Title: Similarities Between Maximally Supersymmetric Gauge and Gravity Theories

Date: Dec 05, 2006 04:45 PM

URL: http://pirsa.org/06120026

Abstract: Due to recent, as well as less recent, work on perturbative N=8 supergravity and N=4 super Yang-Mills in 4d, the two theories are appearing more and more closely related. These relations include similar \"MHV-rule\" constructions, one-loop structure and, perhaps, the same UV behavior, namely UV finiteness. This talk introduces some of the methods to study the relations.

Pirsa: 06120026 Page 1/58

About the Talk

- On the surface, it'll be about SYM/SUGRA duality.
- But it's also really about the methods underlying it. These methods are quite general.
- I'll focus particularly on how scaling behaviour of tree amplitudes and on-shell recursion lie behind most of the insight.

Pirsa: 06120026 Page 2/58

Contents

- 1. Preliminaries
- 2. MHV Constructions
- 3. One-Loop Structure
- 4. All-Loops, Conclusion, Outlook, etc.

Pirsa: 06120026 Page 3/58

Contents

- 1. Preliminaries
- 2. MHV Constructions
- 3. One-Loop Structure
- 4. All-Loops, Conclusion, Outlook, etc.

Pirsa: 06120026 Page 4/58

$\mathcal{N}=4$ Super-Yang-Mills

- ▶ The maximally supersymmetric gauge theory in 4d
- Contains one vector, four spin-¹/₂ fermions, and 3 complex scalars; all in the adjoint.
- Low-energy limit of the compactified open superstring.
- Has superconformal symmetry
- UV finite.

Pirsa: 06120026 Page 5/58

$\mathcal{N}=8$ Supergravity

In general:

- ▶ The maximally supersymmetric gravity theory in 4d
- ► Contains one graviton, eight spin- $\frac{3}{2}$ fermions, 28 vectors, 56 spin- $\frac{1}{2}$ fermions, and 35 complex scalars.
- ▶ Dim. reduction of $\mathcal{N}=1$ SUGRA in 11d, and low-energy limit of the compactified closed superstring.

Pirsa: 06120026 Page 6/58

$\mathcal{N}=8$ Supergravity

In general:

- The maximally supersymmetric gravity theory in 4d
- ► Contains one graviton, eight spin- $\frac{3}{2}$ fermions, 28 vectors, 56 spin- $\frac{1}{2}$ fermions, and 35 complex scalars.
- ▶ Dim. reduction of $\mathcal{N}=1$ SUGRA in 11d, and low-energy limit of the compactified closed superstring.

Perturbation theory:

- ▶ Feynman vertices go as (momentum)², all order vertices.
- Dimensionful coupling constant.
- $ightharpoonup \mathcal{N} < 8$ gravity is known to be non-renormalizable.
- Any Feynman diagram calculation is hideous.

Pirsa: 06120026 Page 7/58

Notation

Colour ordering:

 One can identify gaugle invariant sub-amplitudes with a cyclic ordering,

$$A(1_a, 2_b, 3_c, 4_d) = \text{Tr}(t_a t_b t_c t_d) A(1, 2, 3, 4)$$

 $+ \text{Tr}(t_a t_b t_d t_c) A(1, 2, 4, 3)$
 $+ \text{Tr}(t_a t_d t_b t_c) A(1, 4, 2, 3) + \dots$

Pirsa: 06120026 Page 8/58

Notation

Colour ordering:

 One can identify gaugle invariant sub-amplitudes with a cyclic ordering,

$$A(1_a, 2_b, 3_c, 4_d) = Tr(t_a t_b t_c t_d) A(1, 2, 3, 4)$$

+ $Tr(t_a t_b t_d t_c) A(1, 2, 4, 3)$
+ $Tr(t_a t_d t_b t_c) A(1, 4, 2, 3) + \dots$

Spinor helicity notation:

Massless momenta described by their Weyl spinors:

$$p_{\mu}\sigma^{\mu}_{a\dot{a}} = \lambda_{a}\widetilde{\lambda}_{\dot{a}} = |p\rangle[p]$$

Polarizations chosen according to helicity

$$\epsilon_{\mu}^{+}(p) = \frac{\langle q | \sigma_{\mu} | p \rangle}{\sqrt{2} \langle q p \rangle}, \qquad \epsilon_{\mu}^{-}(p) = \frac{[q | \sigma_{\mu} | p \rangle}{\sqrt{2} [q p]}$$

Previously Known Similarities

The KLT (Kawai, Lewellen, Tye) relations:

- Derived from string scattering amplitudes
- ▶ (gravity)=(gauge)².

$$M(1,2,3) = A(1,2,3)\widetilde{A}(1,2,3)$$

 $M(1,2,3,4) = s_{34}A(1,2,3,4)\widetilde{A}(1,2,4,3)$
 $M(1,2,3,4,5) = s_{...}s_{...}A(...)\widetilde{A}(...) + s_{...}s_{...}A(...)\widetilde{A}(...)$

Pirsa: 06120026 Page 10/58

Previously Known Similarities

The KLT (Kawai, Lewellen, Tye) relations:

- Derived from string scattering amplitudes
- ▶ (gravity)=(gauge)².

$$M(1,2,3) = A(1,2,3)\widetilde{A}(1,2,3)$$

 $M(1,2,3,4) = s_{34}A(1,2,3,4)\widetilde{A}(1,2,4,3)$
 $M(1,2,3,4,5) = s_{...}s_{...}A(...)\widetilde{A}(...) + s_{...}s_{...}A(...)\widetilde{A}(...)$

Decomposition of helicities

$$\triangleright$$
 2 = 1 + $\widetilde{1}$

$$ightharpoonup rac{3}{2} = 1 + rac{1}{2} \text{ or } rac{1}{2} + \widetilde{1}$$

$$1 = 1 + \widetilde{0} \text{ or } \frac{1}{2} + \widetilde{\frac{1}{2}} \text{ or } 0 + \widetilde{1}.$$

On-shell Recursion

Basic idea (Britto, Cachazo, Feng, Witten):

➤ To calculate an amplitude A, choose two external particles (say 1 and 2) and make the analytic continuation

$$|\widehat{1}| = |1| + z|2|, \qquad |\widehat{2}\rangle = |2\rangle - z|1\rangle$$

Pirsa: 06120026 Page 12/58

On-shell Recursion

Basic idea (Britto, Cachazo, Feng, Witten):

➤ To calculate an amplitude A, choose two external particles (say 1 and 2) and make the analytic continuation

$$|\widehat{1}| = |1| + z|2|, \qquad |\widehat{2}\rangle = |2\rangle - z|1\rangle$$

▶ If $A(z) \to 0$ as $z \to \infty$, use Cauchy's Theorem

$$A(0) = \frac{1}{2\pi i} \oint dz \frac{A(z)}{z} = -\sum_{i} \frac{\operatorname{Res}_{i} A(z)}{z_{i}} = \sum_{i} \frac{A_{L}(z) A_{R}(z)}{P_{i}^{2}}$$

 Expressions are more compact, but contain (apparent) unphysical poles.

Conditions of Use

But what about the condition $A(z) \to 0$ as $z \to \infty$?

- ► For gauge theory, you can consider "worst Feynman diagram"
- Behaviour is often better.

Pirsa: 06120026 Page 14/58

Conditions of Use

But what about the condition $A(z) \to 0$ as $z \to \infty$?

- ► For gauge theory, you can consider "worst Feynman diagram"
- Behaviour is often better.

Gravity then?

- "Worst Feynman diagram" gives really bad estimates.
- The KLT relations are often just as bad.
- Really, the behaviour is much better because of large, unexplained cancellations.

Pirsa: 06120026 Page 15/58

Conditions of Use

But what about the condition $A(z) \to 0$ as $z \to \infty$?

- For gauge theory, you can consider "worst Feynman diagram"
- Behaviour is often better.

Gravity then?

- "Worst Feynman diagram" gives really bad estimates.
- The KLT relations are often just as bad.
- Really, the behaviour is much better because of large, unexplained cancellations.

Conclusion:

- We can do recursion on gravity amplitudes,
- but we cannot strictly prove we are right (in general).

Pirsa: 06120026 Page 16/58

Contents

- 1. Preliminaries
- 2. MHV Constructions
- 3. One-Loop Structure
- 4. All-Loops, Conclusion, Outlook, etc.

Pirsa: 06120026 Page 17/58

MHV Rules for Gauge Theory

The Parke-Taylor Amplitudes:

$$A(1^{\pm}, 2^{+}, 3^{+}, \dots, n^{+}) = 0$$

$$A(1^{-}, \dots, i^{-}, \dots, n^{+}) = \frac{\langle 1i \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle} \quad (MHV)$$

Pirsa: 06120026 Page 18/58

MHV Rules for Gauge Theory

The Parke-Taylor Amplitudes:

$$A(1^{\pm}, 2^{+}, 3^{+}, \dots, n^{+}) = 0$$

$$A(1^{-}, \dots, i^{-}, \dots, n^{+}) = \frac{\langle 1i \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle} \quad (MHV)$$

MHV Rules (Cachazo, Svrček, Witten):

- Compute amplitudes by stringing together MHV vertices and scalar propagators.
- For internal lines, subtract sufficient momentum to put it on-shell,

$$P_{\mu} \longrightarrow P_{\mu}^{\flat} = P_{\mu} - \frac{P^2}{2P \cdot \eta} \eta_{\mu}, \qquad |P^{\flat}\rangle = P|\eta] = P_{\mu} \sigma_{a\dot{a}}^{\mu} \widetilde{\eta}^{\dot{a}}$$

MHV Rules for Gauge Theory

The Parke-Taylor Amplitudes:

$$A(1^{\pm}, 2^{+}, 3^{+}, \dots, n^{+}) = 0$$

$$A(1^{-}, \dots, i^{-}, \dots, n^{+}) = \frac{\langle 1i \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle} \quad (MHV)$$

MHV Rules (Cachazo, Svrček, Witten):

- Compute amplitudes by stringing together MHV vertices and scalar propagators.
- For internal lines, subtract sufficient momentum to put it on-shell,

$$P_{\mu} \longrightarrow P_{\mu}^{\flat} = P_{\mu} - \frac{P^2}{2P \cdot \eta} \eta_{\mu}, \qquad |P^{\flat}\rangle = P|\eta] = P_{\mu} \sigma_{a\dot{a}}^{\mu} \widetilde{\eta}^{\dot{a}}$$

Deep connection to twistor string theory.

MHV Rules: An Example

Example diagram from $A(1^-, 2^-, 3^+, 4^+, 5^-, 6^+)$:

$$\frac{\langle 12 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 3P^{\flat} \rangle \langle P^{\flat} 1 \rangle} \frac{1}{P^{2}} \frac{\langle (-P^{\flat})5 \rangle^{4}}{\langle 45 \rangle \langle 56 \rangle \langle 6(-P^{\flat}) \rangle \langle (-P^{\flat})4 \rangle}$$

$$= \frac{\langle 12 \rangle^{3}}{\langle 23 \rangle \langle 3(1+2)\eta] \langle 1(2+3)\eta]} \frac{1}{P^{2}} \frac{\langle 5(4+6)\eta]^{4}}{\langle 45 \rangle \langle 56 \rangle \langle 6(4+5)\eta] \langle 4(5+6)\eta]}$$

MHV Rules from Recursion

MHV rules can also be seen as coming from recursion (K.R.)

► To calculate an NMHV amplitude $A_{\text{NMHV}}(m_1^-, m_2^-, m_3^-)$, make the analytic continuation

$$\left|\widehat{m}_{1}\right] = \left|m_{1}\right| + z\left|\eta\right| \langle m_{2}m_{3}\rangle, \qquad \left|\widehat{m}_{2}\right| = \dots$$

Pirsa: 06120026 Page 22/58

MHV Rules from Recursion

MHV rules can also be seen as coming from recursion (K.R.)

To calculate an NMHV amplitude A_{NMHV} (m₁⁻, m₂⁻, m₃⁻), make the analytic continuation

$$\left|\widehat{m}_{1}\right] = \left|m_{1}\right] + z\left|\eta\right| \langle m_{2}m_{3}\rangle, \qquad \left|\widehat{m}_{2}\right] = \dots$$

► This splits the amplitude into

$$\sum_{i} A_{\text{MHV}}(\widehat{m}_{1}^{-}, \widehat{P}_{i}^{-}, \dots) \frac{1}{P_{i}^{2}} A_{\text{MHV}}(\widehat{m}_{2}^{-}, \widehat{m}_{3}^{-}, -\widehat{P}_{i}^{+}, \dots)$$

Pirsa: 06120026 Page 23/58

MHV Rules from Recursion

MHV rules can also be seen as coming from recursion (K.R.)

To calculate an NMHV amplitude A_{NMHV} (m₁⁻, m₂⁻, m₃⁻), make the analytic continuation

$$\left|\widehat{m}_{1}\right] = \left|m_{1}\right] + z\left|\eta\right| \langle m_{2}m_{3}\rangle, \qquad \left|\widehat{m}_{2}\right] = \dots$$

► This splits the amplitude into

$$\sum_{i} A_{\text{MHV}}(\widehat{m}_{1}^{-}, \widehat{P}_{i}^{-}, \ldots) \frac{1}{P_{i}^{2}} A_{\text{MHV}}(\widehat{m}_{2}^{-}, \widehat{m}_{3}^{-}, -\widehat{P}_{i}^{+}, \ldots)$$

- ▶ We must use $|\widehat{m}_j|$ instead of $|m_j|$ but it doesn't appear in the MHV expression.
- $\widehat{P}_i = P_i z |m_1\rangle \langle m_2 m_3\rangle [\eta| \Rightarrow |\widehat{P}_i\rangle \propto |P_i \eta]$

MHV Rules from Recursion, continued

What if there are more than three negative helicity gluons (say, four)?

Choose some analytic continuation

$$[\widehat{m}_j] = [m_j] + za_j[\eta]$$

► This splits the amplitude into

$$\sum_{i} A_{\text{NMHV}}(z_i) \frac{1}{P_i^2} A_{\text{MHV}}(z_i)$$

Pirsa: 06120026 Page 25/58

MHV Rules from Recursion, continued

What if there are more than three negative helicity gluons (say, four)?

Choose some analytic continuation

$$[\widehat{m}_j] = [m_j] + za_j[\eta]$$

▶ This splits the amplitude into

$$\sum_{i} A_{\text{NMHV}}(z_i) \frac{1}{P_i^2} A_{\text{MHV}}(z_i)$$

Then make a similar analytic continuation + some tweaks and twists, and you get the MHV rules.

Pirsa: 06120026 Page 26/58

MHV Rules from Recursion, continued

What if there are more than three negative helicity gluons (say, four)?

Choose some analytic continuation

$$[\widehat{m}_j] = [m_j] + za_j[\eta]$$

▶ This splits the amplitude into

$$\sum_{i} A_{\text{NMHV}}(z_i) \frac{1}{P_i^2} A_{\text{MHV}}(z_i)$$

Then make a similar analytic continuation + some tweaks and twists, and you get the MHV rules.

What is required for this to work in general?

- ▶ The concept of an MHV amplitude.
- Pirsa: 06120026 An NⁿMHV amplitude must $\rightarrow z^{-n}$ as $z \rightarrow \infty$.

MHV Rules for Gravity

Amazingly, this seems to work for (super)gravity also (Bjerrum-Bohr, Dunbar, Ita, Perkins, K.R.):

- Gravity has the concept of MHV amplitudes (get them from e.g. the KLT relations).
- ▶ Gravity MHV amplitudes depend on |·]'s too, so things are not as simple as for gauge theory.
- Is there a relation to a twistor formulation of (super)gravity?

Pirsa: 06120026 Page 28/58

MHV Rules for Gravity

Amazingly, this seems to work for (super)gravity also (Bjerrum-Bohr, Dunbar, Ita, Perkins, K.R.):

- Gravity has the concept of MHV amplitudes (get them from e.g. the KLT relations).
- ▶ Gravity MHV amplitudes depend on |·]'s too, so things are not as simple as for gauge theory.
- Is there a relation to a twistor formulation of (super)gravity?

There's a problem, of course:

- ▶ We can't prove the asymptotic behaviour as $z \to \infty$.
- Actual behaviour is way better than the naïve expectation.
- Understanding of (super)gravity depends on validity of certain recursion relations.

Pirsa: 06120026 Page 29/58

Contents

- 1. Preliminaries
- 2. MHV Constructions
- 3. One-Loop Structure
- 4. All-Loops, Conclusion, Outlook, etc.

Pirsa: 06120026 Page 30/58

Structure of One-Loop Amplitudes

By using various reduction methods, any massless one-loop amplitude can be written as a linear combination of scalar integrals:

$$\sum_{i} c_{i} + \sum_{j} d_{j} + \sum_{k} e_{k} + \sum_{k} e_{k}$$

Pirsa: 06120026 Page 31/58

Structure of One-Loop Amplitudes

By using various reduction methods, any massless one-loop amplitude can be written as a linear combination of scalar integrals:

$$\sum_{i} c_{i} + \sum_{j} d_{j} + \sum_{k} e_{k} + \sum_{k} e_{k}$$

In $\mathcal{N}=4$ SYM, a cancellation reduces this to boxes only:

- Naïvely, an n-point one-loop diagram can have up to n powers of loop momentum in the numerator (and n propagators).
- $\mathcal{N}=4$ SUSY reduces this to n-4.
- Each power of loop momentum in the numerator can remove a propagator, so there are four left.

The No-Triangle Hypothesis

What about $\mathcal{N} = 8$ SUGRA?

- Naïvely, a one-loop n-point amplitude can have up to 2n powers of loop momentum in the numerator.
- $\mathcal{N}=8$ SUSY reduces this to 2n-8.
- Lots of loop momenta left in the numerator to cancel propagators.

Pirsa: 06120026 Page 33/58

The No-Triangle Hypothesis

What about $\mathcal{N} = 8$ SUGRA?

- Naïvely, a one-loop n-point amplitude can have up to 2n powers of loop momentum in the numerator.
- $\mathcal{N}=8$ SUSY reduces this to 2n-8.
- Lots of loop momenta left in the numerator to cancel propagators.

Experience shows that it might be better, though:

- At tree level gravity is "better behaved" than e.g. the KLT relations suggest.
- There could be cancellations across diagrams.

No general methods exhibit this better behaviour, so we have to calculate...

Pirsa: 06120026 Page 34/58

Quadruple Cuts

How to compute a box coefficient (Britto, Cachazo, Feng):

In the (complex) space of loop momentum, there is a place where the four internal propagators go on shell.

Pirsa: 06120026 Page 35/58

Quadruple Cuts

$$\sum_{i} c_{i} + \sum_{j} d_{j} + \sum_{k} e_{k} + \sum_{k} e_{k}$$

How to compute a box coefficient (Britto, Cachazo, Feng):

- In the (complex) space of loop momentum, there is a place where the four internal propagators go on shell.
- This gives four overlapping "poles" whose residue can be computed.

Quadruple Cuts

$$\sum_{i} c_{i} + \sum_{j} d_{j} + \sum_{k} e_{k} + \sum_{k} e_{k}$$

How to compute a box coefficient (Britto, Cachazo, Feng):

- In the (complex) space of loop momentum, there is a place where the four internal propagators go on shell.
- This gives four overlapping "poles" whose residue can be computed.
- Only the box in question contributes to this residue, so it is essentially the coefficient.

Pirsa: 06120026 Page 37/58

Quadruple Cuts

$$\sum_{i} c_{i} + \sum_{j} d_{j} + \sum_{k} e_{k} + \sum_{k} R$$

How to compute a box coefficient (Britto, Cachazo, Feng):

- In the (complex) space of loop momentum, there is a place where the four internal propagators go on shell.
- This gives four overlapping "poles" whose residue can be computed.
- Only the box in question contributes to this residue, so it is essentially the coefficient.
- The residue is just the product of the four 'corner amplitudes' on the condition that internal momenta be on-shell.

$$c = \frac{1}{2} - \frac{0}{1} + \frac{0}{1} + \frac{1}{2}$$

Pirsa: 06120026

SUGRA at One-Loop

(Bern, Bjerrum-Bohr, Dunbar, Ita, Perkins, K.R.) Step 1, boxes:

- Box coefficeients reduce to products of trees. This is taken care of by the KLT relation or recursion relations.
- General trend: Boxes account for all IR divergences.
- This can probably be proven using recursion relations (but we still don't have a failsafe proof of those).

Step 2, triangles:

- One- and two-mass triangles ruled out by IR divergences.
- ▶ Three-mass triangles can be shown to vanish at $n \le 7$ by looking at triple cuts.

Pirsa: 06120026 Page 39/58

"Old" Unitarity Cuts

$$\int d^D L - \frac{\int_{1/2}^{l_1}}{l_2}$$

- Two internal momenta are put on-shell. This makes the integrand simple.
- Remember to sum over SUSY multiplet.
- Try to guess/compute what expression the cut came from, preferably without doing the integration.

One method is to write the integrand as

$$\sum_{i,j} c_{ij} \frac{1}{L_i^2 L_j^2} + \sum_k d_k \frac{1}{L_k^2} + e.$$

Pirsa: 06120026

Step 3, bubbles:

▶ Do the recursive shift

$$[\widehat{l}_1] = |l_1| + z|l_2|, \qquad |\widehat{l}_2\rangle = |l_2\rangle + z|l_1\rangle$$

on the integrand.

Pirsa: 06120026 Page 41/58

Step 3, bubbles:

Do the recursive shift

$$[\widehat{l}_1] = |l_1| + z|l_2|, \qquad |\widehat{l}_2\rangle = |l_2\rangle + z|l_1\rangle$$

on the integrand.

▶ If the integrand goes as z⁻¹ or better, there must be at least one more propagator, and thus no bubbles.

Pirsa: 06120026 Page 42/58

Step 3, bubbles:

Do the recursive shift

$$[\widehat{l}_1] = |l_1| + z|l_2|, \qquad |\widehat{l}_2\rangle = |l_2\rangle + z|l_1\rangle$$

on the integrand.

- ▶ If the integrand goes as z⁻¹ or better, there must be at least one more propagator, and thus no bubbles.
- ▶ If there is no SUSY multiplet summation, recursion should work on both amplitudes, giving z⁻¹ from each.
- ▶ If there is SUSY multiplet summation, recursion ought fail, but the summation always saves us by providing z^{-8} .

Pirsa: 06120026 Page 43/58

"Old" Unitarity Cuts

$$\int d^D L$$

- Two internal momenta are put on-shell. This makes the integrand simple.
- Remember to sum over SUSY multiplet.
- Try to guess/compute what expression the cut came from, preferably without doing the integration.

One method is to write the integrand as

$$\sum_{i,j} c_{ij} \frac{1}{L_i^2 L_j^2} + \sum_k d_k \frac{1}{L_k^2} + e.$$

Pirsa: 06120026

Step 3, bubbles:

Do the recursive shift

$$[\widehat{l}_1] = |l_1| + z|l_2|, \qquad |\widehat{l}_2\rangle = |l_2\rangle + z|l_1\rangle$$

on the integrand.

- ▶ If the integrand goes as z⁻¹ or better, there must be at least one more propagator, and thus no bubbles.
- ▶ If there is no SUSY multiplet summation, recursion should work on both amplitudes, giving z⁻¹ from each.
- ▶ If there is SUSY multiplet summation, recursion ought fail, but the summation always saves us by providing z^{-8} .

Pirsa: 06120026 Page 45/58

Step 3, bubbles:

Do the recursive shift

$$[\widehat{l}_1] = |l_1| + z|l_2|, \qquad |\widehat{l}_2\rangle = |l_2\rangle + z|l_1\rangle$$

on the integrand.

- ▶ If the integrand goes as z⁻¹ or better, there must be at least one more propagator, and thus no bubbles.
- ▶ If there is no SUSY multiplet summation, recursion should work on both amplitudes, giving z⁻¹ from each.
- ▶ If there is SUSY multiplet summation, recursion ought fail, but the summation always saves us by providing z^{-8} .

Step 4, rationals:

Would be sort of freaky, now that the triangles and bubbles aren't there.

Pirsa: 06120026

The Body of Evidence

- Loads of circumstancial evidence.
- ▶ Proof for $n \le 6$
- ▶ Limits and factorization: Let two momenta go collinear in an n-point amplitude; that gives you the n − 1-point.
- If triangles, bubbles and rationals appear at high n, how could they disappear at low n?

Pirsa: 06120026 Page 47/58

The Body of Evidence

- Loads of circumstancial evidence.
- ▶ Proof for $n \le 6$
- ▶ Limits and factorization: Let two momenta go collinear in an n-point amplitude; that gives you the n − 1-point.
- If triangles, bubbles and rationals appear at high n, how could they disappear at low n?

Conclusion: The No-Triangle Hypothesis is now a firm conjecture.

Caveat: Our arguments always end up using recursion relations in some form. Those are not strictly proven.

Pirsa: 06120026 Page 48/58

Contents

- 1. Preliminaries
- 2. MHV Constructions
- 3. One-Loop Structure
- 4. All-Loops, Conclusion, Outlook, etc.

Pirsa: 06120026 Page 49/58

Could $\mathcal{N} = 8$ Supergravity be UV Finite?

- ▶ We have seen that $\mathcal{N}=4$ and $\mathcal{N}=8$ are very similar at tree level.
- The methods used here primarily run on tree level input.

Pirsa: 06120026 Page 50/58

Could $\mathcal{N} = 8$ Supergravity be UV Finite?

- ▶ We have seen that $\mathcal{N}=4$ and $\mathcal{N}=8$ are very similar at tree level.
- The methods used here primarily run on tree level input.
- If the No-Triangle Conjecture is true, one-loop looks similar in N = 4 SYM and N = 8 SUGRA.

Pirsa: 06120026 Page 51/58

Could $\mathcal{N}=8$ Supergravity be UV Finite?

- ▶ We have seen that $\mathcal{N}=4$ and $\mathcal{N}=8$ are very similar at tree level.
- The methods used here primarily run on tree level input.
- If the No-Triangle Conjecture is true, one-loop looks similar in N = 4 SYM and N = 8 SUGRA.
- Why should this stop at one-loop? Apparently it doesn't: Two- and three-loop confirm the general picture of similarity (Bern, Dixon, Roiban, Kosower, Perelstein, Rozowsky).
- ▶ Input from other directions (Green, Risso, Vanhove)
- Next week there's even a conference about it!

Pirsa: 06120026 Page 52/58

A New Symmetry?

- ▶ The uexplained cancellations may be due to an unknown symmetry of $\mathcal{N}=8$ SUGRA
- Supersymmetry doesn't seem to be the whole answer.

Pirsa: 06120026 Page 53/58

A New Symmetry?

- ▶ The uexplained cancellations may be due to an unknown symmetry of $\mathcal{N}=8$ SUGRA
- Supersymmetry doesn't seem to be the whole answer.
- $\triangleright \mathcal{N} = 4$ SYM has super-conformal symmetry.

$$M(1,2,3,4) = s_{34}A(1,2,3,4)\widetilde{A}(1,2,4,3)$$

 $(\mathcal{N}=8 + ??) = (\mathcal{N}=4 + \text{conf})^2$

Where does the conformal symmetry go? No simple answer.

Pirsa: 06120026 Page 54/58

Recent methods are a leap forward in understanding.

Pirsa: 06120026 Page 55/58

- Recent methods are a leap forward in understanding.
- ▶ Tree-level feeds into loop-level more than expected.

Pirsa: 06120026 Page 56/58

- Recent methods are a leap forward in understanding.
- Tree-level feeds into loop-level more than expected.
- ▶ Perturbative $\mathcal{N}=8$ supergravity seems closely related to $\mathcal{N}=4$ super-Yang-Mills, particularly wrt. UV behaviour.

Pirsa: 06120026 Page 57/58

- Recent methods are a leap forward in understanding.
- Tree-level feeds into loop-level more than expected.
- ▶ Perturbative $\mathcal{N}=8$ supergravity seems closely related to $\mathcal{N}=4$ super-Yang-Mills, particularly wrt. UV behaviour.
- ▶ There's something out there waiting to be discovered . . .

Pirsa: 06120026 Page 58/58