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Abstract: Due to recent, as well as less recent, work on perturbative N=8 supergravity and N=4 super Yang-Mills in 4d, the two theories are
appearing more and more closely related. These relations include similar \"MHV-rule\" constructions, one-loop structure and, perhaps, the same UV
behavior, namely UV finiteness. Thistalk introduces some of the methods to study the relations.
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About the Talk

» On the surface, it'll be about SYM/SUGRA duality.

» But it's also really about the methods underlying it. These
methods are quite general.

» I'll focus particularly on how scaling behaviour of tree
amplitudes and on-shell recursion lie behind most of the
insight.
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N = 4 Super-Yang—Mills

» The maximally supersymmetric gauge theory in 4d

» Contains one vector, four spin—% fermions, and 3 complex
scalars; all in the adjoint.

» Low-energy limit of the compactified open superstring.

» Has superconformal symmetry
» UV finite.
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N = 8 Supergravity

In general:
» The maximally supersymmetric gravity theory in 4d

» Contains one graviton, eight spin——g- fermions, 28 vectors, 56
spin-% fermions, and 35 complex scalars.

» Dim. reduction of A" = 1 SUGRA in 11d, and low-energy
limit of the compactified closed superstring.
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N = 8 Supergravity

In general:
» The maximally supersymmetric gravity theory in 4d

» Contains one graviton, eight spin—% fermions, 28 vectors, 56
spin—% fermions, and 35 complex scalars.

» Dim. reduction of A" = 1 SUGRA in 11d, and low-energy
limit of the compactified closed superstring.

Perturbation theory:
» Feynman vertices go as (momentum)?, all order vertices.
» Dimensionful coupling constant.
» N < 8 gravity is known to be non-renormalizable.
» Any Feynman diagram calculation is hideous.
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Notation
Colour ordering:

» One can identify gaugle invariant sub-amplitudes with a cyclic
ordering,

A(1;.2p.3¢c.449) = Tr(tatptcty)A(1.2,.3.4)
+Tr(tatptatc)A(1.2.4.3)
+Tr(t,tytpt-)A(1.4.2.3) + ...
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Notation
Colour ordering:

» One can identify gaugle invariant sub-amplitudes with a cyclic
ordering,

A(15.2p.3¢c.449) = Tr(tatptcty)A(1.2,.3.4)
+Tr(tstptatc)A(1.2.4.3)
+Tr(t tytpt)A(1.4.2.3) + ...

Spinor helicity notation:

» Massless momenta described by their Weyl spinors:

1 i~ \
Pprr;g. = A3 = |P [pl
» Polarizations chosen according to helicity

_ (Gloulpl - _ laloulp)
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Previously Known Similarities

The KLT (Kawai, Lewellen, Tye) relations:
» Derived from string scattering amplitudes

» (gravity)=(gauge)?.

A

M(1.2.3) = A(1.2.3)A(1.2.3)
M(1.2.3.4) = s34A(1.2.3.4)A(1.2.4.3)
M(1.2.3.4.5) = s s A(.)A(...)+s. s A(..)A(..)
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Previously Known Similarities

The KLT (Kawai, Lewellen, Tye) relations:

» Derived from string scattering amplitudes

» (gravity)=(gauge)?.

e

M(1.2.3) = A(1.2.3)A(1.2.3)
M(1.2.3.4) = s34A(1.2.3.4)A(1.2.4.3)
M(1.2.3.4.5) = s.s A(.)A(...)+s_ s A(..)A(..

Decomposition of helicities
> 2=1+1
o B PR A
- 1:l+6or%+%or0+i.
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On-shell Recursion

Basic idea (Britto, Cachazo, Feng, Witten):

» To calculate an amplitude A, choose two external particles
(say 1 and 2) and make the analytic continuation

1] =1]+2z)2l. 2)=[2) —z|1)
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On-shell Recursion

Basic idea (Britto, Cachazo, Feng, Witten):

» To calculate an amplitude A, choose two external particles
(say 1 and 2) and make the analytic continuation

1] =11]+22], [2)=[2)-2z1)

» If A(z) — 0 as z — ~, use Cauchy’s Theorem

A0 = L f o) _ 5 ResAl) _ 5~ Ae)nt

2 sz

i

» Expressions are more compact, but contain (apparent)
unphysical poles.
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Conditions of Use

But what about the condition A(z) — 0 as z — ~?
» For gauge theory, you can consider " worst Feynman diagram”

» Behaviour is often better.
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Conditions of Use

But what about the condition A(z) — 0 as z — ~?
» For gauge theory, you can consider " worst Feynman diagram”
» Behaviour is often better.
Gravity then?
» "Worst Feynman diagram” gives really bad estimates.
» The KLT relations are often just as bad.

» Really, the behaviour is much better because of large,
unexplained cancellations.
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Conditions of Use

But what about the condition A(z) — 0 as z — ~?
» For gauge theory, you can consider " worst Feynman diagram”
» Behaviour is often better.
Gravity then?
» "Worst Feynman diagram” gives really bad estimates.
» The KLT relations are often just as bad.

» Really, the behaviour is much better because of large,
unexplained cancellations.

Conclusion:
» We can do recursion on gravity amplitudes,

» but we cannot strictly prove we are right (in general).
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MHV Rules for Gauge Theory

The Parke—Taylor Amplitudes:
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MHV Rules for Gauge Theory

The Parke—Taylor Amplitudes:

(1i)4
AL, i oen?) = — i (MHV)
(12)( :ﬁ ..... i nl)

MHV Rules (Cachazo, Svréek, Witten):

» Compute amplitudes by stringing together MHV vertices and
scalar propagators.

» For internal lines, subtract sufficient momentum to put it
on-shell,

—P2 1) |P”) = P|y] = P,o".7f

2P.n " |

H™ a3

P, — P —P, -

irsa: 06120026 Page 19/58



MHV Rules for Gauge Theory

The Parke—Taylor Amplitudes:

{_; “'}4
ME sty (MHV)
(12)(23) - - - (n1)

MHV Rules (Cachazo, Svréek, Witten):

» Compute amplitudes by stringing together MHV vertices and
scalar propagators.

» For internal lines, subtract sufficient momentum to put it
on-shell,

P2

2P-r;”‘u. [Py = Plpl = Puolit®

B~ aa

P, — P —P, -

Deep connection to twistor string theory.
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MHV Rules: An Example

Example diagram from A(17.27.37.47.57.6™):

3+ 4+

N /.

1~ 6+
(12} 1 ((—P”)5)*
(12)(23)(3P°)(P"1) P2 (45)(56)(6(—P"))((—P")4)
(12)3 1 (5(4 + 6)n]*

i (23)(3(1 + 2)n](1(2 + 3)n] P? (45)(56)(6(4 + 5)n](4(5 + 6)1]
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MHV Rules from Recursion

MHV rules can also be seen as coming from recursion (K.R.)

» To calculate an NMHV amplitude Anmuv(my . m; . my ),
make the analytic continuation

e

|my] = |m] + z|n](mam3). |m] = .
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MHYV Rules from Recursion

MHYV rules can also be seen as coming from recursion (K.R.)

» To calculate an NMHV amplitude Anmuv(my . my . m3),
make the analytic continuation

|m1] = |m] + z|n](mams). |ma] = ...

» T his splits the amplitude into

__ s 1 3
Y Amnv(my . P; ....)EAMHV(mZ.mg._Pﬁ....)
i i
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MHYV Rules from Recursion

MHV rules can also be seen as coming from recursion (K.R.)

» To calculate an NMHV amplitude Anmuv(my . m; . m3).
make the analytic continuation

|| = |mq] + z|n](mam3). |mp] =

» T his splits the amplitude into

1
B ] A,

ZAMHV(EII_'EF_' )P2

» We must use |mj;] instead of |m;] but it doesn’t appear in the
MHV expression.

> P; = Pi — z|my)(mymz)[n] = |P;) x |Pn]
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MHV Rules from Recursion, continued

What if there are more than three negative helicity gluons (say,
four)?

» Choose some analytic continuation
|m;] = [my] + zaj|n]

» T his splits the amplitude into

1
> ANMHV (Zi) 57 AMHV (Z)

Pirsa: 06120026 Page 25/58



MHV Rules from Recursion, continued

What if there are more than three negative helicity gluons (say,
four)?

» Choose some analytic continuation
|m;] = [my] + zaj|n]

» T his splits the amplitude into

1
> ANMHV (Zi) 57 AMHV (Zi)

» Then make a similar analytic continuation + some tweaks and
twists, and you get the MHV rules.
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MHV Rules from Recursion, continued

What if there are more than three negative helicity gluons (say,
four)?

» Choose some analytic continuation
|[m;] = |mj] + zaj|n]

» T his splits the amplitude into

1
b3 ANMHV (Zi) 57 AMHV (Z)

» Then make a similar analytic continuation + some tweaks and
twists, and you get the MHV rules.

What is required for this to work in general?
» The concept of an MHV amplitude.

pisaosszozs - An N"MHV amplitude must — z7" as z — oc. page 27158



MHV Rules for Gravity

Amazingly, this seems to work for (super)gravity also
(Bjerrum-Bohr, Dunbar, Ita, Perkins, K.R.):

» Gravity has the concept of MHV amplitudes (get them from
e.g. the KLT relations).

» Gravity MHV amplitudes depend on |]'s too, so things are not
as simple as for gauge theory.

» Is there a relation to a twistor formulation of (super)gravity?
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MHV Rules for Gravity

Amazingly, this seems to work for (super)gravity also
(Bjerrum-Bohr, Dunbar, Ita, Perkins, K.R.):

» Gravity has the concept of MHV amplitudes (get them from
e.g. the KLT relations).

» Gravity MHV amplitudes depend on |]|'s too, so things are not
as simple as for gauge theory.

» Is there a relation to a twistor formulation of (super)gravity?
There's a problem, of course:

» We can't prove the asymptotic behaviour as z — .

» Actual behaviour is way better than the naive expectation.

» Understanding of (super)gravity depends on validity of certain
recursion relations.

irsa: 06120026 Page 29/58



Contents

Pirsa: 06120026

1

3

4

. Preliminaries
. MHV Constructions
. One-Loop Structure

. All-Loops, Conclusion, Outlook, etc.

Page 30/58



Structure of One-Loop Amplitudes

By using various reduction methods, any massless one-loop
amplitude can be written as a linear combination of scalar integrals:

A Y

Y +) d +Zek%<>€+f?
i Jj k

/] N
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Structure of One-Loop Amplitudes

By using various reduction methods, any massless one-loop
amplitude can be written as a linear combination of scalar integrals:

A Y

Y ¢ +) d +Zek%<>é+f?
i j k

/] N

In N =4 SYM, a cancellation reduces this to boxes only:

» Naively, an n-point one-loop diagram can have up to n powers
of loop momentum in the numerator (and n propagators).

» N =4 SUSY reduces this to n — 4.

» Each power of loop momentum in the numerator can remove
a propagator, so there are four left.
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The No-Triangle Hypothesis

What about A" = 8 SUGRA?

» Naively, a one-loop n-point amplitude can have up to 2n
powers of loop momentum in the numerator.

» N = 8 SUSY reduces this to 2n — 8.

» Lots of loop momenta left in the numerator to cancel
propagators.
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The No-Triangle Hypothesis

What about ' = 8 SUGRA?

» Naively, a one-loop n-point amplitude can have up to 2n
powers of loop momentum in the numerator.

» N = 8 SUSY reduces this to 2n — 8.

» Lots of loop momenta left in the numerator to cancel
propagators.

Experience shows that it might be better, though:

» At tree level gravity is " better behaved” than e.g. the KLT
relations suggest.

» There could be cancellations across diagrams.

No general methods exhibit this better behaviour, so we have to
calculate. . .
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Quadruple Cuts
AN Y

Y ¢ +Y 4 +Zek>Oé+R
, j. :

7 N

How to compute a box coefficient (Britto, Cachazo, Feng):

» In the (complex) space of loop momentum, there is a place
where the four internal propagators go on shell.
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Quadruple Cuts
AN Y

Y ¢ +> 4 +Zek>Oé+R
J k

S I N

How to compute a box coefficient (Britto, Cachazo, Feng):

» In the (complex) space of loop momentum, there is a place
where the four internal propagators go on shell.

» This gives four overlapping " poles” whose residue can be
computed.

irsa: 06120026
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Quadruple Cuts
AN Y

Zc; —I—ZOS +Zek>Oé+R
J k

S I N

How to compute a box coefficient (Britto, Cachazo, Feng):

» In the (complex) space of loop momentum, there is a place
where the four internal propagators go on shell.

» This gives four overlapping " poles” whose residue can be
computed.

» Only the box in question contributes to this residue, so it is
essentially the coefficient.
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Quadruple Cuts
AN Y/

Zc; +de -I-ZEW%Q%-I-R
J k

S R N

How to compute a box coefficient (Britto, Cachazo, Feng):

» In the (complex) space of loop momentum, there is a place
where the four internal propagators go on shell.

» This gives four overlapping " poles” whose residue can be
computed.

» Only the box in question contributes to this residue, so it is
essentially the coefficient.

» The residue is just the product of the four ‘corner amplitudes’
on the condition that internal momenta be on-shell.
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SUGRA at One-Loop

(Bern, Bjerrum-Bohr, Dunbar, Ita, Perkins, K.R.)
Step 1, boxes:

» Box coefficeients reduce to products of trees. This is taken
care of by the KLT relation or recursion relations.

» General trend: Boxes account for all IR divergences.

» This can probably be proven using recursion relations (but we
still don’t have a failsafe proof of those).
Step 2, triangles:
» One- and two-mass triangles ruled out by IR divergences.

» Three-mass triangles can be shown to vanish at n < 7 by
looking at triple cuts.
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"0Old” Unitarity Cuts

Jo XD TE

:j2

» Two internal momenta are put on-shell. This makes the
integrand simple.

» Remember to sum over SUSY multiplet.

» Try to guess/compute what expression the cut came from,
preferably without doing the integration.

One method is to write the integrand as
1 1
Z it Z:d“—i +e.
iJ J k
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SUGRA at One-Loop, continued

Step 3, bubbles:

» Do the recursive shift
W] =kl +zlk], k) = |k) +z|h)

on the integrand.
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SUGRA at One-Loop, continued

Step 3, bubbles:
» Do the recursive shift

Ih] = |h] +z|b].  [k) = |b) +z|h)

on the integrand.

» If the integrand goes as z~1 or better, there must be at least
one more propagator, and thus no bubbles.
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SUGRA at One-Loop, continued

Step 3, bubbles:
» Do the recursive shift

(] = |kl +z|k].  [k) = |k) + z|h)

on the integrand.

» If the integrand goes as z~1 or better, there must be at least
one more propagator, and thus no bubbles.

» If there is no SUSY multiplet summation, recursion should
work on both amplitudes, giving z=! from each.

» |f there is SUSY multiplet summation, recursion ought fail,
but the summation always saves us by providing z—38.
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"0OIld” Unitarity Cuts

[ XD TE

|j2

» Two internal momenta are put on-shell. This makes the
integrand simple.

» Remember to sum over SUSY multiplet.

» Try to guess/compute what expression the cut came from,
preferably without doing the integration.

One method is to write the integrand as
1 1
Z it deL—E +e.
iJ J k
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SUGRA at One-Loop, continued

Step 3, bubbles:
» Do the recursive shift

Ih] = |h] + z|b]. b) = |b) + z|h)

on the integrand.

» If the integrand goes as z~1 or better, there must be at least
one more propagator, and thus no bubbles.

» If there is no SUSY multiplet summation, recursion should
work on both amplitudes, giving z=! from each.

» |f there is SUSY multiplet summation, recursion ought fail,
but the summation always saves us by providing z—32.
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SUGRA at One-Loop, continued

Step 3, bubbles:
» Do the recursive shift

P

W] = |h] +z|k],  [k) = |k) +z|h)

on the integrand.

» If the integrand goes as z~1 or better, there must be at least
one more propagator, and thus no bubbles.

» |f there is no SUSY multiplet summation, recursion should
work on both amplitudes, giving z=! from each.

» |f there is SUSY multiplet summation, recursion ought fail,
but the summation always saves us by providing z—38.

Step 4, rationals:

» Would be sort of freaky, now that the triangles and bubbles
aren't there.
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The Body of Evidence

» Loads of circumstancial evidence.
» Proof forn <6

» Limits and factorization: Let two momenta go collinear in an
n-point amplitude; that gives you the n — 1-point.

» |f triangles, bubbles and rationals appear at high n, how could
they disappear at low n?
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The Body of Evidence

» Loads of circumstancial evidence.
» Proof forn <6

» Limits and factorization: Let two momenta go collinear in an
n-point amplitude; that gives you the n — 1-point.

» |f triangles, bubbles and rationals appear at high n, how could
they disappear at low n?

Conclusion: The No-Triangle Hypothesis is now a firm conjecture.

Caveat: Our arguments always end up using recursion relations in
some form. Those are not strictly proven.
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Could N’ = 8 Supergravity be UV Finite?

» We have seen that N’ = 4 and \" = 8 are very similar at tree
level.

» [he methods used here primarily run on tree level input.
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Could N' = 8 Supergravity be UV Finite?

» We have seen that V' = 4 and A\ = 8 are very similar at tree
level.

» [ he methods used here primarily run on tree level input.

» |f the No-Triangle Conjecture is true, one-loop looks similar in
N =4 SYM and N =8 SUGRA.
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Could N = 8 Supergravity be UV Finite?

» We have seen that V' =4 and \" = 8 are very similar at tree
level.

» [ he methods used here primarily run on tree level input.

» |f the No-Triangle Conjecture is true, one-loop looks similar in
N =4 5SYM and N =8 SUGRA.

» Why should this stop at one-loop? Apparently it doesn't:
Two- and three-loop confirm the general picture of similarity
(Bern, Dixon, Roiban, Kosower, Perelstein, Rozowsky ).

» Input from other directions (Green, Risso, Vanhove)

» Next week there's even a conference about it!
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A New Symmetry?

» The uexplained cancellations may be due to an unknown
symmetry of N' =8 SUGRA

» Supersymmetry doesn't seem to be the whole answer.
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A New Symmetry?

irsa: 06120026

» The uexplained cancellations may be due to an unknown
symmetry of N =8 SUGRA

» Supersymmetry doesn’t seem to be the whole answer.

» \" =4 SYM has super-conformal symmetry.

A

M(1.2.3.4) = s33A(1.2.3.4)A(1.2.4.3)
(N=8 + 77) = (N=4 |+ oonf)

Where does the conformal symmetry go? No simple answer.
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Conclusion

» Recent methods are a leap forward in understanding.
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Conclusion

» Recent methods are a leap forward in understanding.
» [ree-level feeds into loop-level more than expected.
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Conclusion

» Recent methods are a leap forward in understanding.
» [Iree-level feeds into loop-level more than expected.

» Perturbative ' = 8 supergravity seems closely related to
N = 4 super-Yang—Mills, particularly wrt. UV behaviour.
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Conclusion

» Recent methods are a leap forward in understanding.
» Iree-level feeds into loop-level more than expected.

» Perturbative ' = 8 supergravity seems closely related to
N = 4 super-Yang—Mills, particularly wrt. UV behaviour.

» There's something out there waiting to be discovered ...
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