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@ A physics problem: phases of ' =1 vacua
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Classification of SUSY
vacua
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Breaking fo N =1

n+1

add superpotential Wiee(®) = Z qgi Trd!
=1

in the \" = 2 moduli space the N" = 1 vacua are those for which

the S-W curve factorizes as y° = P__E.-r z) —4A*N = Fo..(z ]Hif_”_ (z)
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s @ Charged particles becomes massless
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Moduli space of vacua:

What happens if we vary the parameters ¢

rn+1

in Witee = Z gi q)f <
—1

X points where an additional
monopole becomes massless

counting of degrees of freedom:

the factorization
! Py — AN = R HY_,
/ has n free parameters

we can fune the parameters
to obtain rigid factorizations
at special points
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Order parameters [C.5W.]

Confinement index:

f = smallest value of r for which 11" does not exhibit an area law

or

consider F(z) = <—|_"1. 1 > (generating function

2] — & of chiral operators)
and define N, Ejlé T(z) b; E%‘ T(z)
o~ - . N
semiclassically U(N) — U(N;) x ... x U(N,,) relative theta angle

of U(N;) and U(N, 1)
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consider the v.ew.s of chiral operators ¢, = (Tr ®" W, W) :

branches can be distinguished by relations between ¢,'s
ex: tota — fjf =
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however, it was shown by [C.S.W.] that the confinement index is not
sufficient to distinguish all branches

1

new order parameter: holomorphic invariants

consider the v.ew.s of chiral operators ¢, = (Tr ®" W, W) :

branches can be distinguished by relations between ¢,'s
ex: fotz — tjf =0
such relations are determined by the pair (s.,s_) , which distinguish
different ways of solving the factorization problem:
Py(z)—2AY = Ry_5._(2)H? (2)

P%(z) — 4A* = F(2)enHy_(z) ——> = s
Pn(z) +2AY = Ry _a.. (2)HZ (2)

More order parameters? Probably, yes.
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Pi(z) —4A™ = Fy(z)H;(z) (one tunable parameter)
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Example: U(6) with cubic superpotential [C.S. W]

PZ(z) —4A"™ = Fy(2)H;(z) (one tunable parameter)

[rigid] Pz} — 4A" = Fyf :*}(j:l:: = VH;(z) Prz) — 4A™ = Fyf :]EQ';c::H_‘.‘-' z) (rigid}




Example: [U(6) with cubic superpotential [C.SW.]

Pi(z) —4A™ = Fy(z)H;(z) (one tunable parameter)
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Summary so far:

@ consider a U(N) N = 2 theory without matter
@ break to A" =1 adding a superpotential W;,..

@ the N =1 vacua correspond to particular
factorizations of the S-W curve, which
depend on the parameters of Wi,..

—— moduli space of vacua

@ the modulispace is composed of different
branches, distinguished by order parameters

@ a complete list of order parameters is not
Known
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The Galois group associated with an equation is the group of
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by the roots is still satisfied after the roots have been permuted




Galois groups

Consider the equation with coefficients in
—2=0

VI - A - o1 /4
The rootsare §27/°, —2/°, 12/, 42/}

The Galois group associated with an equation is the group of

permutations of the roots such that any algebraic equation satisfied
by the roots is still satisfied after the roots have been permuted

For the example above the Galois group is isomorphic
to the discrete group D




Galois groups

Consider the equation with coefficients in Q

22 _92=0

Thﬂ rﬂﬂfﬁ are {21_}‘41 _21_‘{4’ '1:21[41. —121}4}

For the example above the Galois group is isomorphic
to the discrete group D,

This is the traditional approach to Galois theory, based on permutation
groups. The modern approach is based on the theory of fields.
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field theory approach:

Consider a (Galois) extension E of a field F and consider all the
automorphisms a : E — E such that a(z) = z for every = in F'. Such

automorphisms form the Galois group Gal(E/F).

ex:

consider again the equation z2*—-2=0

the extension of (Q obtained by adjoining to Q the roots
{21 = ; _21;—1 P f 21;"—1 i —f 21;{—1}

is denoted by Q(2"/% i)

the corresponding Galois group is Gall Q(2'/%,1)/Q) = Dy
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Dessins d'Enfants:

A dessin is a graph on a Riemann surface
with an associated bipartite structure

-0

that can be obtained as the inverse image
of a segment under a Belyi map 7 .

Pl
A Belyi map is a map 3 ¥ — P!

with exactly three critical values
onPlat 0,1, < .

A dessin is the inverse image
under 3 of the [0, 1] segment on P*
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Action of Gal(Q/Q) on the dessins:

The Belyi maps we will consider are rational functions (mostly we
will just consider polynomials) with coefficients in Q .

The Galois group acts on these coefficents transforming a Belyi
map into a different Belyi map. Since to each Belyi map is
associated a dessin, the Galois group acts on the set of dessins.

The hope is to be able to characterize the action of the Galois
group by combinatorial data associated to the dessins.
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How? ideally one would need a complete set of Galois invariants,
such that if two dessins differ in the value of any of the
invariants then the dessins are in different orbits.




Goal: classify dessins in orbits under the action of the Galois group
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How? ideally one would need a complete set of Galois invariants,
such that if two dessins differ in the value of any of the
invariants then the dessins are in different orbits.

A full classification of dessins in orbits would provide information
about the representations of the absolute Galois group Gal(Q/Q),
but a complete list of invariants is not known.
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Galois invariants:

valency list: V=, ... 0 w; = # vertices with valence i

V ={3.3,1} vV ={331)

We cant tell from the valency list that these dessins belong
to different Galois orbits.

We need a more refined invariant
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refined valency list:

(only well defined for trees)

Vi = {2,2,0}
V. ={1,1,1}
Ve = {3,0,1}
V_ = {0,3,0}



refined valency list: (only well defined for trees)

Ve ={2,2,0}

TR i V_ =45 1}
Ve ={3,61}

gl Vi —140,3.0)

The refined valency list are different and this is enaough to decide that
the dessins belong to different orbits.
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More Galois invariants:

monodromy group:

permutation group generated by

o, — cyclic permutations of edges around + vertices

og_ —> cyclic permutations of edges around - vertices

ex:

oo = (6,4.2)
o_ = (1,2)(3,4)(5,6)
M = Z;; X 5'3

and more invariants...
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Summary so far:

@ The absolute Galois group is a very mysterious
object

@ It can be studied through its action on the
“childrens drawings” introduced by Grothendieck

@ A drawing (or dessin) is a bipartite graph associated
to a Belyi map, i.e. a meromorphic map with exactly
three critical values

@ The goal of the programme is to find a complete list
of Galois invariants in order to classify the dessins in
orbits under the action of the Galois group

@ some example of invariants: valency lists, monodromy
group, efc...
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N =9 Yy’ = Pf‘f__:} — AN
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— cuts

E @ zeroes of y
lets go back to the U(6) example j/ "*i O zerves of Ps

N=£3 y® = Py (z)—4A™ r—:\ I\




Rigid S-W curves / Belyi maps

E ® zerpes of g
lets go back to the U/(6) example j/‘ "*i O zerges of P
} — cuts
N=—13 gy =F(z)—aA" "'\ I\
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P2(z) —4A™ = Fy(2)HZ(2)
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Rigid S-W curves / Belyi maps

@ zeroes of

O zeroes of Py

lets go back to the U(6) example

— cuts

N = - =Pi(z)—4AP

l

P2(z) — 4N = Fy(2)H;(2)

(1 free parameter)

| e

P2(z) —4A™ = F;{:.IE',_};|:;-;']:§H§: z)
(rigid)
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Rigid S-W curves / Belyi maps

lets go back to the U/(6) example

N = g = (=) AA
2

P2(z) —4A™ = Fu(2)H;(z)

]

]

14}
-
L1
Il
i

(1 free parameter)

@ zeroes of -
O zerpes of

— cuts

l

P2(z) — 4A" = F3(2)Q:(z)” H3(2)

{T‘igid}l »—@—4—@—4—@—4—-:1|-<
I




roots of £

roots of H,
roat of J;

roots of g




_ 1 : gl T3 i -8
Claim: § = — 5 P2 — 4A'2) with the factorization condition

P2(2) — 4A" = F5(2)Qu(2)* H3(2)

is a Belyi map:

@ it is a holomorphic map from the complex sphere fo itself

@ one can check that the critical values are (), 1. o



1

Claim: 3 =

el P2 — 4A'2) with the factorization condition

P2(z) — AN = F3(2)Q1(z)* H3(2)

is a Belyi map:

@ it is a holomorphic map from the complex sphere fo itself

@ one can check that the critical values are 0, 1.

More generally:

There is a one-to-one correspondence between rigid S-W curves
and Belyi maps, so it is possible to associate a dessin to every point
in the moduli space where a rigid curve appears




(6 Pg(z)—4A" = Fy(2)Q}(z)H3 (=)
Ul(6) EXGI‘I‘IPIE: / 5 12) s(2)@ 3

y® = Pa(z) —4A™ = Fy(z)Hi(z) —> Fg(z) — 4N = Fa(z)H:(2)

¥

P2(z) —4A? = Fy(2)Q5(z)Hi (=)
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gauge theory childrens drawings
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Dictionary

gauge theory childrens drawings
form of the rigid factorization valency list
ex: Pi(z) —4A" = B(z)Q5(z)H (=) > ¥V =4{3.31}
L] -]
: .;’A : h .l|_
holomorphic invariants refined valency list
ec Pi(z)—=4A' = Fy(z)H;(Z)
\ — V., ={3,0,1}
Ps(z) — 2A° = Rg_». (z)H, V_ = {0.3,0}
Ps(z) +2A% = Re_o. (2)HZ
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confinement index (new?) Galois invariant




gauge theory

confinement index

multiplication map

childrens drawings

(new?) Galois invariant

Belyi extending maps

monodromy group



Conjectures

(and conclusion)




consequences: @ the monodromy group and other known Galois invariants
would be order parameters

o especially useful for theories with matter, for which no
order parameters are known




