac{1}{\beta^2}) R_{\Gamma} - \frac{1}{\beta^2} F - \frac{\Lambda}{3} \Sigma \right)$$

Using our definition of curvature operator:

$$\hat{H} \Psi_R[A] = 0 \quad !!!!!$$

Progress Report

X	Normalizability
×	Invariance Under Large Gauge T-forms
	Solve Hamiltonian Constraint
	Semi-Classical Interpretation
	CPT Invariance
	Negative Energies
	True Inner Product and MM Gravity
	Freedom from Gauge Fixing

Pirsa: 06120032 Page 51/117

- •Do states represent something like de-Sitter spacetime?
 - Yes!
 - States are WKB for De-Sitter spacetime and beyond
- •Started with Holst action:

$$S_H = \frac{1}{k} \int_M \star e \wedge e \wedge R + \frac{1}{\beta} e \wedge e \wedge R - \frac{\lambda}{6} \star e \wedge e \wedge e \wedge e \wedge e$$

•All solutions to vacuum field equations look like this:

$$R = \frac{\lambda}{3}e \wedge e + C \qquad T^I = 0$$

Plug this back into action to get WKB state

$$\Psi_{WKB} \simeq e^{iS_0}$$

- Assume Weyl is small (keep only first order terms)
- Action becomes topological

$$S_0 \simeq \frac{3}{2k\lambda} \int_M \star R \wedge R + \frac{1}{\beta} R \wedge R$$

- Take boundary of manifold to be spacelike hypersurface
- Set torsion to zero, rewrite in terms of A

$$S_0 \simeq -\frac{3}{4k\lambda} \int_{\partial M=\Sigma} Y_{CS}[A] - (1+\beta^2)(Y_{CS}[\Gamma] - 2\beta K \wedge R)$$

•We have an exact WKB state: $\Psi_R[A] = Ne^{iS_0[A]}$

$$\Psi_R[A] = Ne^{iS_0[A]}$$

- •Do states represent something like de-Sitter spacetime?
 - Yes!
 - States are WKB for De-Sitter spacetime and beyond
- Started with Holst action:

$$S_H = \frac{1}{k} \int_M \star e \wedge e \wedge R + \frac{1}{\beta} e \wedge e \wedge R - \frac{\lambda}{6} \star e \wedge e \wedge e \wedge e$$

•All solutions to vacuum field equations look like this:

$$R = \frac{\lambda}{3}e \wedge e + C \qquad T^I = 0$$

Plug this back into action to get WKB state

$$\Psi_{WKB} \simeq e^{iS_0}$$

- Assume Weyl is small (keep only first order terms)
- Action becomes topological

$$S_0 \simeq \frac{3}{2k\lambda} \int_M \star R \wedge R + \frac{1}{\beta} R \wedge R$$

- Take boundary of manifold to be spacelike hypersurface
- Set torsion to zero, rewrite in terms of A

$$S_0 \simeq -\frac{3}{4k\lambda} \int_{\partial M=\Sigma} Y_{CS}[A] - (1+\beta^2)(Y_{CS}[\Gamma] - 2\beta K \wedge R)$$

•We have an exact WKB state: $\Psi_R[A] = Ne^{iS_0[A]}$

$$\Psi_R[A] = Ne^{iS_0[A]}$$

Regaining de-Sitter spacetime

- Have shown set of states contains small perturbations to de-Sitter
- •Which one is de-Sitter?
- There is a slicing of de-Sitter spacetime in which threecurvature is flat and spatial topology is R³
- Kodama State takes special form when R=0: take this to be de-Sitter solution

$$\langle A|\Psi_{dS}\rangle = \Psi_{R=0} = \mathcal{P}\exp\left[-\frac{3i}{4k\lambda\beta^3}\int_{\mathbb{R}^3}Y_{CS}[A]\right]$$

Pirsa: 06120032 Page 56/117

Progress Report

Normalizability
Invariance Under Large Gauge T-forms
Solve Hamiltonian Constraint
Semi-Classical Interpretation
CPT Invariance
Negative Energies
True Inner Product and MM Gravity
Freedom from Gauge Fixing

Pirsa: 06120032 Page 57/117

Evidence of Cosmological Horizon

q-deformed loop expansion of state is well known

$$\langle \Gamma | \Psi_{dS} \rangle = \sum_{\Gamma} K_{\Gamma}(q) | \Gamma \rangle$$

•Edges labeled by representations of $SU_q(2)$ with

$$q = e^{\frac{2\pi i}{\kappa + 2}} \qquad \kappa = \frac{3}{2G\lambda\beta^3}$$

At roots of unity, spectrum of area operator is bounded

$$A = 8\pi G\beta \sqrt{j(j+1)} \longrightarrow A_{max} \simeq 2\pi \left(\frac{r_0}{\beta}\right)^2$$

 Immirzi Parameter appears to be significant at very large scales as well as very small scales

small areas
$$\sim \beta$$
 large areas $\sim \frac{1}{\beta^2}$

Pirsa: 06120032

Progress Report

×	Normalizability
×	Invariance Under Large Gauge T-forms
×	Solve Hamiltonian Constraint
	Semi-Classical Interpretation
	CPT Invariance
	Negative Energies
	True Inner Product and MM Gravity
	Freedom from Gauge Fixing

Pirsa: 06120032 Page 59/117

CPT Invariance

- C, P, and T have action in both base manifold and SO(3,1) representation space
- Work with mixture of 3D and 4D forms:

$$\Psi_{R}[A] = N \exp\left[\frac{3i}{2k\lambda} \int_{M} \star R \wedge R + \frac{1}{\beta} R \wedge R\right]$$

$$= N \exp\left[\frac{3i}{2k\lambda} \int_{\Sigma} Y[\omega] + \frac{1}{\beta} \star Y[\omega]\right]$$

$$Y[\omega] = \omega \wedge d\omega + \frac{\lambda}{3} \omega \wedge \omega \wedge \omega \quad \text{(No Trace)}$$

•State uses both inner products:

$$\langle A,B\rangle = Tr(AB) \qquad \langle A,B\rangle_{\star} = Tr(\star AB) \qquad \star = -i\gamma_5$$

Pirsa: 06120032

Progress Report

X	Normalizability
×	Invariance Under Large Gauge T-forms
X	Solve Hamiltonian Constraint
X	Semi-Classical Interpretation
	CPT Invariance
	Negative Energies
	True Inner Product and MM Gravity
	Freedom from Gauge Fixing

Pirsa: 06120032 Page 61/117

CPT Invariance

- C, P, and T have action in both base manifold and SO(3,1) representation space
- Work with mixture of 3D and 4D forms:

$$\Psi_{R}[A] = N \exp \left[\frac{3i}{2k\lambda} \int_{M} \star R \wedge R + \frac{1}{\beta} R \wedge R \right]$$

$$= N \exp \left[\frac{3i}{2k\lambda} \int_{\Sigma} Y[\omega] + \frac{1}{\beta} \star Y[\omega] \right]$$

$$Y[\omega] = \omega \wedge d\omega + \frac{\lambda}{3} \omega \wedge \omega \wedge \omega \quad \text{(No Trace)}$$

•State uses both inner products:

$$\langle A,B\rangle = Tr(AB) \qquad \langle A,B\rangle_{\star} = Tr(\star AB) \qquad \star = -i\gamma_5$$

Pirsa: 06120032 Page 62/117

CPT

 States are CPT invariant for real values of the Immirzi parameter

$$\Psi_{\beta} \xrightarrow{\mathcal{C}} \Psi_{\beta} \xrightarrow{\mathcal{P}} \Psi_{-\beta} \xrightarrow{\mathcal{T}} \Psi_{\beta}$$

$$\mathcal{CPT}(\Psi_{\beta}) = \Psi_{\beta}$$

Pirsa: 06120032 Page 63/117

Progress Report

X	Normalizability
×	Invariance Under Large Gauge T-forms
×	Solve Hamiltonian Constraint
X	Semi-Classical Interpretation
	CPT Invariance
	Negative Energies
	True Inner Product and MM Gravity
	Freedom from Gauge Fixing

Pirsa: 06120032 Page 64/117

True Inner Product: MM-Gravity

- Kinematical inner product unlikely to be true inner product
- •True inner product defined by path integral methods:

$$\begin{split} \langle \Psi_{R'}, \Sigma_{2} | \Psi_{R}, \Sigma_{1} \rangle_{true} &= \langle \Psi_{R'} | U(\Sigma_{2}, \Sigma_{1}) | \Psi_{R} \rangle \\ &= \int \mathcal{D}A_{2} \mathcal{D}A_{1} \; \Psi_{R'}^{*} [A_{2}] \Psi_{R}[A_{1}] \int_{A_{1}}^{A_{2}} \mathcal{D}\omega \mathcal{D}e \; e^{iS_{EC}} \\ &= \int_{E_{1}}^{E_{2}} \mathcal{D}\omega \mathcal{D}e \; e^{-i\frac{3}{2k\lambda} \int_{M} \star R \wedge R + \frac{1}{\beta} R \wedge R} e^{iS_{EC+\beta}} \end{split}$$

Claim this is related to Macdowell-Mansouri Gravity

Pirsa: 06120032 Page 65/117

Adding Immirzi to MM-Gravity

Macdowell-Mansouri begins with de-Sitter connection

$$\Lambda = \omega + \frac{i}{r_0}e$$

$$r_0 = \sqrt{\lambda/3}$$

$$F = d\Lambda + \Lambda \wedge \Lambda = R + \frac{i}{r_0}T - \frac{\lambda}{3}e \wedge e$$

MM action is

$$S_{MM} = -\frac{3}{2k\lambda} \int_{M} \star F \wedge F = S_{EC+\lambda} - \frac{3}{2k\lambda} \int_{M} \star R \wedge R$$

•Adding Immirzi to Einstein Cartan means perturbing curvature by its dual: $R \to R - \frac{1}{\beta} \star R$ $S_{EC} \to S_{EC+\beta}$

•Try this on MM action: $F \to F - \theta \star F$ $S_{MM} \to ??$

Adding Immirzi to MM Action

Action becomes:

$$S_{MM} \to S_{MM+\beta} = \alpha' \int_M \star (F - \theta \star F) \wedge (F - \theta \star F)$$

For appropriate choice of constants we have

$$S_{MM+\beta} = S_{EC+\lambda+\beta} - \frac{3}{2k\lambda} \int_{M} \star R \wedge R + \frac{1}{\beta} R \wedge R$$

•This has following implication for inner product:

$$\begin{split} \langle \Psi_{R'}, \Sigma_{2} | \Psi_{R}, \Sigma_{1} \rangle &= \int_{E_{2}}^{E_{1}} \mathcal{D}\omega \mathcal{D}e \ e^{i\frac{-3}{2k\lambda}\int_{M} \star R \wedge R + \frac{1}{\beta}R \wedge R} \ e^{iS_{EC + \lambda + \beta}} \\ &= \int_{E_{1}}^{E_{2}} \mathcal{D}\omega \mathcal{D}e \ e^{iS_{MM + \beta}} \end{split}$$

Pirsa: 06120032 Page 67/117

Adding Immirzi to MM-Gravity

Macdowell-Mansouri begins with de-Sitter connection

$$\Lambda = \omega + \frac{i}{r_0}e$$

$$r_0 = \sqrt{\lambda/3}$$

$$F = d\Lambda + \Lambda \wedge \Lambda = R + \frac{i}{r_0}T - \frac{\lambda}{3}e \wedge e$$

MM action is

$$S_{MM} = -\frac{3}{2k\lambda} \int_{M} \star F \wedge F = S_{EC+\lambda} - \frac{3}{2k\lambda} \int_{M} \star R \wedge R$$

•Adding Immirzi to Einstein Cartan means perturbing curvature by its dual: $R \to R - \frac{1}{\beta} \star R$ $S_{EC} \to S_{EC+\beta}$

•Try this on MM action: $F \to F - \theta \star F$ $S_{MM} \to ??$

Adding Immirzi to MM Action

Action becomes:

$$S_{MM} \to S_{MM+\beta} = \alpha' \int_M \star (F - \theta \star F) \wedge (F - \theta \star F)$$

For appropriate choice of constants we have

$$S_{MM+\beta} = S_{EC+\lambda+\beta} - \frac{3}{2k\lambda} \int_{M} \star R \wedge R + \frac{1}{\beta} R \wedge R$$

•This has following implication for inner product:

$$\langle \Psi_{R'}, \Sigma_{2} | \Psi_{R}, \Sigma_{1} \rangle = \int_{E_{2}}^{E_{1}} \mathcal{D}\omega \mathcal{D}e \ e^{i\frac{-3}{2k\lambda}\int_{M} \star R \wedge R + \frac{1}{\beta}R \wedge R} \ e^{iS_{EC+\lambda+\beta}}$$

$$= \int_{E_{1}}^{E_{2}} \mathcal{D}\omega \mathcal{D}e \ e^{iS_{MM+\beta}}$$
 $\frac{\partial M}{\partial M} = \Sigma_{2} \cup \Sigma_{1}$

Pirsa: 06120032 Page 69/117

True Inner Product: MM-Gravity

- Kinematical inner product unlikely to be true inner product
- •True inner product defined by path integral methods:

$$\begin{split} \langle \Psi_{R'}, \Sigma_{2} | \Psi_{R}, \Sigma_{1} \rangle_{true} &= \langle \Psi_{R'} | U(\Sigma_{2}, \Sigma_{1}) | \Psi_{R} \rangle \\ &= \int \mathcal{D}A_{2} \mathcal{D}A_{1} \; \Psi_{R'}^{*} [A_{2}] \Psi_{R}[A_{1}] \int_{A_{1}}^{A_{2}} \mathcal{D}\omega \mathcal{D}e \; e^{iS_{EC}} \\ &= \int_{E_{1}}^{E_{2}} \mathcal{D}\omega \mathcal{D}e \; e^{-i\frac{3}{2k\lambda} \int_{M} \star R \wedge R + \frac{1}{\beta} R \wedge R} e^{iS_{EC+\beta}} \end{split}$$

Claim this is related to Macdowell-Mansouri Gravity

Pirsa: 06120032 Page 70/117

Adding Immirzi to MM Action

•Action becomes:

$$S_{MM} \to S_{MM+\beta} = \alpha' \int_M \star (F - \theta \star F) \wedge (F - \theta \star F)$$

For appropriate choice of constants we have

$$S_{MM+\beta} = S_{EC+\lambda+\beta} - \frac{3}{2k\lambda} \int_{M} \star R \wedge R + \frac{1}{\beta} R \wedge R$$

•This has following implication for inner product:

$$\langle \Psi_{R'}, \Sigma_{2} | \Psi_{R}, \Sigma_{1} \rangle = \int_{E_{2}}^{E_{1}} \mathcal{D}\omega \mathcal{D}e \ e^{i\frac{-3}{2k\lambda}\int_{M} \star R \wedge R + \frac{1}{\beta}R \wedge R} \ e^{iS_{EC} + \lambda + \beta}$$

$$= \int_{E_{1}}^{E_{2}} \mathcal{D}\omega \mathcal{D}e \ e^{iS_{MM} + \beta}$$

$$\frac{\partial M}{\partial M} = \Sigma_{2} \cup \Sigma_{1}$$

Pirsa: 06120032 Page 71/117

Conclusions on MM Relation

- Inner product of two Kodama states equivalent to Hawking sum over histories in MM gravity
 - Sum over histories fixes two geometries on end caps
 - Geometries fix R' and R
- Difference between EC gravity and MM gravity: MM gravity has Kodama states "built in"
- This is similar to two formulations of CP problem in Yang-Mills

States have theta-ambiguity or Action has theta-ambiguity

Pirsa: 06120032 Page 72/117

Progress Report

Normalizability
Invariance Under Large Gauge T-forms
Solve Hamiltonian Constraint
Semi-Classical Interpretation
CPT Invariance
Negative Energies
True Inner Product and MM Gravity
Freedom from Gauge Fixing

Pirsa: 06120032 Page 73/117

Progress Report

X	Normalizability
×	Invariance Under Large Gauge T-forms
×	Solve Hamiltonian Constraint
X	Semi-Classical Interpretation
×	CPT Invariance
??	Negative Energies
	True Inner Product and MM Gravity
	Freedom from Gauge Fixing

Pirsa: 06120032 Page 74/117

Freedom from Time Gauge?

- Freedom from gauge fixing would be nice for a variety of reasons
- The WKB state prior to gauge fixing is suggestive

$$\Psi[\omega] = \mathcal{P} \exp \left[\frac{3i}{2k\lambda} \int_{\Sigma} \star Y[\omega] + \frac{1}{\beta} Y[\omega] \right]$$

- Can one obtain this state from canonical construction without gauge fixing?
- We can obtain a slightly modified version

Pirsa: 06120032 Page 75/117

Begin with a modified Holst action

Pirsa: 06120032 Page 76/117

Begin with a modified Holst action

$$S = \frac{1}{k} \int_{M} \star e \wedge e \wedge R - \frac{1}{2\beta} T \wedge T$$

Pirsa: 06120032 Page 77/117

Begin with a modified Holst action

$$S = \frac{1}{k} \int_{M} \star e \wedge e \wedge R - \frac{1}{2\beta} T \wedge T$$

$$\frac{1}{\beta} e \wedge e \wedge R - \frac{1}{2\beta} d(e \wedge T)$$

Pirsa: 06120032 Page 78/117

Begin with a modified Holst action

$$S = \frac{1}{k} \int_{M} \star e \wedge e \wedge R - \frac{1}{2\beta} T \wedge T$$

$$\frac{1}{\beta} e \wedge e \wedge R - \frac{1}{2\beta} d(e \wedge T)$$

Dynamical variables are connection and frame

Position	Momentum	Primary Constraint
ω	$\Pi_{\omega} = \frac{1}{k} \Sigma$	$\Sigma = \star e \wedge e$
e	$\Pi_e = -\frac{1}{k\beta}T$	T = De

Pirsa: 06120032

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \delta_{e} A \wedge \delta_{T} B - (A \leftrightarrow B)$$

Pirsa: 06120032 Page 80/117

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \delta_{e} A \wedge \delta_{T} B - (A \leftrightarrow B)$$

Naïve Constraints (prior to primary constraints) are

Pirsa: 06120032 Page 81/117

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \, \delta_{e} A \wedge \delta_{T} B \, - (A \leftrightarrow B)$$

Naïve Constraints (prior to primary constraints) are

$$C_D = \frac{1}{k} \int_{\Sigma} \mathcal{L}_{\bar{N}} \mathbf{\omega} \wedge \mathbf{\Sigma} - \frac{1}{\beta} \mathcal{L}_{\bar{N}} e \wedge T \qquad \qquad \bar{t} = \bar{\eta} + \bar{N}$$

Pirsa: 06120032 Page 82/117

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \, \delta_{e} A \wedge \delta_{T} B \, - (A \leftrightarrow B)$$

Naïve Constraints (prior to primary constraints) are

$$C_D = \frac{1}{k} \int_{\Sigma} \mathcal{L}_{\bar{N}} \omega \wedge \Sigma - \frac{1}{\beta} \mathcal{L}_{\bar{N}} e \wedge T \qquad \qquad \bar{t} = \bar{\eta} + \bar{N}$$

$$C_G = -\frac{1}{k} \int_{\Sigma} D\alpha \wedge \Sigma + \frac{1}{\beta} [\alpha, e] \wedge T \qquad \qquad \alpha \in so(3, 1)$$

Pirsa: 06120032 Page 83/117

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \delta_{e} A \wedge \delta_{T} B - (A \leftrightarrow B)$$

Naïve Constraints (prior to primary constraints) are

$$C_D = \frac{1}{k} \int_{\Sigma} \mathcal{L}_{\bar{N}} \omega \wedge \Sigma - \frac{1}{\beta} \mathcal{L}_{\bar{N}} e \wedge T \qquad \qquad \bar{t} = \bar{\eta} + \bar{N}$$

$$C_G = -\frac{1}{k} \int_{\Sigma} D\alpha \wedge \Sigma + \frac{1}{\beta} [\alpha, e] \wedge T \qquad \qquad \alpha \in so(3, 1)$$

$$C_H = \frac{1}{k} \int_{\Sigma} [\eta, e] \wedge (\star R - \frac{\lambda}{3} \Sigma) + \frac{1}{\beta} D\eta \wedge T \qquad \qquad \eta \equiv e(\bar{\eta})$$

Pirsa: 06120032 Page 84/117

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

Pirsa: 06120032 Page 85/117

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$

Pirsa: 06120032 Page 86/117

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$
$$\{C_H(\eta_1), C_H(\eta_2)\} = -\frac{\lambda}{3} C_G([\eta_1, \eta_2])$$

Pirsa: 06120032 Page 87/117

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$

 $\{C_H(\eta_1), C_H(\eta_2)\} = -\frac{\lambda}{3} C_G([\eta_1, \eta_2])$
 $\{C_G(\alpha), C_H(\eta)\} = C_H([\alpha, \eta])$

Pirsa: 06120032 Page 88/117

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$

$$\{C_H(\eta_1), C_H(\eta_2)\} = -\frac{\lambda}{3} C_G([\eta_1, \eta_2])$$

$$\{C_G(\alpha), C_H(\eta)\} = C_H([\alpha, \eta])$$

 Naïve constraints close, and algebra is isomorphic to de Sitter Lie algebra with diffeomorphisms!

Pirsa: 06120032 Page 89/117

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$

$$\{C_H(\eta_1), C_H(\eta_2)\} = -\frac{\lambda}{3} C_G([\eta_1, \eta_2])$$

$$\{C_G(\alpha), C_H(\eta)\} = C_H([\alpha, \eta])$$

 Naïve constraints close, and algebra is isomorphic to de Sitter Lie algebra with diffeomorphisms!

$$\mathcal{A}_C \simeq Lie(dS_4 \rtimes Diff_3)$$

Pirsa: 06120032 Page 90/117

Solving Quantum Constraints

 In connection-tetrad representation define the operators

$$\hat{\omega} = \omega$$
 $\hat{\Sigma} = -ik\frac{\delta}{\delta\omega}$ $\Psi = \Psi[\omega, e]$ $\hat{e} = e$ $\hat{T} = ik\beta\frac{\delta}{\delta e}$

 Can solve all of the naïve quantum constraints by a version of the Kodama state

$$\Psi[\boldsymbol{\omega}, e] = \exp\left[\frac{3i}{2k\lambda} \int_{\Sigma} \star Y[\boldsymbol{\omega}] + \frac{1}{\beta} Y[\boldsymbol{\omega}] - \frac{\lambda}{3\beta} e \wedge De\right]$$
$$\hat{C}_{\{H,G,D\}} \Psi = 0$$

Pirsa: 06120032

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$

$$\{C_H(\eta_1), C_H(\eta_2)\} = -\frac{\lambda}{3} C_G([\eta_1, \eta_2])$$

$$\{C_G(\alpha), C_H(\eta)\} = C_H([\alpha, \eta])$$

 Naïve constraints close, and algebra is isomorphic to de Sitter Lie algebra with diffeomorphisms!

$$\mathcal{A}_C \simeq Lie(dS_4 \rtimes Diff_3)$$

Pirsa: 06120032 Page 92/117

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \delta_{e} A \wedge \delta_{T} B - (A \leftrightarrow B)$$

Naïve Constraints (prior to primary constraints) are

$$C_D = \frac{1}{k} \int_{\Sigma} \mathcal{L}_{\bar{N}} \omega \wedge \Sigma - \frac{1}{\beta} \mathcal{L}_{\bar{N}} e \wedge T \qquad \bar{t} = \bar{\eta} + \bar{N}$$

$$C_G = -\frac{1}{k} \int_{\Sigma} D\alpha \wedge \Sigma + \frac{1}{\beta} [\alpha, e] \wedge T \qquad \alpha \in so(3, 1)$$

$$C_H = \frac{1}{k} \int_{\Sigma} [\eta, e] \wedge (\star R - \frac{\lambda}{3} \Sigma) + \frac{1}{\beta} D\eta \wedge T \qquad \eta \equiv e(\bar{\eta})$$

Pirsa: 06120032 Page 93/117

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$

$$\{C_H(\eta_1), C_H(\eta_2)\} = -\frac{\lambda}{3} C_G([\eta_1, \eta_2])$$

$$\{C_G(\alpha), C_H(\eta)\} = C_H([\alpha, \eta])$$

 Naïve constraints close, and algebra is isomorphic to de Sitter Lie algebra with diffeomorphisms!

$$\mathcal{A}_C \simeq Lie(dS_4 \rtimes Diff_3)$$

Pirsa: 06120032 Page 94/117

Solving Quantum Constraints

 In connection-tetrad representation define the operators

$$\hat{\omega} = \omega$$
 $\hat{\Sigma} = -ik\frac{\delta}{\delta\omega}$ $\Psi = \Psi[\omega, e]$ $\hat{e} = e$ $\hat{T} = ik\beta\frac{\delta}{\delta e}$

 Can solve all of the naïve quantum constraints by a version of the Kodama state

$$\Psi[\boldsymbol{\omega}, e] = \exp\left[\frac{3i}{2k\lambda} \int_{\Sigma} \star Y[\boldsymbol{\omega}] + \frac{1}{\beta} Y[\boldsymbol{\omega}] - \frac{\lambda}{3\beta} e \wedge De\right]$$
$$\hat{C}_{\{H,G,D\}} \Psi = 0$$

Pirsa: 06120032

 Need to compute constraint algebra. Start with Gauss and Hamiltonian constraints:

$$\{C_G(\alpha_1), C_G(\alpha_2)\} = C_G([\alpha_1, \alpha_2])$$

$$\{C_H(\eta_1), C_H(\eta_2)\} = -\frac{\lambda}{3} C_G([\eta_1, \eta_2])$$

$$\{C_G(\alpha), C_H(\eta)\} = C_H([\alpha, \eta])$$

 Naïve constraints close, and algebra is isomorphic to de Sitter Lie algebra with diffeomorphisms!

$$\mathcal{A}_C \simeq Lie(dS_4 \rtimes Diff_3)$$

Pirsa: 06120032 Page 96/117

Solving Quantum Constraints

 In connection-tetrad representation define the operators

$$\hat{\omega} = \omega$$
 $\hat{\Sigma} = -ik\frac{\delta}{\delta\omega}$ $\Psi = \Psi[\omega, e]$ $\hat{e} = e$ $\hat{T} = ik\beta\frac{\delta}{\delta e}$

 Can solve all of the naïve quantum constraints by a version of the Kodama state

$$\Psi[\omega, e] = \exp\left[\frac{3i}{2k\lambda} \int_{\Sigma} \star Y[\omega] + \frac{1}{\beta} Y[\omega] - \frac{\lambda}{3\beta} e \wedge De\right]$$

$$\hat{C}_{\{H,G,D\}} \Psi = 0$$

Pirsa: 06120032 Page 97/117

Solving Quantum Constraints

 In connection-tetrad representation define the operators

$$\hat{\omega} = \omega$$
 $\hat{\Sigma} = -ik\frac{\delta}{\delta\omega}$ $\Psi = \Psi[\omega, e]$ $\hat{e} = e$ $\hat{T} = ik\beta\frac{\delta}{\delta e}$

 Can solve all of the naïve quantum constraints by a version of the Kodama state

$$\Psi[\boldsymbol{\omega}, e] = \exp\left[\frac{3i}{2k\lambda} \int_{\Sigma} \star Y[\boldsymbol{\omega}] + \frac{1}{\beta} Y[\boldsymbol{\omega}] - \frac{\lambda}{3\beta} e \wedge De\right]$$
$$\hat{C}_{\{H,G,D\}} \Psi = 0$$

Pirsa: 06120032

Primary Constraints

 Primary constraint says that for any functional, f, of position and momentum,

$$f[e, \omega, \Sigma, T] = f[e, \omega, \star e \wedge e, De]$$

 If this holds on constraint manifold, it will hold for any function on constraint manifold. So we need

$$C'_{\{H,G,D\}}[\omega,e] \equiv C_{\{H,G,D\}}[\omega,e,\star e \wedge e,De]$$

 $C'_{\{H,G,D\}}[\omega,e] \sim 0$

 Since this is a constraint on position variables, it can be implemented through inner product

$$\langle \Phi, \Psi \rangle = \int \mathcal{D}\omega \, \mathcal{D}e \, \delta(C'_{\{H,G,D\}}) \, \Phi^*[\omega,e] \Psi[\omega,e]$$

Pirsa: 06120032 Page 99/117

Pirs

Page 101/117

Primary Constraints

 Primary constraint says that for any functional, f, of position and momentum,

$$f[e, \omega, \Sigma, T] = f[e, \omega, \star e \wedge e, De]$$

 If this holds on constraint manifold, it will hold for any function on constraint manifold. So we need

$$C'_{\{H,G,D\}}[\omega,e] \equiv C_{\{H,G,D\}}[\omega,e,\star e \wedge e,De]$$

 $C'_{\{H,G,D\}}[\omega,e] \sim 0$

 Since this is a constraint on position variables, it can be implemented through inner product

$$\langle \Phi, \Psi \rangle = \int \mathcal{D}\omega \, \mathcal{D}e \, \delta(C'_{\{H,G,D\}}) \, \Phi^*[\omega,e] \Psi[\omega,e]$$

Pirsa: 06120032 Page 102/117

Primary Constraints on Kodama State

Represent the delta function as follows:

$$\delta(C'_{\{H,G,D\}}) = \int \mathcal{D}\eta \,\, \mathcal{D}\alpha \,\, \mathcal{D}\bar{N} \,\, e^{i(C'_H(\eta) + C'_G(\alpha) + C'(\bar{N}))}$$

 Then one can show that the inner product of the Kodama states once again reproduces a version of the Macdowell-Mansouri path integral:

$$\begin{split} \langle \Psi, \Sigma_2 | \Psi, \Sigma_1 \rangle &= \int \mathcal{D} \omega \mathcal{D} e \; \delta(C'_{\{H,G,D\}}) \, \Psi^*_{\Sigma_2}[\omega_2, e_2] \Psi_{\Sigma_1}[\omega_1, e_1] \\ &= \int \mathcal{D} \omega \, \mathcal{D} e \; \exp \left[\frac{3i}{2k\lambda} \int_M \star F \wedge F + \frac{1}{\beta} F \wedge F \right] \end{split}$$

Pirsa: 06120032 Page 103/117

Progress Report

Normalizability
Invariance Under Large Gauge T-forms
Solve Hamiltonian Constraint
Semi-Classical Interpretation
CPT Invariance
Negative Energies
True Inner Product and MM Gravity
Freedom from Gauge Fixing

Pirsa: 06120032 Page 104/117

Progress Report

X	Normalizability
×	Invariance Under Large Gauge T-forms
×	Solve Hamiltonian Constraint
X	Semi-Classical Interpretation
×	CPT Invariance
??	Negative Energies
X	True Inner Product and MM Gravity
	Freedom from Gauge Fixing

Pirsa: 06120032 Page 105/117

Concluding Remarks: Open Problems

- Loop transform
 - De-Sitter solution is Kauffman bracket
 - •Does this generalize?
- Slicing issue:
 - •Does state change under spatial topology changes?
- Thermal arguments:
 - •Do large gauge t-forms still imply KMS condition?
 - •Can one use this to fix the Immirzi parameter?
- •What is relation between states with gauge fixing and without?
 - Are some of the gauge fixed states related by Lorentz symmetry?

Pirsa: 06120032 Page 106/117

Primary Constraints on Kodama State

Represent the delta function as follows:

$$\delta(C'_{\{H,G,D\}}) = \int \mathcal{D}\eta \,\,\mathcal{D}\alpha \,\,\mathcal{D}\bar{N} \,\,e^{i(C'_H(\eta) + C'_G(\alpha) + C'(\bar{N}))}$$

 Then one can show that the inner product of the Kodama states once again reproduces a version of the Macdowell-Mansouri path integral:

$$\begin{split} \langle \Psi, \Sigma_2 | \Psi, \Sigma_1 \rangle &= \int \mathcal{D} \omega \mathcal{D} e \, \, \delta(C'_{\{H,G,D\}}) \, \Psi^*_{\Sigma_2}[\omega_2, e_2] \Psi_{\Sigma_1}[\omega_1, e_1] \\ &= \int \mathcal{D} \omega \, \mathcal{D} e \, \exp \left[\frac{3i}{2k\lambda} \int_M \star F \wedge F + \frac{1}{\beta} F \wedge F \right] \end{split}$$

Pirsa: 06120032 Page 107/117

Primary Constraints

 Primary constraint says that for any functional, f, of position and momentum,

$$f[e, \omega, \Sigma, T] = f[e, \omega, \star e \wedge e, De]$$

 If this holds on constraint manifold, it will hold for any function on constraint manifold. So we need

$$C'_{\{H,G,D\}}[\omega,e] \equiv C_{\{H,G,D\}}[\omega,e,\star e \wedge e,De]$$

 $C'_{\{H,G,D\}}[\omega,e] \sim 0$

 Since this is a constraint on position variables, it can be implemented through inner product

$$\langle \Phi, \Psi \rangle = \int \mathcal{D}\omega \, \mathcal{D}e \, \delta(C'_{\{H,G,D\}}) \, \Phi^*[\omega,e] \Psi[\omega,e]$$

Pirsa: 06120032 Page 108/117

Solving Quantum Constraints

 In connection-tetrad representation define the operators

$$\hat{\omega} = \omega$$
 $\hat{\Sigma} = -ik\frac{\delta}{\delta\omega}$ $\Psi = \Psi[\omega, e]$ $\hat{e} = e$ $\hat{T} = ik\beta\frac{\delta}{\delta e}$

 Can solve all of the naïve quantum constraints by a version of the Kodama state

$$\Psi[\boldsymbol{\omega}, e] = \exp\left[\frac{3i}{2k\lambda} \int_{\Sigma} \star Y[\boldsymbol{\omega}] + \frac{1}{\beta} Y[\boldsymbol{\omega}] - \frac{\lambda}{3\beta} e \wedge De\right]$$

$$\hat{C}_{\{H,G,D\}} \Psi = 0$$

Pirsa: 06120032

Primary Constraints on Kodama State

Represent the delta function as follows:

$$\delta(C'_{\{H,G,D\}}) = \int \mathcal{D}\eta \,\, \mathcal{D}\alpha \,\, \mathcal{D}\bar{N} \,\, e^{i(C'_H(\eta) + C'_G(\alpha) + C'(\bar{N}))}$$

 Then one can show that the inner product of the Kodama states once again reproduces a version of the Macdowell-Mansouri path integral:

$$\begin{split} \langle \Psi, \Sigma_2 | \Psi, \Sigma_1 \rangle &= \int \mathcal{D} \omega \mathcal{D} e \, \, \delta(C'_{\{H,G,D\}}) \, \Psi^*_{\Sigma_2}[\omega_2, e_2] \Psi_{\Sigma_1}[\omega_1, e_1] \\ &= \int \mathcal{D} \omega \, \mathcal{D} e \, \exp \left[\frac{3i}{2k\lambda} \int_M \star F \wedge F + \frac{1}{\beta} F \wedge F \right] \end{split}$$

Pirsa: 06120032 Page 110/117

Progress Report

Normalizability
Invariance Under Large Gauge T-forms
Solve Hamiltonian Constraint
Semi-Classical Interpretation
CPT Invariance
Negative Energies
True Inner Product and MM Gravity
Freedom from Gauge Fixing

Pirsa: 06120032 Page 111/117

Concluding Remarks: Open Problems

- Loop transform
 - De-Sitter solution is Kauffman bracket
 - •Does this generalize?
- •Slicing issue:
 - •Does state change under spatial topology changes?
- Thermal arguments:
 - •Do large gauge t-forms still imply KMS condition?
 - •Can one use this to fix the Immirzi parameter?
- •What is relation between states with gauge fixing and without?
 - Are some of the gauge fixed states related by Lorentz symmetry?

Pirsa: 06120032 Page 112/117

Progress Report

X	Normalizability
×	Invariance Under Large Gauge T-forms
×	Solve Hamiltonian Constraint
×	Semi-Classical Interpretation
×	CPT Invariance
??	Negative Energies
X	True Inner Product and MM Gravity
	Freedom from Gauge Fixing

Pirsa: 06120032 Page 113/117

Primary Constraints on Kodama State

Represent the delta function as follows:

$$\delta(C'_{\{H,G,D\}}) = \int \mathcal{D}\eta \,\,\mathcal{D}\alpha \,\,\mathcal{D}\bar{N} \,\,e^{i(C'_H(\eta) + C'_G(\alpha) + C'(\bar{N}))}$$

 Then one can show that the inner product of the Kodama states once again reproduces a version of the Macdowell-Mansouri path integral:

$$\begin{split} \langle \Psi, \Sigma_2 | \Psi, \Sigma_1 \rangle &= \int \mathcal{D} \omega \mathcal{D} e \, \, \delta(C'_{\{H,G,D\}}) \, \Psi^*_{\Sigma_2}[\omega_2, e_2] \Psi_{\Sigma_1}[\omega_1, e_1] \\ &= \int \mathcal{D} \omega \, \mathcal{D} e \, \exp \left[\frac{3i}{2k\lambda} \int_M \star F \wedge F + \frac{1}{\beta} F \wedge F \right] \end{split}$$

Pirsa: 06120032 Page 114/117

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \, \delta_{e} A \wedge \delta_{T} B \, - (A \leftrightarrow B)$$

Naïve Constraints (prior to primary constraints) are

$$C_D = \frac{1}{k} \int_{\Sigma} \mathcal{L}_{\bar{N}} \omega \wedge \Sigma - \frac{1}{\beta} \mathcal{L}_{\bar{N}} e \wedge T \qquad \bar{t} = \bar{\eta} + \bar{N}$$

$$C_G = -\frac{1}{k} \int_{\Sigma} D\alpha \wedge \Sigma + \frac{1}{\beta} [\alpha, e] \wedge T \qquad \alpha \in so(3, 1)$$

$$C_H = \frac{1}{k} \int_{\Sigma} [\eta, e] \wedge (\star R - \frac{\lambda}{3} \Sigma) + \frac{1}{\beta} D\eta \wedge T \qquad \eta \equiv e(\bar{\eta})$$

Pirsa: 06120032 Page 115/117

Begin with a modified Holst action

$$S = \frac{1}{k} \int_{M} \star e \wedge e \wedge R - \frac{1}{2\beta} T \wedge T$$

$$\frac{1}{\beta} e \wedge e \wedge R - \frac{1}{2\beta} d(e \wedge T)$$

Dynamical variables are connection and frame

Position	Momentum	Primary Constraint
ω	$\Pi_{\omega} = \frac{1}{k} \Sigma$	$\Sigma = \star e \wedge e$
e	$\Pi_e = -\frac{1}{k\beta}T$	T = De

Pirsa: 06120032

Symplectic structure defines Poisson bracket:

$$\{A,B\} = k \int_{\Sigma} \delta_{\omega} A \wedge \delta_{\Sigma} B - \beta \delta_{e} A \wedge \delta_{T} B - (A \leftrightarrow B)$$

Pirsa: 06120032 Page 117/117