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Path integral from Causal Dynamical Triangulations

« In analogy with the piecewise linear paths of Feynman’s path integral we have here
piecewise flat manifolds, i.e. simplicial manifolds with a flat metric assignment
inside each simplex.

In Dynamical Triangulations such metric is chosen as to have equilateral simplices
with edge length a.

[dgpu]e’SEH lgp] _, 3 %E’-{JR[T]
/ > o

« The causal version (CDT) is obtained by
restricting the class of triangulations

(Ambjorn, Loli - 1998 )

» Triangulations with product structure: al
discrete version of M= R« X

» Global time and space slices

« ltis possible to Wick rotate. : ; ——
The path integral becomes a partition function
for random geometries (but still with product
structure)
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Transfer matrix and Hamiltonian

The one-step (Euclidean) propagator from a geometry g, to a geometry g, defines
an element of the transfer matrix:

. 1 _Qr
(92|T']g1) = ¥ D" SHT]
T:g1—gp, At=a — \

Analogue of the one-step evolution operator in quantum mechanics

The transfer matrix can be shown to be symmeitric, strictly positive and bounded.
(Ambjorn, Jurkiewicz, Loll - 2001 )

This ensure the existence of a well defined Hamiltonian operator,
which in principle can be extracted in the continuum limit:

(92|T1g1) = (g2le *H|g1) = (golg1)—a(go| H|g1)+O(a?)

This task has been accomplished in (1+1)-dimensions, in various versions of the
model and with different techniques
(Ambjorn, Loll — 1998; Di Francesco, Guitter — 2001; Loll, Westra, Zohren - 2005)

Not many results in higher dimensions
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Transfer matrix and Hamiltonian

The one-step (Euclidean) propagator from a geometry g, to a geometry g, defines
an element of the transfer matrix:

L 1 o
(92|T'|g1) = b2 o SiT]
T:g1—g2:At=a —

Analogue of the one-step evolution operator in quantum mechanics

The transfer matrix can be shown to be symmetric, strictly positive and bounded.
(Ambjorn, Jurkiewicz, Loll - 2001 )

This ensure the existence of a well defined Hamiltonian operator,
which in principle can be extracted in the continuum limit:

l91) = (g92l91)—a(g2|H|g1)+O(a?)

This task has been accomplished in (1+1)-dimensions, in various versions of the

model and with different techniques
(Ambjorn, Loll — 1998; Di Francesco, Guitter — 2001; Loll, Westra, Zohren - 2005)

(92|T'|g1) = (g2le”

Not many results in higher dimensions
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Numerical results

« Monte Carlo simulations. N
(Ambjorn, Jurkiewicz, Loll - 2002 )

Fixed total volume N, and total time T

(both large); S2x[0,1] topolegy

It is observed only one phase.
The typical geometry shows a
“semiclassical” (3-dimensional) ;
lump of spacetime : :

*The fluctuations of successive spatial volumes have been studied and their
distribution is very well described by

oy (N (tta) =N ()2
—c(kg) .\?E(r+re}+\2'2(r)

P(.\-’FQ(T.)* ;\-Q(T —+— {1)) ~ e
which points in the direction of an effective action for the spatial volumes of the form

o (1VE®
Sar iVl = /dt ((\ é(s) +m'2(f))

and this is exactly the classical action for the spatial volume (for the S case)
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Gravity in (2+1)-dimensions — canonical quantization

[ ]

M~ RxX ..
ADM decomposition: gpv — 1NV, N;, h"fj}

* Any metric on a 2-dimensional manifold admits a decomposition like:

flij(l‘) — E}.(r)f * E«g}'(I)

S A
conformal factor l constant curvature metric =  moduli space

diffeomorphism

« Choosing York slicing. N(x)=N(t) and impeosing the momentum constraint one

obtains: (Hosoya. Nakao — 1989 )
: ()P p, .p
P - ) - cx . AT o 9 (a)’ (B8) 1 .8 1 s ;
g _/ dt {{({l}p( ) o T S (G_\( — —ET v) _(__;_'\,;(4h1 — 2Av)

H( P(n). p(ﬂ): f I‘)

» Canonical quantization in reduced phase space:

0 .0
T Pla) — _3'3p(a)
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Numerical results

» Monte Carlo simulations. N
(Ambjorn, Jurkiewicz, Loll - 2002 )

Fixed total volume N, and total time T

(both large); S2x[0,1] topology

It is observed only one phase.
The typical geometry shows a
“semiclassical” (3-dimensional) i
lump of spacetime .

*The fluctuations of successive spatial volumes have been studied and their
distribution is very well described by

1y (No(t4a)—No(1))?
_(_I[:KL:.) _\?2(;+ra.jl+‘?2(.f]

P(.\'Fz(t). i\u-g(f —+— {1)) ~ €
which points in the direction of an effective action for the spatial volumes of the form

e L Vo), .o
Sepp(Va) = / dt ((\ o ﬂlg(f))

and this is exactly the classical action for the spatial volume (for the S? case)
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Analytical results

+ Mapping between transfer matrix and free energy of the ABAB matrix model

(Ambjorn. Jurkiewicz, Loll, Vernizzi - 2001 )

—3
2= lim —logZ2
N—oc N2 g
where: _
Z= Yy &1z b3 (g2(N2)|T'|g1(N1))
N1,N> 91(N1).92(N2)

z — / dAdBe—NTr[A24+B?—a1A%*—asB*~3ABAB]

» The matrix model was solved e

+ But the intricate analytical structure of the model prevented from even finding
the identity (0-th order) term

« Maybe this is because the model contains too many (and unwanted) configurations?
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Transfer matrix and Hamiltonian

The one-step (Euclidean) propagator from a geometry g, to a geometry g, defines
an element of the transfer matrix:

_ \ 1 Q[
T.g1—g2,;At=a — V

Analogue of the one-step evolution operator in quantum mechanics

The transfer matrix can be shown to be symmeitric, strictly positive and bounded.
(Ambjorn, Jurkiewicz, Loll - 2001 )

This ensure the existence of a well defined Hamiltonian operator,
which in principle can be extracted in the continuum limit:

(92|T1g1) = (g2le " |g1) = (92]91)—alga|H|g1)+O(a?)

This task has been accomplished in (1+1)-dimensions, in various versions of the

model and with different techniques
(Ambjorn, Loll — 1998; Di Francesco, Guitter — 2001; Loll, Westra, Zohren - 2005)

Not many results in higher dimensions
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Analytical results

+ Mapping between transfer matrix and free energy of the ABAB matrix model

{(Ambjorn. Jurkiewicz. Loll, Vernizzi - 2001 )

—F
Z = lim —logZ
N—oo N2 g
where: , _
z= Y e thi=2M2 5 (g5(Ny)|T|g1(N1))
N1,N2 91(N1),92(N2)

z — / dAdBe—NTrlA’>+B?—a1A*—a2B*—3ABAB]

» The matrix model was solved (Kazakov, Zinn-Justin - 1338 )

+ But the intricate analytical structure of the model prevented from even finding
the identity (0O-th order) term

« Maybe this is because the model contains too many (and unwanted) configurations?
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A different model

» Introduce a new class of simplicial manifolds generalizing the product structure of
CDT., which we will then call “of product type”. (Dittrich, Loll - 2005 )

« “Base space” x “Fibers” (or “towers”).

« It looks like if there is a second time. but the idea is actually to have a slicing also on
the space slices, having in mind a “radial coordinate” « “spherical shells”

decomposition of space in order to study black holes.

« A natural choice for the topology of the slices is that of a cylinder
——==— one Teichmuller parameter
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Maybe enough...

...to capture the properties of full (2+1)D gravity?
After all only area and Teichmuller parameters should be relevant

But of course | don’t want to start assuming this, | want to obtain it from a path
integral over geomedtries

The problem is then whether or not this class of geometries spans the configuration
space densely enough to implement the reduction

This we are not able to judge at the beginning

What we can say is that for sure the model has enough entropy to suggest the
existence of a continuum limit.

(remember that the entropy of the triangulations has to compete with the
cosmological weight which is an exponential in the volume)
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A different model

» Introduce a new class of simplicial manifolds generalizing the product structure of
CDT, which we will then call “of product type”. (Dittrich, Loll - 2005 )

+ “Base space” x “Fibers” (or “towers”).

« [ltlooks like if there is a second time. but the idea is actually to have a slicing also on
the space slices, having in mind a “radial coordinate” « “spherical shells”

decomposition of space in order to study black holes.

« A natural choice for the topology of the slices is that of a cylinder
——=== one Teichmuller parameter
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Dual

Take a “sandwich”
triangulation. i.e. the
triangulation of the 3D
space in between two
adjacent slices with
time separation a

mapping: in general

» Colour code the
: triangular faces, and cut
F = the sandwich at an
@ \ intermediate time
» Draw the dual graph of
the obtained tessellation

(b)
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Action and partition function for the sandwich

» Starting from the Einstein-Hilbert action with Gibbons-Hawking boundary term

| il
B o R_A / 2oVhK
xhg(mlv )+GF'Z ’

« The Regge prescription and topological relations give for our sandwich triangulation

o= C}:(f\fr]j E F\'Tg 1) + ..-'3_-'1\"'22

St Se =/
BEYICH = |

where: a = {:—E:-r <+ 6 arccos l)Ir.r - 1_;,“)\ and k and % are the
- 3 6v2 bare inverse Newton and
3 = (—2m + 6 arccos E};f . l_;,k cosmological constants
3 6v2

« The grand canonical partition function (with sum over volume and boundary
geomeitries) is

" Z Ii\"13y~"-'31 Z o=

— Z (Iﬁ—r.t)_\ 13(_ye—f1)_""u31 Z = IN>o
N13.N31 T Ny3.N31
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Action and partition function for the sandwich

» Starting from the Einstein-Hilbert action with Gibbons-Hawking boundary term

- 1 L]
Sep+Scy = / d3z./g R—A / d°zvVhK
BRTOGH = [ o V3 (2(;__\- )+G_\..- I

« The Regge prescription and topological relations give for our sandwich triangulation

S = a(N13 + N31) + BN2o

b
Ca

5 1 1
where: o = (—Err + 6 arccos g)kr +—=A and k and A are the
1 6‘{' 2 bare inverse Newton and
3 = (—2m + 6 arccos — )k + o, cosmological constants
3 612

« The grand canonical partition function (with sum over volume and boundary
geomeitries) is

7 — Z xi\"13y~‘”-'31 Z o=

\:13 1 ‘\'-3 1 :r| ‘\-13_“.31
- Z (Iﬁ—r.t)_\ 13('_._1,-'\‘3’._“)"%'31 Z = N5
N13,N31 ¢ i
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Dual mapping: in our specific case

+ The presence of the “triangle towers” is reflected in the presence of a sliced structure
of the dual graph

¥
» The partition function is the generating function for a combinatorial problem

Nay N )
A— ZF_“ N Y T Y Z u 2 v 3 w!V22

Sy Na31 "‘13Tx13 N3
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Dual mapping: in our specific case

+ The presence of the “triangle towers” is reflected in the presence of a sliced structure
of the dual graph

« -

N

» The partition function is the generating function for a combinatorial problem

N N ,
Z = ZF_H i Y y‘ Y Z u 3 v 3 w'¥22

Sy N33 Ni3 Tx13 N3y
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Heap of pieces and inversion formula

» The graph looks like a coloured version of what is called “heap of pieces” in
combinatorics

» There exist a formula that relates heaps of pieces in D dimensions to hard objects in

D-1 dimensions (Viennot — 1986: Di Francesco, Guitter - 2001 )

+ |t turns out that we can extend such a formula to the case with more colours.
when we keep fixed the sequence of towers.

+ The inversion formula looks like this

1

Zg, (u,v,w) =
N Z%‘:‘F(—u —v, w)

-
%% & F & = 5 & & 8 8
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Heap of pieces and inversion formula

» The graph looks like a coloured version of what is called “heap of pieces” in
combinatorics

» There exist a formula that relates heaps of pieces in D dimensions to hard objects in

D-1 dimensions (Viennot — 1986: Di Francesco. Guitter - 2001 )

« |t turns out that we can extend such a formula to the case with more colours.
when we keep fixed the sequence of towers.

+« The inversion formula looks like this

1

Zg. (u,v,w) =
S ) Zg;:f{'(—u. —v, w)

-
888 & 8§ & = % @& & 88

Pirsa: 06120030

Page 30/58




Heap of pieces and inversion formula

» The graph looks like a coloured version of what is called “heap of pieces” in
combinatorics

» There exist a formula that relates heaps of pieces in D dimensions to hard objects in

D-1 dimensions (Viennot — 1986:; Di Francesco, Guitter - 2001 )

+ |t turns out that we can extend such a formula to the case with more colours,
when we keep fixed the sequence of towers.

+ The inversion formula looks like this

1

Zeo (u,v,w) =
S"\ Zg\:f(—n — 1, T_L')

L
&8 & & & = &% & & 8 8
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Heap of pieces and inversion formula

» The graph looks like a coloured version of what is called “*heap of pieces” in
combinatorics

» There exist a formula that relates heaps of pieces in D dimensions to hard objects in

D-1 dimensions (Viennot — 1986; Di Francesco, Guitter - 2001 )

L
i
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+ |t turns out that we can extend such a formula to the case with more colours.
when we keep fixed the sequence of towers.

+« The inversion formula looks like this

1

Zo (u,v,w) =
S ZL%;:f'r'(—ii. —v, w)

-
% &% & & & = &8 & & 8 8
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Product of random matrices

» We can write the partition function for the hard dimers model in terms of transfer

matrices
1 iyu O
A=|iae 0 4
24 (—u, —v,w) = Tr(ABBAB...) 0 0 w
— : 1 0 iJu
>N B=|0 w O
ive 0 O

« We then have to do a sum over words of length v

« In order to do this it is convenient to see the problem as a product of random
matrices, i.e. a product V matrices picked up at random in a two-matrices
ensembleeach with probability 1/2

1

Z — (—:_q ﬁ; c:l T
g b i H}"le M;(u,v, u')}

» But before. ..
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Avoiding the poles

» Because of the negative weights the partition function in the denominator can have
zeros

» Different sequences have different zeros

» Such zeros accumulate for large vV on a line which is then the critical line of our model

+ We then have to find out what is the critical
behaviour along that line

* It turns out that there is only one point along the
critical line where our partition function has a singular
behaviour and where then it is possible to define a > @
non trivial continuum limit
(only at that point the average volume diverges)

+ How do we see that? Next slide. ..
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Product of random matrices

» We can write the partition function for the hard dimers model in terms of transfer
matrices

Z&%(—u, —v,w) = Tr(ABBAB...) 0 0 w
- B=|0 w O

« We then have to do a sum over words of length ¥

« In order to do this it is convenient to see the problem as a product of random
matrices, i.e. a product NV matrices picked up at random in a two-matrices
ensembleeach with probability 1/2

a  ;
Z=Y e TNV
e, My M (a0

» But before. ..
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Avoiding the poles

» Because of the negative weights the partition function in the denominator can have
zeros

» Different sequences have different zeros

» Such zeros accumulate for large vV on a line which is then the critical line of our model

+  We then have to find out what is the critical
behaviour along that line

* |t turns out that there is only one point along the
critical line where our partition function has a singular
behaviour and where then it is possible to define a > @
non trivial continuum limit
(only at that point the average volume diverges)

+ How do we see that? Next slide. ..
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Replica trick

* In performing the sum comes in our help the so called “replica trick” widely used in
spin glass theory

» For positive integer n the following formula holds:
-.."'.I.- rlr -l"'y.r o -‘h.- —5 —a T i Vil
<(Tr 11 _"L.’_j-) > — Tr< 11 JI}-'—'”‘> =% I} {;"-.fj"'”} = Tr(MON ~ L»f;:
B — =1 =

» The frick consists in using the above formula to compute

N FIx

1 : \

Lp= lim —In Tr M )
5 N—ooc N < ( }E[I 'j) /

and then in analytically continuing L, to non integer values of »
» We are interested in n =-1

« The only problem with a negative value could be the appearance of poles, but we
have already taken care of that.
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Continuum limit

We want to take the continuum limit tuning the coupling constants to the critical point

Canonical scaling: - Eﬁ_z_x,-ﬁ_zbl Na3+2¢ika
9

» — 2,—2Ya2-2by Na3+2¢1ka
9
2

] 3 e
o — E—bgﬂr{ —coka

We need to insert these scalings in L ;, computed with the replica trick
and sum over ¥

There's a problem with the scaling of k — take ¢,=c.=0 for the time being
We obtain:
a 5[5 XY A ) 3
2= ———Ho | — - 5 | HO(a
VX+Y (6 (X+Y)2 (X4Y)32 )
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Replica trick

* In performing the sum comes in our help the so called “replica trick” widely used in
spin glass theory

» For positive integer » the following formula holds:
| N s N N § - )
< (-FT H 1”}) > — T?‘ < H j, ij'_..'rl> — .-I—I_ H {:'hrjﬂ} — rl'_]"{: _‘ILJr._‘_;r;r.).""u — L-’Ir:'
j=1 =1 =

» The trick consists in using the above formula to compute

- n
1 £ S

= I — 1 i i M

Ln _\'T N n < ( y !.I;Il _j) |

S /

and then in analytically continuing L, to non integer values of »
» We are interested in n =-1

« The only problem with a negative value could be the appearance of poles, but we
have already taken care of that.
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Continuum limit

We want to take the continuum limit tuning the coupling constants to the critical point

Canonical scaling: - gﬁ_zdm_—a_?—zbl Na3+2¢ ka
9

i — gﬁ—2?’;{2—1’}1!’\{'{3—1-2{?1fi.‘ﬂ.
9
2

e —baNa>—coka

w —

We need to insert these scalings in L ;, computed with the replica trick
and sum over ¥

There's a problem with the scaling of ¥ — take ¢,=c.=0 for the time being
We obtain:
a 5 (5 XY A ) 3
- — _ —+a ———— . - +0(a
VX +Y (6 (X+Y)2 (X+Y)32 o)
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Not yet there...fractional derivative

We are computing

= ¥ yi2(g|Tg1) = Y a1y42(A|T|A1) N (A1)N (A7)
91,92 Ap.A2
F o l
|A) = ——=—=> |g)
VN (A) g4

In order to extract the transfer matrix by Inverse Laplace transform we need to get rid
of the entropy factor

= _1
From (1+1)-dimensional CDT calculations we find: -\ (A) ~ A2

We can get rid of it by use of a fractional derivative of order 'z acting on the logarithm
ofxandy

To cut it short, a fractional derivative is an operator which acts on exponentials like

Iox
& e

— s =iyt
orc
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Continuum limit

We want to take the continuum limit tuning the coupling constants to the critical point

Canonical scaling: - gﬁ—z_xe:ﬁ—zbl Aa3+2¢c;ka
9

» — 2,—2Ya2-2byNa3+2¢1ka
9
2

e —f)gﬂrfa —coka

w =

We need to insert these scalings in L ;, computed with the replica trick
and sum over ¥

There's a problem with the scaling of ¥ — take ¢,=c.=0 for the time being
We obtain:
a 5[5 XY A ) 3
E—————Fa 'l 3 | HO(a
vVX+Y (6 (X+Y)2 (X+Y)32 )
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[ ]

Not yet there...fractional derivative

We are computing

= ¥ 2MyA2(go|T|g1) = ¥ aM1y2(A5T|A1) YN (A1)N(A3)
91.:92 A1,42

5

rd A
s !
Fi

x\(i)m

In order to extract the transfer matrix by Inverse Laplace transform we need to get rid
of the entropy factor

= _1
From (1+1)-dimensional CDT calculations we find: -\ (A) ~ A2

We can get rid of it by use of a fractional derivative of order 2 acting on the logarithm
ofxand v

To cut it short, a fractional derivative is an operator which acts on exponentials like

af_}.‘

e .-ull.- .1. - _ﬁ‘r_, (_}. E .-:r. -.l'
orc
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The Hamiltonian

» Applying the fractional derivative we finally get

! ¥(2X | Y) A 5

(A1 — A) a2 _ap® .
T 842 T 94
ith H Gy A 3 e J ) + AA
compare win: — —lryn T ¥
’ N\ “aa2
+ Reintroduce Newton's constant? =  problems
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The Hamiltonian

+ Applying the fractional derivative we finally get

B ¥Y(2X 1 Y) A .
— (Uf ~Y)52  (X- }-)Q)W(“ :

6(A1 — A2) 3 5
- A3 — A2 Y .
DA2 DA
_ o d
ith: H=-Gy| A = e NA
compare wi N ( A2 e 'd.—l) e
« Reintroduce Newton's constant? =———=  problems
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Who's to blame for this result?

» CDT and the idea of getting a Hamiltonian?

» This specific model?

+ Some non-trivial step in the solution?

+ Need to keep track of the Teichmuller parameter?
+ ls it the non-renormalizability problem in disguise?

+ Canonical scaling?

Under investigation...
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Conclusions and outlook

- We have shown a full calculation of a CDT partition function in dimensions
greater than 2.

+ We have shown for the first time that a continuum limit with a well defined
Hamiltonian exists in a (2+1)-dimensional CDT model

= Open issue about G,- must be understood
» Teichmuller part from “microcanonical” method

« Go back to the ABAB model with some of the lessons learned in this model
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