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Introduction

Kodama State is one of the only known
solutions to all constraints with well defined
semi-classical interpretation

*Represents quantum (anti)de-Sitter space

*Cosmological data suggest we are in

increasingly lambda dominated universe
*World appears to be asymptotically de-Sitter

*Exact form in connection and spin network
basis
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But...

*Not normalizable under kinematical inner product
*Not known to be under physical inner product
Linearized solutions not normalizable under
linearized inner product

irsa: 06120032
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But...

*Not normalizable under kinematical inner product
*Not known to be under physical inner product
Linearized solutions not normalizable under
linearized inner product

*Not invariant under CPT
*Violates Lorentz invariance?
*CPT inverted states have negative energy?

*Not invariant under large gauge transformation
+(This could be a good thing)

*Loop transform in complex variables not as rigorous as
with real variables

*Reality constraint must be implemented
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Outline

*Problems stem from complexification of phase space
«Complexification comes from choice of Immirzi
parameter: — =1}

*Need to extend state to real values of Immirzi
parameter

-Can be done and answer is surprising:
*Solves most of the problems associated with original
*Opens up a large Hilbert space of states

Existence of state stems from deep connection with
underlying local de Sitter symmetry
«Connection with Macdowell-Mansouri formalism
*Freedom from gauge fixing?
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Review of Kodama State

*Begin with left handed part of Lorentz group
so(3,1) ~ su(2)g x su(2),

*Action is Einstein-Cartan of left handed curvature with
cosmological constant

*Dynamical variables are complex su(2) connection and
conjugate momentum

[Aa)lp,zjklg] = 2ik 8 3(P.Q)
Y =ENE L =2kg;




The Kodama State

Hamiltonian constraint annihilates Chern-Simons state:

[En(F-25)via=0 O [ vesia=2r

. W[A] = Ne'%\fYCS[A]

*Solution is unique in Lorentzian signature
*Generally interpreted as de-Sitter space

*Reality conditions have yet to be implemented
*Implemented through inner product
*May change physical interpretation




Construction of Generalized State

«Start with arbitrary imaginary value of Immirzi
parameter

*i/maginary values are measure of chiral asymmetry

o;+0g=1

Sy=1[ e N\eAR+LieNeAR
k M B :
{

2 - =
E\[ﬁfaL *2X; AR +0g *Xp ARR ] B o7 — Olg

*Begin quantization assuming left/right pieces are
independent

*lmpose primary constraint later: £, =Xz (=1EAE)
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Construction of Generalized State

Canonical variables

' g, Er| = [0, X =0
Oy g = OEIK o, X = —2k/0y 8
W, Xg| = +2k/0g &

«Constraints split into left/right pieces
= (IL/ x5 N\ (FL—A/3 ZL)+ {L—?* R}
M

*Chiral asymmetric Chern Simons state is immediate

‘P[CDL, (DR] = NeﬁI(ULYCS[WL]—GRYCS[(QRD

*Need to impose constraint C=X; —2Xzr~0
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Construction of Generalized State

*Constraint has several implications

*VVanishing 3-torsion is second class constraint
|H,C] ~Du*X—T =0 (0 =TIE])

*Can define new variables

e
’ ==y
W Ay E] = 0
y—_¥ y 411/B> ] _—
= 2+ 2R AB,C] =@
*Constraint becomes '
)

Y=0-Y¥Y=YA
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‘ Is Our State a Solution?

*Check that our state is in kermel of C
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Is Our State a Solution?

*Check that our state is in kemel of C

*Write state in new variables:
W[Ag. A /8] = Nexp [ﬁ[Ech[Aa] —(1+PB*)(Yesl[]—2B K /\Rr)]

I'=TAp,Ay ]
K = (1/B)(T' —Ap)




Is Our State a Solution?

*Check that our state is in kemel of C

Write state in new variables:
W[Ag, A1 /5] = Nexp [“i—ﬂs fz Yes[Ag] — (1+B?)(Ycs(T] — 2B K ARy)

Y£0) #@S&!! K = (1/B)(I" — Ag)
0A |/
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Is Our State a Solution?

*Check that our state is in kernel of C
*Write state in new variables:
‘¥[Ag,Ay/p] = Nexp [u%i_Lch[AB] —(1+PB*)(YeslT]—2B K /\Rr)]

Y£0 #@$&!! K = (1/B)(T — Ag)

0A;/p

‘Recast the problem: ¥ = W/[Ag, X]
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Is Our State a Solution?

*Check that our state is in kemnel of C

*Write state in new variables:
W|Ap. Ay p] = Nexp [ﬁ/ﬂYCS[AB] — (14 B*)(Ycs[I] — 2B K ARy)

S F
WAL '#@3&!! =

=TAp, A /g]
(1/B)(I" —Ag)

*Recast the problem: ¥ = ¥/[Ag, X

*Solution
«Analytically extend to real Immirzi
*Reinterpret role of momentum dependence




Interpretation

Generalized Kodama state is like NR momentum state

(x|p) =¥p[x] = Nexplix-p—iE ]
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Is Our State a Solution?
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*Write state in new variables:
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Interpretation

Generalized Kodama state is like NR momentum state
o 30+

(x| p) = Pplx] = Nexplix-p—i E t] s

4kAB’
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Interpretation

Generalized Kodama state is like NR momentum state

(p) =Pyl = Nexplix-p—i Ed] =
/1 1\ ]

. _m[ii
(Aer) = "PRI_[A] = Pexp [f o | AANRr—i 8 ch[A]

Infinite set of states parameterized by curvature
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Interpretation

*Generalized Kodama state is like NR momentum state

3(1+
n:.-{ B)

(x|p) =¥plx| = Nexplix-p—iE t] N —kﬁﬁ"
/) ]

(AIRF) = ‘PRI_[A] = Pexp [f o[ AARr—ié¢€ ch[A]
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Is Our State a Solution?

*Check that our state is in kemnel of C

*Write state in new variables:
W|Ap. Ay p] = Nexp [ﬁ/ﬂﬂ:ﬁ[ﬁﬁ] — (14 B*)(Ycs[I'] — 2B K ARy)

8 r:r[AB'-Al/ﬁ]
¥ £0 '#@$&!! K = (1/B)(T — Ag)

*Recast the problem: ¥ = ¥/[Ag, Y]

*Solution
*Analytically extend to real Immirzi
*Reinterpret role of momentum dependence




Interpretation

Generalized Kodama state is like NR momentum state
_3(1+P%)

(x|p) =P, lx] = Nexplix-p—i Ef] >3

4kAB’

(A|Rr) = W [A] = Pexp [i o / AARr—ieg YCS[A]] _
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Interpretation

Generalized Kodama state is like NR momentum state

(x|p) = p[x] = Nexp[zx .p—iE ] E‘ ._L\ﬁ
/1 L\ ]

(AIRF) = ‘{‘RF[A] = Pexp [f o | AANRr—i S ch[A]

Infinite set of states parameterized by curvature
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Interpretation

Generalized Kodama state is like NR momentum state .
3(1+p?)
(xlp) = ¥plx| = Nexp[t/x f_ i E t\] B

_m[s
(Aer) = '{‘RF[A] = Pexp [ AANRr—ie ch[A]

*Infinite set of states parameterized by curvature

*Expect different curvature states to be orthogonal
(P'lp) ~ f dx e PP =§(p' — p)
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Interpretation

Generalized Kodama state is like NR momentum state
3(1+p%)

(x|p) =¥plx| = Nexplix-p—iEt] :_ H;uﬁ-‘
A A

<

<A|Rr) = "PRF[A] = Pexp [f o[ AARr—ié€ ch[A]

*Infinite set of states parameterized by curvature

*Expect different curvature states to be orthogonal
(P'lp) ~ f dx e PP =§(p' - p)

(RF|R> ~ /@A e—iafAh(R'—R) _ S(R!_R)
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Gauge Invariant Inner Product

*Need to address gauge invariance of inner product

Kodama States are not invariant under SU(2) or diffeos
*Curvature acts as “"background” structure
*Familiar from spin network states

UsWrlA] =¥r(0(A)] = Po1(n)|A 0= Oy
UoWr|A] = Wr[0(A)] = Wo1(r)|A. 0 =0y

*Allows us to define gauge invariant inner product:

R\R)iin= [ DO (Uy-¥r|¥r) = 8(R —R)

Pirsa: 06120032




Progress Report
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Normalizability

Invariance Under Large Gauge T-forms

Solve Hamiltonian Constraint

Semi-Classical Interpretation

CPT Invariance

Negative Energies

True Inner Product and MM Gravity

Freedom from Gauge Fixing







Levi-Civita Curvature Operator

*Momentum operator in momentum basis:

p=[dp pI¥) (¥, — 5%, =pI¥)
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Levi-Civita Curvature Operatot

*Momentum operator in momentum basis:
p= [ dp pI¥,) (¥, — BI%,) = pI¥,)

*Similarly can construct gauge covariant curvature

operator
Introduce test function lambda
*Integrate over all curvatures and gauges
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Levi-Civita Curvature Operatot

*Momentum operator in momentum basis:
p= [ dp pI¥,) (¥, — BI¥,) = pI¥y)

*Similarly can construct gauge covariant curvature

operator
Introduce test function lambda
*Integrate over all curvatures and gauges

/Zl/\ﬁr=/@¢ﬂ7f" [([T_M\M’ ) |‘P¢R’><‘P¢R'|]
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Levi-Civita Curvature Operatot
*Momentum operator in momentum basis:
p= [ dp pI¥,) (¥, — BI¥,) = pI¥,)
*Similarly can construct gauge covariant curvature
operator

Introduce test function lambda
*Integrate over all curvatures and gauges

[ElAﬁr=/Q)¢Q)I’ [(/qum’ ) |‘I'¢Rf><‘1'¢ml]

fx/\fér W) =/l/\Rr W)
v )
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Hamiltonian Operator

Can now address issue of Hamiltonian constraint
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Hamiltonian Operator

Can now address issue of Hamiltonian constraint

«Standard representation of Hamiltonian constraint:

H:fz*z/\ (F—I—(l +B?) (éer—KAK) —%z)
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Hamiltonian Operator

Can now address issue of Hamiltonian constraint

«Standard representation of Hamiltonian constraint:
1
o= fz*z/\ (F—l— (1+PB) (B DrK—K/\K) —%z)
*“Ricci minus Ficci” representation

o= [*Z/\ ((l‘l"ﬁlf)Rr—-Bl'zF-—%Z)
)
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Hamiltonian Operator

Can now address issue of Hamiltonian constraint

«Standard representation of Hamiltonian constraint:
S [E*z/\ (F—l— (1+PB) (g DrK—K/\K) —%z)
*“Ricci minus Ficci” representation
H = /*2/\ ((1 +El§)Rr—é§F—-%2)
5

*Using our definition of curvature operator:
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Hamiltonian Operator

Can now address issue of Hamiltonian constraint

«Standard representation of Hamiltonian constraint:
o fz*z/\ (F—l— (1+PB) (g DrK—K/\K) —%z)
*“Ricci minus Ficci” representation
H= /2*2/\ ((1 —I—Elg)Rr—ﬂ—B%F—-%Z)
*Using our definition of curvature operator:

HWg[A] =0 !
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Physical Interpretation

*Do states represent something like de-Sitter spacetime?
*Yes!
-States are WKB for De-Sitter spacetime and beyond

«Started with Holst action:
3= i-f *e/\e/\R—l—-é-e/\e/\R—%*e/\e/\e/\e
M

All solutions to vacuum field equations look like this:

R=%ene+C T'=0

*Plug this back into action to get WKB state
S,




Physical Interpretation

*Assume Weyl is small (keep only first order terms)
*Action becomes topological

Sozﬁjfﬂf*RAR+%RAR

*Take boundary of manifold to be spacelike
hypersurface

*Set torsion to zero, rewrite in terms of A

oo — o [ YeslA] - (1+B%) (YaslT) - 2BK AR

“We have an exact WKB state: | Wg[A] = Ne™o*
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Physical Interpretation

*Do states represent something like de-Sitter spacetime?
*Yes!
-States are WKB for De-Sitter spacetime and beyond

«Started with Holst action:
3= «};f *e/\e/\R—l—é-eAe/\R—%*e/\e/\e/\e
M

All solutions to vacuum field equations look like this:

R=%eNe+C  T'=0
*Plug this back into action to get WKB state




Physical Interpretation

*Assume Weyl is small (keep only first order terms)
*Action becomes topological

ngy?:—lfM*R/\R—i—%R/\R

*Take boundary of manifold to be spacelike
hypersurface

«Set torsion to zero, rewrite in terms of A

oo — 2 [ YeslA] - (1+B%) (YaslT) ~2BK AR

*We have an exact WKB state: = Wx[A] = Ne™o*
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Regaining de-Sitter spacetime
*Have shown set of states contains small perturbations
to de-Sitter
*Which one is de-Sitter?

*There is a slicing of de-Sitter spacetime in which three-
curvature is flat and spatial topology is g’

Kodama State takes special form when R=0: take this
to be de-Sitter solution

(AIlPdS) — \PR———O — Texp 4le3/ YCS

Pirsa: 06120032




Progress Report
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Evidence of Cosmological Horizon

-q-deformed loop expansion of state is well known
(I'[Pas) Z Kr(q) |T')

*Edges labeled by representatlons of SU,(2) with
2ni 3
q = ex+Z = 26083
At roots of unity, spectrum of area operator is bounded

A=8nGB\/j(j+1) —»AMEZE(E)Z

*i/mmirzi Parameter appears to be significant at very
large scales as well as very small scales

small areas ~ 3  large areas ~

B2




Progress Report
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CPT Invariance

C, P, and T have action in both base manifold and
SO(3,1) representation space

*Work with mixture of 3D and 4D forms: _
Wr[A] = N exp [%/ *R/\R—[-éR/\R
M -

— N exp lmfy @]+ § +¥[ ]:

Yol =0ANdo+ gmf\umm (No Trace)
State uses both inner products:

(A,B)=Tr(AB) (A,B).=Tr(xAB) *=—i
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CPT Invariance

C, P, and T have action in both base manifold and
SO(3,1) representation space

*Work with mixture of 3D and 4D forms: :
WR[A] = N exp [%/ *R/\R—PéR/\R
M =

= N exp [%/EY[G)]—}—%*Y[OJ]

Y[0] = oAdo+20N0A®  (No Trace)
State uses both inner products:

(A,B)=Tr(AB) (A,B),=Tr(xAB) *=—IYs
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CPY

-States are CPT invariant for real values of the
Immirzi parameter

C
Wy Wy g L gy
CPT(¥y) = Wy
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True Inner Product: MM-Gravity

*Kinematical inner product unlikely to be true inner
product

*True inner product defined by path integral methods:
(lPR'sEZ!lPRaEI)Irue — (‘PR'|U(EZ: EI)ITR)

A N
= / DA, DA, WalA)WrlAl] [ DoDe ¢S
A

1

E; . 3 1 .
— @(D@e e—lme*R!\R+ERf\R eISEC_._B

E,

-Claim this is related to Macdowell-Mansouri Gravity




Adding Immirzi to MM-Gravity

*Macdowell-Mansouri begins with de-Sitter connection

A=0+Le . x
"  F=dA+AAA=R+LT-3eAe
ro = 1/3
MM action is
SMM— Zki\. X AF = SEC-{—?L m]*R/\R
M

*Adding Immirzi to Einstein Cartan means perturbing

curvature by itsdual: 5 5 é*R Sec — SEc+p

*Try thison MM action: F - F —0xF Sym —7?




Adding Immirzi to MM Action

«Action becomes:
Same— Spnes = a’/ «(F —8+F) A (F —0%F)
M

*For appropriate choice of constants we have

SMM—t—ﬂ =SEC+1+B_%L*RAR+5RAR

*This has following implication for inner product:

= .3 ! _
(TRH ZZITR=ZI> S— DwDe EIEIH*RAR+ERﬂR g‘SEC+1+|3
E>
E, oM = UL




Adding Immirzi to MM-Gravity

*Macdowell-Mansouri begins with de-Sitter connection

A=w0+Le . z
o F:dA+AAA:R+;—GT—§eAe
ro = 1/3
MM action is
SMM— Zk?t. I N\NF = SEC—}—?L m/*R/\R
M

*Adding Immirzi to Einstein Cartan means perturbing

curvature by itsdual: 5 5 é*R Sec — SEc+p

Trythison MM action: F — F —0xF Sum —7?




Adding Immirzi to MM Action

«Action becomes:
SMM—FSMM.{.B:CC’/ *(F—B*F)/\(F—B*F)
M

*For appropriate choice of constants we have

SMM—E—B =SEC+1+B_2%\'/M*RAR+éRAR

*This has following implication for inner product:

Ei -3 : :
(Wr, Zo| ¥R, L1) = D@ De 70 u*R\R+GRAR ,iSpciisg
E;
E, oM = X,UE,




True Inner Product: MM-Gravity

*Kinematical inner product unlikely to be true inner
product

*True inner product defined by path integral methods:
(Pr, L2| ¥R, Z1) true = (Pr|U (Z2,L1)|Wr)

A N
= f DA, DA, WalA)WrlAl] [ DoDe ¢S
A

|

E; . 3 1 :
_ D(D@e e—lme*RﬁR-FER/\R eISEC_-._B

E,

-Claim this is related to Macdowell-Mansouri Gravity




Adding Immirzi to MM Action

*Action becomes:
SMM—FSMM.ghB:C(.’/ *(F—G*F)/\(F—B*F)
M

*For appropriate choice of constants we have

*RAR+éRAR

Smm+p = SEC+3+B — 35 /M

*This has following implication for inner product:

= ;3 ! :
(TR’, ZZI‘PR’ZI> -~ —- DoDe glmfﬂ*RﬂR‘FERhR e‘SEC+l+13
E;
E, oM =X, UL,

— D De e rm+8
E,




Conclusions on MM Relation

*Inner product of two Kodama states equivalent to

Hawking sum over histories in MM gravity
*Sum over histories fixes two geometries on end caps

*Geometries fix R’ and R

Difference between EC gravity and MM gravity: MM
gravity has Kodama states “built in”

*This is similar to two formulations of CP problem in
Yang-Mills

States have theta-ambiguity
or

Action has theta-ambiguity
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Pirsa: 06120032

Normalizability

Invariance Under Large Gauge T-forms

Solve Hamiltonian Constraint

Semi-Classical Interpretation
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Pirsa:

Freedom tfrom Time Gauge-

*Freedom from gauge fixing would be nice for a

variety of reasons

*The WKB state prior to gauge fixing is

suggestive
Yo

=9 &P

3

— ‘®] +

. ﬁY o]

Can one obtain this state from canonical
construction without gauge fixing?

*We can obtain a slightly modified version

00000000




'Canonical construction without gauge
fixing

*Begin with a modified Holst action
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‘ Canonical construction without gauge
fixing
*Begin with a modified Holst action
_ 1 1
S_EL*eAeAR_TﬂTAT
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' Canonical construction without gauge
fixing
*Begin with a modified Holst action
S=%L*eAeAR[ BTAT‘

%e/\e/\R—il-B—d(e/\T)




Canonical construction without gauge
fixing
*Begin with a modified Holst action
S = %fM*e/\e/\R— B:r/\T

—

%e/\e/\R—— Bd(E/\T)

-Dynamical variables are connection and frame

Position Momentum | Primary Constraint

® I, =X Y=xeAe
e m———T I =De




Canonical Constraints

*Symplectic structure defines Poisson bracket:

{A,B}:k/ZSmA/\SgB—BSeA/\STB _ (A< B)
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Canonical Constraints

*Symplectic structure defines Poisson bracket:

{A,B}:k/ESmA/\B};B—BSeAASTB — (A~ B)

*Naive Constraints (prior to primary constraints) are
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Canonical Constraints

*Symplectic structure defines Poisson bracket:

(A.B) :k/SmA/\SgB—BSeAASTB (A< B)
5
*Naive Constraints (prior to primary constraints) are

CD=§/ZLN03A>:—%LN€AT f=N+N




Canonical Constraints

*Symplectic structure defines Poisson bracket:

(A.B) :k/SmA/\B};B—BSeA/\STB _ (A~ B)
z
*Naive Constraints (prior to primary constraints) are

CD=%/ZLN03A>:—%LN€AT f=M+N

ng—%/zDa/\Z—l—é—[a,e]/\T a € so(3,1)




Canonical Constraints

*Symplectic structure defines Poisson bracket:

(A.B) :k/SmA/\B;;B—BSeA/\STB _ (A< B)
r
*Naive Constraints (prior to primary constraints) are

CD=§/LNmA£—%Lﬁe/\T f=N+N

z

ng—%/Da/\Z+%[a,e]/\T a € so(3,1)
) >

CH=;%/E[TI,€]/\(*R—§Z)+%DI]AT n=e(d)
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Constraint Algebra

*Need to compute constraint algebra. Start with Gauss
and Hamiltonian constraints:
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Constraint Algebra

*Need to compute constraint algebra. Start with Gauss
and Hamiltonian constraints:
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Constraint Algebra

*Need to compute constraint algebra. Start with Gauss
and Hamiltonian constraints:

{Ce(0),C(02) } = Cq( [0y, 02])
{Cu(M),Ca(M2)} = =% Cs(M1,M2))
{Co(a),Ca(n) } = Cu([a,m])

*Naive constraints close, and algebra is isomorphic to
de Sitter Lie algebra with diffeomorphisms!
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Solving Quantum Constraints

*In connection-tetrad representation define the
operators

o
|

& .5
@ 2 — —lk'a'a W ‘P[mje]
e = ikB 2

-Can solve all of the naive quantum constraints by a
version of the Kodama state

é=

¥, e] = exp 2j,(;,L/}:a«rY[m]—l— Y[o| — %eADe

C{H,G,D}T =1
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and Hamiltonian constraints:

{Co(0y),Co(02) } = Cq( [0y, 02])
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Canonical Constraints

*Symplectic structure defines Poisson bracket:

(A,B) :k/SmA/\B;;B—BSeA/\STB _ (A< B)
X
*Naive Constraints (prior to primary constraints) are
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and Hamiltonian constraints:
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Solving Quantum Constraints

*In connection-tetrad representation define the
operators
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*Need to compute constraint algebra. Start with Gauss
and Hamiltonian constraints:

{Ce(0y),Co(02) } = Cq( [0y, 02])
{Cu(M),Ca(M2)} = —% Cs(M1,M2])
{Cs(a),Cx(M)} = Cu([a,m])

*Naive constraints close, and algebra is isomorphic to
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Solving Quantum Constraints

*In connection-tetrad representation define the
operators
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Solving Quantum Constraints

*In connection-tetrad representation define the
operators

o
|

& .5
@ A= —Ik% W lp[mje]
e = ikB 2

-Can solve all of the naive quantum constraints by a
version of the Kodama state

&=

Y[w,e| = exp 2kl/E*Y[m]+ Yo — %eADe

C{H,G,D}lP —3 |
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Primary Constraints

*Primary constraint says that for any functional, f, of
position and momentum,

fle,®,L,T| = fle,, xe Ae, De]

*|/f this holds on constraint manifold, it will hold for any
function on constraint manifold. So we need

CEH,G,D}[(D’ €] ~ ()

*Since this is a constraint on position variables, it can
be implemented through inner product

(@, W) — / Do De 8(Cly ) P[0, e ¥[w,e]
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Primary Constraints on Kodama State

*Represent the delta function as follows:
S(Cly 6.0) = [ DN Do DN &/ +Co(@)+C W)

*Then one can show that the inner product of the
Kodama states once again reproduces a version of the
Macdowell-Mansouri path integral:

(. 5.51) = [ DoDe 8(Ciy c.0) i 02 2 ¥s o1

=/9_')(1)Q)e exp [%/ *F/\F—I-éF/\F
M
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Concluding Rer;;a_rk_s_: Open P_roble-fné -
*Loop transform

*De-Sitter solution is Kauffman bracket
*Does this generalize?

*Slicing issue:
*Does state change under spatial topology changes?

*Thermal arguments:
*Do large gauge t-forms still imply KMS condition?
*Can one use this to fix the Immirzi parameter?

*What is relation between states with gauge fixing and
without?
*Are some of the gauge fixed states related by
Lorentz symmetry?
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*Primary constraint says that for any functional, f, of
position and momentum,
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+|/f this holds on constraint manifold, it will hold for any
function on constraint manifold. So we need
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*Since this is a constraint on position variables, it can
be implemented through inner product
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Solving Quantum Constraints

*In connection-tetrad representation define the
operators

o
|
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@ Z‘:_ LT ¥ =Y ,e
e = ikB 2

-Can solve all of the naive quantum constraints by a
version of the Kodama state
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*Represent the delta function as follows:
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*Thermal arguments:
*Do large gauge t-forms still imply KMS condition?
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*Are some of the gauge fixed states related by
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Primary Constraints on Kodama State

*Represent the delta function as follows:

5(Clu.c.01) = f DN Dow DN &/ +Co(e)+C W)
*Then one can show that the inner product of the
Kodama states once again reproduces a version of the

Macdowell-Mansouri path integral:
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Canonical Constraints

*Symplectic structure defines Poisson bracket:

(A.B) :k/SmA/\SgB—BSeAASTB ikl
*Naive Constraints (prior to primary constraints) are

CD=%/LNmA£—%LﬁeAT f=N+N

) 2

C(;:—%/Da/\2+%[a,e]/\7’ a € so(3,1)
>

CH=£/E[TI,€]/\(*R—§Z)+%DI]AT n=e(n)
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Canonical construction without gauge

fixing

*Begin with a modified Holst action
S=¢ | *eNeAR—5T AT
k M 2B

-'—-.1.-

le/\e/\R——

B

Bd(e/\ T)

-Dynamical variables are connection and frame

Position Momentum | Primary Constraint
® | H Y=xele
e R = ——T T = De
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Canonical Constraints

*Symplectic structure defines Poisson bracket:

{A,B}:kfzsmA/\azB—ﬁaeA/\sra _ (A< B)
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