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Kappa-Deformed Field Theory
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theory

m Back to normal: Minkowsk: space, star product
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Introduction

m In the recent years a class of theories dubbed
DSR (Doubly Special Relativity or Deformed
Special Relativity) has been investigated
intensively. ..




What is DSR?

m DSR 1s an extension of Special Relativity,
based on two principles :

Relattvity principle for mertial observers;

2. Existence of two observer-independent scales:
one of velocity c (as in SR), and the second of
mass K (or, equivalently —length A). This
second scale 1s usually identified with Planck
scale.



But how to ...

Implement these postulatesr

One possibility 1s to make use of kappa-
Poincare algebra” and its structures:

This algebra has two scales built in

It possesses Hopft algebra structure, which
makes 1t possible to construct an associated
(non-commutative) spacetime, and phase
space.



Kappa-Poincare algebra

Kappa-Poincare 1s a deformed algebra of
symmetries with deformation parameter kappa,
equipped with additional structures: co-
product and antipode.

With the help of some underlying group
structure one can interpret

group elements composition as co-product

the inverse group element as antipode



Quantum (noncommuting) space-
time

m With the help of co-algebra one can build the
dual of algebra of translations which 1s called
kappa-Minkowsk: space. Its coordmates are
hermitian operators satistying the following Lie
algebra :

[530: jz] — __ji

¥

in the imit K — 00 one gets Minkowski
space.




Plane waves

m The plane wave on kappa-Minkowski space
ék: — e‘akx e—zkg:ro
Plane waves form Lie group with group
composition law
ékép — ékp? k‘-p = (ko —+ PO k+e

Hermitian conjugation

-
€ = € T Es(k)
where S 1s the antipode

S(ko) = —ko, S(ks) = —kie™/"




Group theoretical interpretation

m The group formed by plane waves s a subgroup
of SO(1,4) group and ,,momenta” £ are
coordinates on four-dimensional de Sitter space,

being the quotient SO(1,4)/SO(1,3). The

parameter of deformation K 1s the radws of de

Sitter (momentum) space.
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What does curved momenta mean?

m What 1s the interpretation of deformed adition
of ., momenta’’r

kp = (ko +po, k + e *°/*p)

m Perhaps this should be interpreted as a quantity
conserved during the interaction i particle
interaction processes. But the answer requires

constructing field theory.




Which ,,momenta” are the physical
ones?

m We can introduce another ,,momenta™ by

ntruducing ¢
Sitter space

T

ifferent coordinate system on de

€k(P)€k(Q) = Ek(PQ);

which gives new composition law. To decide
which momenta are physical we have to

construct field theory.




Action of Poincare algebra

® One can introduce the action of Lorentz generators on

kappa-Minkowski space

ﬂ[l > Tg = 0 J[; > Lj = E'-E.ijkﬂfg;
j\fi > g = Z.I'E _\/TE > T = 351!;:370
® Because of nontrivial co—product

Ah; =Y b @ B>

the action on the product of coordinates reads

hi > (zy) = (B > 2)(A?) > y)

2




m Applying these formulas one computes the
action of Poincare generators on plane waves

1

N; > é = (£:00 — $00;)e™ 190 é;
M; > € = Eéjki’jiak €k
P, > ér = 0, éx
Where § satisfies
0,.6x(%) = P,éxr(2)
O1€x(2) = (Py + K)éx(2)




and

ko k2
Py(ko,k) = ksinh— 4+ —e=
K 2K
Pi(ko,k) = kie=
ko k2
Py(ko,k) = —#kcosh-" s
| K 2K

are coordinates of de Sitter space embedded in
Minkowski space Pa




Bicovaniant differential calculus

s Total differential of a function of quantum
coordinates
d: f(&) :=idE20" : f(&) :
where the basis of one forms satisty the
folowing consistency relations
2

T,.dEy| — —dE,,. |To.digl = —dEs. |Zg.dE:|=0.
1L S A S T _. ,

o~ ~ 7 ?l: N o~ ~ b | Z g ~ ~
T dry| — E ar. v dr ] — E Oij(_d:r:[) - d:134).
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Bicovariant differential calculus

m Total differential of a function of quantum
coordinates

d: j(z) —idEa S F(z) -
where the basis of one forms satisty the

folowing consistency relations

o - ¥ " _ T . e
T, . d8y — —di,.,. |Tp.digl——dEy. |Ta.dE:| =0
1L = = |56 i T _. ,,

e % ] T . e e SR E §
L3, dﬂi‘o_ — E dilfi: Zi, d.'I'j_ == E O*ij(dxﬂ g dall)




Transformations

m Following the commutative case one can
introduce transformations of functions on

kappa-Minkowski
0f(Z) =dof(Z) + 1T > f(Z)

where 99 1s a functional change and 1 1s a
generator of transformation

m For scalar field
0(2) =0 dod(2) = —icT > (&)




Fields

m Field on quantum space can be defined as a
Fourter transform

1

#2) = @y / dud(k) €™ e~ o

m Hermuitian conjugated field

1 / dpg* (k) e+ (k)% g— 5 ko)zo

(2m)*

¢’ (Z) =




Invanant field action

m Having defined transformations together with
action of Poincare generators we can introduce
the invariant field action

S = / d'z (9,6(2)) 0 6(2) +m? f 'z ¢’ (2)o(2)

where the integration over noncommutative
space-time 1s done by delta function

271_4 /d4 1kx —I.k:g;r:g 554(;‘1)




...Summarizing

m We have nice mathematical structure:
1. Plane waves and fields
2. Action of Poincare generators on fields
3. Dafferential calculus on quantum space-time

4. Invariant field action



But how to introduce physical
quantities?

m The field theory on noncommutative space-time
can be assoctated with an appropriate one 1n
Minkowsk: space.

m Then conserved charges can be found.

m But this unavoidably leads to the field theory
with Lagrangian containing higher order
derivatives.
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Star product formalism

m The structure defined on kappa-Minkowskt
space can be equivalently expressed in
Minkowskt space by introducing the linear map
1%

W (e-ikice—-ikgig) _ EiPﬁ(k) =

m This map 1s uniquely defined 1f we demand

1 2% (51,61'1‘"‘ e_ikﬂiﬂ) — 1 8, et Ruzt _ p oiP(k)u ="
)




and 1t defines the following star product on
Minkowsk: according to formula

W (Eaki E—ik[)i‘[} Elli e—iloi‘g) - Elp(k)ﬁi T *EEP(Z)M P

The left hand side 1s equal

i Py (kp)z*

and so the star product reflects the group
structure of noncommutative plane waves

—ko/k

€x€p = €xp, kp = (ko +po,k+e P)
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m Using the identity

[ 1 0 L.d : . o0
limexpliz |[f[ =) - == ip(z+a) _ _if(p)=
alH:[l] cxXp {Z.I‘ - ( 2 ) gj a - } € €

we can generalize star to an operator acting on

two arbitrary analytic functions. One checks

1
Lo *x Ty — T; g — —— T3
K

m [he explicit form of star operator 1s rather
complicated and we limit our considerations to
Fourter transforms what simplifies the problem
a lot.




Transformed Poincare action

m The action on kappa-Minkowski1 can be
translated to Minkowski using the map W

W(f\ﬂ; > ék) — W((.I'Eéo — 53053;)6_%80) * W(ék)
1
W(ﬂ-[i > ék) — W(eijkij;{:?k) *W(é;{-_)

which gives the usual differential representation
of Poincare algebra




Field action

m The field action on kappa-Minkowski can be
mapped to Minkowski space using the star
product

'm2 v
S = [ 425(0,0)' * Qu0)(@) + -0/ +6()

m Substituting Fourter transforms we can rewrite
the action 1n the following simple form

s = [ e 5@.0)(1- 2)(0,0)@)+

2
7@*(1 — 04)0()




where

NN -

m This lagrangran 1s obviously mvariant under
Poincare transformations

o(z) = o(x +a), oé(x)— é(Ax)

m Rescaling the field one finds the action 1s
equivalent to the free scalar tield action.
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And thus

m No deformation for free particle. This can be

understood if we recall

that P are vanables for

which algebraic sector of kappa-Poincare algebra
1s not deformed (this 1s coalgebra that 1s
deformed). The momenta of free particle are the

usual one ( P? = m?)



What can we say about interaction?

m [ et us consider for simplicity the real field
Yp=¢' +9¢

The interaction term imported from kappa-
Minkowski: space has the form

Smt oc/d*a:w*t;*w*u




m Using Fourter transforms we get the term of the

form

St OF /d“‘.r (Y *¥)(1 — 04) (¥ x7)

but

(R

produces exponent of the form

6iP‘“’ (kp)x*




and 1n momentum space we get

Sint [ 6(P(k0)0(P (k)0 (P (k)0 (P(k))
6*(P(k1ka) + P(k3ks))
If we treat P as patricle momenta, this result can

be interpreted as deformation of momentum
conservation law.




conclusion

m The most important observation s that the
noncommutattvity (curved momentum space)
has no impact on free particles. It 1s the
interaction that might lead to deformed
conservation law for energies close to the Planck
scale. But without consistent quantum field
theory one cannot conclude anything yet.



THE END




