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Abstract: Quantum gravity in an AdS space-time is described by an SU(N) Y ang-Mills theory on a sphere, a bounded many-body system. We argue
that in the high temperature phase the theory is intrinsically non-perturbative in the large N limit. At any nonzero value of the \\\'t Hooft coupling
$lambda$, an exponentially large (in N*2) number of free theory states of wide energy range (of order N) mix under the interaction. As aresult the
planar perturbation theory breaks down. We argue that an arrow of time emerges and the dual string configuration should be interpreted as a stringy
black hole
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Spacelike singularities and time arrow

The equations of general relativity are time symmetric. One often
finds an infrinsic time direction in solutions containing space-like
singularities.

Examples are: FRW cosmologies and gravitational collapse.

The end result of gravitational collapse is a black hole. Since a
black hole behaves like a thermodynamical system the direction of
time appears to have a thermodynamical nature

In AdS spacetime a microscopic understanding of the emergence
of thermodynamical behavior in a gravitational collapse can be
achieved using the AdS/CFT correspondence.




The arrow of time in AdS-CFT

The AdS-CFT correspondence provides a nonperturbative

framework to study the question
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Importance of large \' limit

The large V limit is essential

For finite V the gauge theory on S° is a bounded quantum
mechanical system

® The energy spectrum is discrete
» The theory is time reversible
#» NO thermalization

We have to understand the large V' limit in the gauge theory
at high temperature.




Observables

We study real time two point functions of single trace scalar
operators O(t) of dimension A ~ O(\") at finite 3

Go(t) = Z7HO(t)0(0))3
Gp(t) = .r'Z_E‘F-'-f'r:j[(_'?[r__i.{_)[[i}];-

These correlators describe the linear response of the
system to small perturbations. If the system thermalizes

ity — O 15

(_“T'f_e-f} — U [ — X

And an arrow of time is generated.
Frequently we will work in frequency space G (w)




Plan

® Properties of correlation functions for \' — ~ and A — x

® Show that at each order in the planar perturbation expansion
no time arrow is generated in the gauge theory

® Breakdown of the planar perturbation expansion at high
temperatures

® Emergence of arrow of time for all A = 0 in the large V' limit at
high temperature

® Speculations




The N — o0, A — o0 limit
In the V — ¢ and A\ — x limit we can use classical gravity to
compute SYM correlators
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The N — 00, A — oo limit

Inthe N — o and A — x limit we can use classical gravity to
compute SYM correlators

\ 7 s lecay in time?
“\,xww Do correlators decay in time
- 1 ® s the region behind the
i

/ horizon encoded in the SYM
o carrelation functions?

® What are the signatures of the
singularity in the gauge theory

S3f inthe N — ~, A — ~ limit?

| ® Do this signatures go away at

Y~ RSN finite N or finite A?
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Analytic structure of G (w)

#® The presence of the
horizon implies a
continuous spectrum for
(¥_[-,¢,'?

® The complex w« plane
Is divided in sectors
by lines of quasinor-
mal  poles

# The poles are away from the real axis implying
exponential decay in time for G(¢

# An arrow of time is generated.
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Geodesics and Correlators

In the large A limit G () has a direct relation with spacelike
geodesics in the bulk:

For » = R the geodesic probes the Euclidean section of the Black
Hole, UV-IR connection, a spacelike coordinate is generated

holographically
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Geodesics and Correlators

In the large A limit G(w) has a direct relation with spacelike
geodesics in the bulk:

For w < iR the geodesic probes the Lorentzian section of the Black
Hole and the region beyond the horizon. As w — ix it approaches
the singularity. A time-like coordinate is generated holographically.

w

N
__z" L
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Summary

We studied the signatures of the presence of the black hole

singularity in the gauge theory correlation functions in the

N — o, A — oc limit:

» New asymptotic regions for ¢ (.-) open up because of
the presence of lines of quasi-normal poles.

» The presence of the black hole singularity is encoded in
the behaviour of G (w) for » — ix

® (. (w)has a continuous spectrum.

® All poles are away from the real axis = () decays as
L — X
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At finite NV the SYM theory on S* is a bounded quantum mechanical
system therefore G, (w) has a discrete spectrum

(_.-1:+| 5 :' = Z fl 11[_\, — Lt ]'
T

#® All signatures of the singularity disappear! No time arrow.
® Quantum gravity effects (finite V') should resolve the singularity.

® What about o’ corrections (finite \)?
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Many questions arise

® Do the featuresof G.(w)found at A — < and N — x
survive at finite \?
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Many questions arise

® Do the featuresof G (w)found at A — < and N — x
survive at finite \?

» What is the physical mechanism for the emergence of
an arrow of time in the large \V limit of the gauge
theory?

# |s there a qualitative change at a finite value of A in the
properties of real time correlation functions in the
N — ¢ limit?
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Plan

Properties of correlation functions for \' — ~c and A — x

Show that at each order in the planar perturbation
expansion no time arrow is generated in the gauge
theory

Breakdown of the planar perturbation expansion at high
temperatures

Emergence of arrow of time for all A = 0 in the large NV limit at
high temperature

Speculations
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The model

We will consider matrix models like:

.“_{: —tl / dt Z{ DM, Y -'H'r_ —:\_.:‘;]urﬂ— M,)

® [(V) gauge symmetry

® ., # 0= the theory has a mass gap
® V' (M,)isasum of single traces

® There are at least two matrices

N =41 SYM on S° is of this form.
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High temperature phase

In the large V' limit these thearies have a phase transition at
['=T. such that

F(T) ~O(N")., S(T)~O(NY) for T <T.
F(T) ~O(N?. S(T)~O(N? for T >T.

# The high temperature phase has been displayed both in
the weakly interacting regime and in the
strongly interacting one
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Planar perturbation theory I

At A = 0 the spectrum is discrete. O is a single trace of O(1) length
and mediates the exchange of a finite number of excitations =
Correlators are quasi-periodic.

In the case w, =wg 7a we obtain:

Giw)=) g5y A0 (w — hup)
wherel=0.1...n k=n—-2A.....n+2A

® At each order in perturbation theory only a finite number of
frequencies appear

® Quasi-periodic behavior; no thermalization at weak coupling?
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Plan

Properties of correlation functions for \' — ~ and A — x

Show that at each order in the planar perturbation expansion
no time arrow is generated in the gauge theory

Breakdown of the planar perturbation expansion at
high temperatures

Emergence of arrow of time for all A = 0 in the large |V limit at
high temperature

Speculations
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Perturbation theory 11

What are the convergence properties of the small A expansion?

In the planar limit at 7" = 0 the perturbation theory converges for
small A; what happens in the hight temperature phase ?

We will consider a simple two matrix model for illustration:
N . 9 y. 9w 1) 9 : r
= _1/ art tr {1 Drjljrl B = D;;Ug _:i'—b;,-‘{j{_u__.'l—l-ﬂl[;b!—lj[ﬂl[—j_\iﬁ.fﬁ]

And extract the following contribution to the propagator for A/;

De(t)y = Z7HT[My(HM;(0)])5 = Z,\."‘D?:‘m

— I‘ :. —}Z (| X f’:lru' 4

r
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A subset of diagrams

We identify a subset of planar diagrams at order d,, = 3" — 1 that
leads to a divergent contribution

)
Famiwi ey
/ fﬁ#—ﬁkh\\ E'X{E;EEE;}\H‘. : P
[} = : 'Z [5 = C : W (M
\ J - \ / - _ kh“;)
N \K<EEE;;>’/ N y
N L}

Asymptotically for large n:

Zr =~ DY) (e(BM)® + ...

The radius of convergence of the perturbation series decreases
with time A, ~ ——
This results in the brwakdown of the planar expansion for real time

correlation functions in frequency space:

w)~ Z u_-{'.}"},\_;|“f-’ d (w.: __f, ! \) in
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Perturbation theory 11

What are the convergence properties of the small A expansion?

In the planar limit at 7" = 0 the perturbation theory converges for
small A; what happens in the hight temperature phase ?

We will consider a simple two matrix model for illustration:
X : - A ) 9 9 . -
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And extract the following contribution to the propagator for A/;
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T
— I"If_ { _}Z .| A ,ﬁ” 4
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A subset of diagrams

We identify a subset of planar diagrams at order d,, = 3" — 1 that
leads to a divergent coniribution

@
/,..f Ik P

N\ 1 ’Q - u__ I &

— : N n = '
=" &

Asymptotically for large n:

Zr;f ~ pl (T Y",_f‘{ IIAL"m + ...
1

L

The radius of convergence of the perturbation series decreases

with time \, ~ ——

This results in the breakdown of the planar expansion for real time
correlation functions in frequency space:
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Perturbation theory summary

» We found an essentialsingularity for real time
correlation functions in frequency space at \ = [

® The argument can be carried over to more complicated
interactions

# However there could be unforeseen cancelations
(SUSY at finite T is not enough)

® Non perturbative methods to deal with the large V' limit
of the theory at T > T.. are needed

® A qualitative explanation for the breakdown.
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P ™ /@‘ _,-"/ e
rl_ - l_"’ = £ C teea ]_11 = |l1—:1—:'

Asymptotically for large n:

Y T D)) (c(AMt)™ +...
Tl

e d

The radius of convergence of the perturbation series decreases

with time ), ~ ——

This results in the breakdown of the planar expansion for real time
carrelation functions in frequency space:

Grlw) = Y (e _f},\]l'é:. ! ( T )
e . et T ff /
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Interpretation

At \ = 0 the spectrum of \' = 4 SYM has the following properties:
® The energy levels are equally spaced

e~O(N)
® The degeneracy of states of energy =
e~ O(N% is O(N® |
® The degeneracy of states of energy ——
e ~ O(N?) is exp(O(N?)) —— €-0(l)

In the high temperature phase we probe the states with energy
O(N?) above the ground state. At first order in time independent
perturbation theory we have to diagonalize V" in a degenerate
subspace.

® The exponential degeneracy in the high energy sector is
generically lifted, the level spacing is of order exp(—0O(N-})

® The eigenvalues have a spread of order A\ greater than the
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free theory level spacing. Perturbation theory breaks down.



Plan

Properties of correlation functions for \' — ~c and A — x

Show that at each order in the planar perturbation expansion
no time arrow is generated in the gauge theory

Breakdown of the planar perturbation expansion at high
temperatures

Emergence of arrow of time for all A = () in the large
\' limit at high temperature

Speculations
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Statistical approach

Treat the interaction as a random matrix with the following structure

® Banded: only states with finite energy difference are
connected.

® Sparse (in appropriate basis) but connectivity of O(N*)

#® Density of states in the free theory increases with energy

Then we get for any A = 0 in the large N limit:

® The spectrum of G () is continuous.

® G.(t)— Cast— x. Adirection of time is generated!
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Conclusions

# At high temperature 7 > 7. and for V' — ~ the theory
has continuous spectrum for any \ = (
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Conclusions

# At high temperature 7 > 7. and for \' — ~ the theory
has continuous spectrum for any \ = (

#® Atime arrow is generated as the perturbed system
relaxes toward thermal equilibrium.

#» Conversely at finite N the system shows quasi-periodic
behaviour for any value of A

# Planar perturbation theory breaks down at A ~ 0 at
| &

® For T < T, correlation functions are obtained from 7' = (
by periodic identification of the time arguments
t =t + 17 = the planar perturbation series converges
and the system is quasi-periodic
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Speculations

The high temperature phase of a weakly coupled YM in the large V
limit is dual to a stringy black hole

Black hole singularities may survive o' corrections.

The behavior we found for |(i|0[;)|* has been conjectured as a
hallmark of Quantum Chaos. Is there a connection with BKL
behaviour near the singularity ?

Improving the nonperturbative statistical analysis could help in
understanding these issues
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Thank You




Conclusions

# At high temperature 7 > 7. and for \' — ~ the theory
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#® Atime arrow is generated as the perturbed system
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» Conversely at finite \ the system shows quasi-periodic
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# Planar perturbation theory breaks down at A ~ ( at
F =T

® For T < T, correlation functions are obtained from 7' = 0
by periodic identification of the time arguments
t =t + 7 = the planar perturbation series converges
and the system is quasi-periodic
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Statistical approach

Treat the interaction as a random matrix with the following structure

® Banded: only states with finite energy difference are
connected.

® Sparse (in appropriate basis) but connectivity of O(N*)

#® Density of states in the free theory increases with energy

Then we get for any A = 0 in the large N limit:
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