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Abstract: | discuss two instances in which nonlinear perturbations in cosmological models are important. First, in de Sitter space-time, the bare
necessity that the perturbations should be part of a consistent Taylor expansion of the field equations leads to the requirement, using the
'linearization stability' arguments of the '70's, that the quantum field theory of a scalar field on de Sitter space-time is manifestly de Sitter invariant
(not covariant). Second, the concern that in slow-roll inflation the effect of second order perturbations on the long wavelength (super Hubble)
perturbations could be much stronger than that of the first order perturbations, for a wide range of slow-roll conditions, is explored in the context of
alinear inflation potential and chaotic inflation.
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Outline of talk

= Are nonlinear perturbations/backreactions
important during inflation or a de Sitter phase?

= | ongwavelength backreactions during slow-roll
Inflation gr-qc/0510078 )

= Backreactions during no-roll inflation (de Sitter
spacetime)( gr-qc/0604122 + J. Phys A ?)

= Conclusions
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2"d order theory? A heuristic look

For background scalar field a spacetime constant, the leading order
contribution to T_, occurs at second order in perturbation theory:

i.e., for Qﬁ(t, ) — qg(t) s E(Sqf)(t, f) €L 1
Tap = vaqbqub — Gab (%’vcéchb 7 V((b))
T., — 0 01, — O 62Tab 75 O

{Approaching de Sitter {No scalar or vector {Dominant term:
vacuum solution} modes in vacuum Second order scalar,
background} vector modes, mode

mixing with TT gravity

Is there a transition to waves, efc }

nonlinear dominance in
the gravitational field?
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A deeper look

= | inear perturbations must consistently seed
entire hierarchy of higher order perturbations

= |n particular, initial value constraints

H* = 0
must be satisfied by all orders of perturbations

« At second order these constraints imply relations
of the form

azf(52g, 52¢) +bﬂ((59) : (00)%) =
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A deeper look

= | inear perturbations must consistently seed
entire hierarchy of higher order perturbations

= |n particular, initial value constraints

H* = 0
must be satisfied by all orders of perturbations

« At second order these constraints imply relations
of the form

alf(529; 0°p) + bﬂ((59)2; (69)%) =0

e wifffoar operator linear operator on a, be Raew

quadratic fluctuations !



Large second order fluctuations

near a de Sitter background?

= |t turns out that |a] ~ O and b = 0 very near’ a de
Sitter background

= Then the relation
aL(6%g; 8%¢) + bF((69)%; (66)%) = 0

implies some components of (62 g, 62 ¢) can get
very large, maybe even dominate linear!

= Note that this line of argumentation is
aherently gauge-invariant; minimal



The gory technical details

= Projecting the initial value constraints along X@
near a de Sitter background:

J, 02F(57h; 6%7) Xadx = — [, 62H2((0B)%: (0m)%) Xad!

= Left hand side zero only when V, X, =0, i.e.
exactly at a de Sitter background

= However, for Y23 V, Y, ~ 0 some
components of (62 h, 82 ) must be huge



Some controversy about
“backreactions” in the field

= Backreactions of inhomogeneous super-Hubble modes
mimic Dark energy?

Barausse, Kolb et al, ... vs. Geshnizjani, Flanagan,
ald, Hirata )

= Really hard calculations; poorly controlled
approximations; gauge ambiguities

= No general consensus on importance of backreactions,
especially during inflation

= | focus here only on whether or not linear perturbation
theory runs into trouble during slow-roll inflation, for long
wavelengths
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Programme

= How and why can nonlinear perturbations/backreactions
be important for cosmology?

= Longwavelength backreactions during

slow-roll inflation
« Slow-roll background; long wavelengths
« Second order perturbations, gauge issues
» Eigenvalues of total stress energy
* Dispersion of eigenvalues at second order

= Backreactions during no-roll inflation (de Sitter spacetime)
= Conclusions
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Basic setup

= Perturb slow-roll metric and inflaton to second order:
=iju 2 £2
Gab — g_ab = €6gab €4 Gab
b= ¢+ edd+ €26%d

= Einstein field equations:

E(égab? 5¢)k: =0
L(6%gab, 0%0)k = [ P S((6gab)7, (00)7)dk

Many fourier modes at linear
order contribute to a given k at
2™ order...cumulative effects
are generically expected
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Basic setup

= Perturb slow-roll metric and inflaton to second order:
S I 2 £2
Gab — g_ab 2] €6gab +e4d Gab
b= ¢+ edd+ €26%d

= Einstein field equations:

ﬁ(égab? (S(;ﬁ))k. — O —_ Linear equations:

Details well known
E(éggaba 52¢’)k == f (2)8((5.9&6)%? (59?5)%)(#5

Many fourier modes at linear
order contribute to a given k at
2™ order...cumulative effects
are generically expected
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Basic setup

= Perturb slow-roll metric and inflaton to second order:
LA 22
Gab = g_ab & €6gab 1€ o dab
b= ¢+ edd+ €26%d
= Einstein field equations:

ﬁ(égab? (qu)k. — O —_ Linear equations:

Details well known

L(6%gap, 020k = [P S((0gab)%, (90)%)dk

Many fourier modes at linear

How large, compared to the linear order contribute to a given k at
perturbations, do the second 2nd grder. . cumulative effects
order perturbations get (during

slow-roll)? are generically expected

irsa: 06120013 Page 13/54
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perturbations In detalil

Scalar, Vector, Tensor perturbations at linear order and only scalar

perturbations at second order:
Scalar part called B

ds’* = (1—|—£A(t %) + €A(t, T))dt’ +2(eB (t, %) + € B(t Z))dt
+a (t)(c‘)izj —I—thzj(t &) —|— - qzj(t :r:))da:: dz’
Scalar parts callt;lujd) and & Seala parts called( ) E el Q

» Similarly perturb the scalar field
o(t, T) = o(t) + e®(t, %) + € F(t, 7)
Background

scalar field

Pirsa: 06120013 Page 14/54
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Slow-roll background spacetime

» Inflaton potential taken to be linear (for simplicity)

V(i) =A+ B¢ ,BER

- Associated (and only non-trivial) slow-roll condition is

2
_ 2 ¥ N _ wp
slow-roll A

parameter \ e,

- Simple background scalar field: (3_3 — (50 é@[f[

Pirsa: 06120013
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Scales of (long wavelength) k

We make no _ ;I}nm {(2) Sk((é‘gab)%a (56?5);2;)}

comment on
subhorizon Region of k-space
backreactions which enters the 2nd
' order source
IR Cutoff
scale
Hubble radiu
( _k ) = « 1 Long-wavelength
Pirsa: 06120013 a H condition’ e 12



2"d order
perturbations: a
whole host of new
problems

= Solving the constraint equations can, e.g. ,
intfroduce terms that go as

o)
aH €ESR
= The second order gauge choice will

depend on the linear gauge choice as =
well: =

38 = 02gus + Lodas + (L2500 + 2L o000 ) |

irsa: 06120013

= Regularization of UV fluctuations in CST
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Effective equation of state @
second order

We want to extract some gauge invariant information from the
second order equations of motion

Can we express this information in terms of an effective equation of
state? Then we may construct IR Cutoff

-

k

O — ﬁ—I—Eap—[—EQf 62;)V
aH
1 o min
D + €— oOp; 8’ pid’k
P+63; P-I-E/ Z p

Then we can succinctly demand linearized consistency:

J (o (‘:f) \/<o| 523’” |o>
‘\ Standard

p
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Setting the 1st and 2"¢ order
gauge exhaustively

*Overall strategy: Emulate harmonic gauge

1
—|g

a ( —\glg“b) =4

-Set the linear sector to obey

|
o

B
>4 Sometimes called

: ™ h,. . the "Poisson
& (hi.:f 3 533) gauge’

-Set the 279 order scalar sector to obey

_______w Polarizations of TT partof h

_--.c""'"" i o —

A=-Q+2 7 [(By)? ey +(h P+ ¥®—2s@? -

: P g( 1 /.':‘)E1
TT-TT sector Scalar-Scalar sector



Eigenvalues of stress-energy

» Consider the eigenvalue problem

det (T + 6T¢ + JQT“ + 527‘5 —Xi0g) =0

Matter + gramty parts

- Define the ‘energy density’ [ as minus the timelike eigenvalue, similarl
the averaged pressure in terms of the average of spacelike eigenvalues

- Obtain expressions in terms of scalars like Tr(T) and 835§
where Sab = Tap — 5T eg.

PTG +1%) = Ot 2‘5213'5
(Off diagonal) shears

IR L P TR 1
?(=8%8° dez) —5pyﬁp= - -vbpzﬁpj +25+ )%+ ) p)
Pirsa: 06120(& z 1 I} 3 Lp"g 20/54 16



Reduction Strategy

. Eigenvalues 6%p and %Z«; 5%p; are complicated functions of
metric. matter variables.

« Toreduce:

First order Poisson gauge fixing and second order scalar fixing
«Solve the constraint equations for the matter (scalar field) fluctuations

*Solve the constrained evolution equation for second order scalar
fluctuations in terms of linear solutions

« Once §2p and % Zi 52% are known In terms of linearized fluctuations

(e.g. ¥ ), we can calculate their dispersions using well-known expressions lik

Bl LAY 19 (H ’
- Pirsa:061200L3 k - 4 (2:'1,5)2 i 4ESR 27 |

Page 21/54
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Dispersion of eigenvalues |

- Expanding out the modes (0 ,we take Yk = Wgak + UJZ*, a};,

« One can show...

- ¢2 >E</ ?,b(k!_k)",bk’d3lg} = (5(—}1:) < A &J(EJ_E)&JE‘,dSE >
193,

I

|.e., Poincare invariance of linearized fluctuations — homogeneous support of 2 pt fcn

«  We wish to measure the fluctuations in < 1&2 k= 2

2
{‘{[)4 = = (*—’:/ 'Z,f)(kr_k}‘tf}ydsg' })
£y

4 < f Y —ry P —ryd> KAk >< f b bpn dP R PR >
% S o

B ﬂkh'
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Dispersion of eigenvalues ||

Contains linear fluctuations only

A

= One can show, e.g., that

f 54H2\ ° T
<Por@Pola® > ~ < [ [ () gt nied BE >
il 2 Use second order e.o.m. here
Pure second order term {/ (E) fﬁri_;as’ledgk' /
Qo R Nl Nl

Second order and linear 2- 6H 54H?\ . — e r ga 8
pt term cross-term Ll f / (T o ) £ Q (t_'t_g k) —kytorrd” K>k >
ﬂ;:.u" QEH SR
» [t turns out that _—Numbers
H? 2 24 T L 1 g
Pon@)Psla) > ~ (=) Sz (4104 a (Biln) + Ciln())
r— el S NN
EY : ".
# e-folds += N/ESR *’ #,f——xt———m
f-fmej? 5 “ak
2 ==
Pirsa: 06120013 n! = 1 % kmiﬂ_ Page 2375*——{:—'?;



‘Linearized consistency

» Finally we can use this expression to explore the
consistency requirement

\© (%’) o) > \/<0| (‘523;“3)2|0>
H

« |t turns out that this is equivalent to
# e-folds ~70
2

esr > —(kH 2)%"’(1‘_11N)% T

k=a

3

200 for H? ~ mpanck?

~aagpOomewhat worrisome; gauge effect, potential effect?uzs



Gauge dependence of the second
order terms

= | ook at perturbations in 6
— 41 obga * 1 2
0= 35,5, = (p + = i Di)

« This scalar quantity is ‘almost’ gauge invariant:

Lx0=X%h(p+p)? =0

= Dispersion of 0 at second order still dominates

IIIII

Y oy
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Extension to chaotic inflation

= |nflaton potential (inflation ends properly now)

V(g) = ™5~

.

. = 2
« Compute < F (06, (06)%;0) >1/2 and compare fc

2
<(3)* >

- Still obtain that egg > 1 for linear dominance...(!)

22



Programme

= How and why can nonlinear perturbations/backreactions be
important for cosmology?

= | ongwavelength backreactions during slow-roll inflation

« Backreactions during no-roll inflation (de

Sitter spacetime)
* Probing backreactions in a simple arena
« Couple a linear scalar field to gravity to leading order
 Linearization instability
« Quantum anomalies
e an unexpected mini problem of time?

= Conclusions
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Extension to chaotic inflation

= |nflaton potential (inflation ends properly now)

V(9) = 5=

7.

. =
« Compute < F (06, (06)%;0) >/ and compare tc

2
<(3)° >

- Still obtain that egg > 1 for linear dominance...(!)

22



2"d order
perturbations: a
whole host of new
problems

= Solving the constraint equations can, e.g. ,
intfroduce terms that go as

)
aH €ESR
= The second order gauge choice will

depend on the linear gauge choice as
well:

62.&;5 — 529{16 -+ ﬁxgab + (‘ngab + 25(,‘(59{1{7) .

irsa: 06120013

= Regularization of UV fluctuations in CST




Scales of (long wavelength) k

We make no : Hkgm {(2) Sk((agab);zga (5¢5);2c)}

comment on
subhorizon
backreactions

Region of k-space
which enters the 2nd
order source

IR Cutoff
scale

Hubble radiu

k ) - ‘Long-wavelength
.. (£)? <1
Pirsa: 06120013 a H Page 30/54
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Setting the 1st and 2"¢ order
gauge exhaustively

+Overall strategy: Emulate hamrmonic gauge

1
—|g|

a ( —\glg“b) =

-Set the linear sector to obey

B _
»% Sometimes called
5£mhgm the “Poisson

4 (hi&" 3 gauge’

*Set the 279 order scalar sector to obey

|
O

_______b‘ Polarizations of TT part of h

gt

A=-Q+z [(B;) ey +(E‘)2] ¥ — 25P? B =

. ,
P g( 3 ISE

P s Scalar-Scalar sector
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Extension to chaotic inflation

= |nflaton potential (inflation ends properly now)

V(9) = 5=

y.

=
. Compute < F (6°60,(66)*:0)" >/ and compare tc

2
<(3)* >

- Still obtain that egg > 1 for linear dominance...(!)

22



Programme

= How and why can nonlinear perturbations/backreactions be
important for cosmology?

= | ongwavelength backreactions during slow-roll inflation

« Backreactions during no-roll inflation (de
Sitter spacetime)

* Probing backreactions in a simple arena
« Couple a linear scalar field to gravity to leading order

 Linearization instability
« Quantum anomalies

e an unexpected mini problem of time?

= Conclusions
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de Sitter spacetime perturbations

» Constant scalar field with constant potential <« de Sitter Spacetime

- Perturbation ansatz:
Leadmg order is

-------- second order

Overbar denotes Gab — Qab(t %0, ‘35) <€ 529{1!}@ X:Q n

"background’ i

=

Y " Background metric

x\.

ds? — Gupdz®dz® — —dt2 + cosh(£)2(dx2 + sin(x)2dQ(8, n)?)

e - R

R x 3 (closed) slicing

« Similarly perturb the "scalar field” ¢ = qér -~ eéq&(t x, g, n)

Constant Quantum perturbation

Pirsa: 06120013 Page 34/54
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Higher order equations

*Stress energy is quadratic in field — leading contribution in de Sitter
spacetime at second order

-Defining the monomials (assuming Leibniz rule)
v = (5¢J)2 \Ijab = 5{b?a@b5@

we may write the leading order stress-energy as
VaVp¥ — W,y — 2267V U

- eading order Einstein equations are of the form

£L[6% gas) = £Qa[(60)(9)]

\—V_/
Linearized gravity Nonlinear source

irsa: 06120013
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Interacting quantum fields in curved
spacetime

« Regularization of nonlinear field products involving 6 ¢
always has a renormalization ambiguity

« Hollands and Wald showed this ambiguity can be
reduced to a finite # of parameters in CST using ‘locality
and covariance’ requirement

» For the first time there is a rigorous manner in which to
treat interacting fields in CST

Pirsa: 06120013 Page 36/54
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Linearization instability |

« VVary the Bianchi identity around the de Sitter background
(Ga +Adg)p

SC® / - ~*Lambda constant, so drops out

i of variation

to obtain ( o - (62 m))/ 0
;b

« Now vary Bianchi identity times a Killing vector of the de Sitter background:

..... SG° 5Gb -
(Xa? = g a (529, m))) (Xa(';b + Axaéb) ...... ~ =k X % (5293171)
..... fm : b J*«:_ § o

M s el S

" De Sitter Kiling vector .~ Zeroif Kiling egn. holds

Variation of
Christoffel symbols

Pirsa: 06120013 Page 37/54
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Linearization instability |

« VVary the Bianchi identity around the de Sitter background

5—(}'*’} " 7*Lambda constant, so drops out
: of variation
to obtain 52 2 (6°gem) =

Gim &%

e i3

oy G _— N,
J‘ (X:& e (52§}£m))) % (X Ge+AX 6“){/3_,.2;5"'3 +~kibéﬁgfm (JQng)

"""""" = b _.,/"K' s - i
o 3 - o e it
. - - e e
M f_

~ Zero if Killing egn. holds

De Sitter Kiling vector s
Integrate both sides and \Cfﬁri_a’;iufr; t;f ol
use Gauss’ theorem NHESrS B
irsa: 06120013 Page 38/54
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Linearization stability Il

* The integral is independent of hypersurface and variation of metric. Thus ge

—_—

a 6Gb 2 Ll.33
/X b3 = (0 gem) [l = 0

* However we want the fluctuations to obey the Einstein equations

S—

5Ga
629(:&

(629cd) = ﬁTf (5@, ‘5¢)
« Thus we get an integral constraint on the scalar field fluctuations:

f ne X "TE(6¢,64)4/ |hld*z = O

irsa: 06120013 Page 39/54
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Linearization stability Il

* The integral is independent of hypersurface and variation of metric. Thus ge

_—

b
/X“nb%(ézggm) |h|d3z =0

* However we want the fluctuations to obey the Einstein equations

—_—

5Ge
529(:0!

(0%gca) = wT5(66,09)

« Thus we get an integral constraint on the scalar field fluctuations:

— =1 a2 Linearization
f neX 1y (0¢,00)4/|h|d°z = O stability (LS)
condition

irsa: 06120013 Page 40/54
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Anomalies in the LS conditions

« One cannot insist that the classical equations of motion and other

conditions hold for nonlinear quantum fluctuations, in general there is a
renormalization ambiguity

*One can redefine products of fields consistent with locality and covariance
In Hollands’ and Wald’s sense:

.r-"'_"‘\\-.
e Q — ID' —|— '{C —* Curvature scalar. [length]=
-~ Recall .-

=092 )y - i 4
e — + C Curvature scalar, [length]
Fos = 4¢VaViig o o en

- We sh_o*;ﬂ_that the anomalies present in the LS conditions for de Sitter
are of the form

i 5 " \/olume measure of

A number Normal component hypersurfacers s g
of Killing vector

Pirsa: 06120013



Anomalies in the LS conditions

« One cannot insist that the classical equations of motion and other

conditions hold for nonlinear quantum fluctuations, in general there is a
renormalization ambiguity

*One can redefine products of fields consistent with locality and covariance
In Hollands’ and Wald’s sense:

= l]} —> IIF —|—(gl—r Curvature scalar, [length]?

~"Recall :

T = (6¢)2 & T L, 4
= = — —I— C Curvature scalar, [length]
Tap =08VaVdd ab ab T “ad

- We sh_o;v_that the anomalies present in the LS conditions for de Sitter
are of the form

—5Q | (| X 14/ |h|d3z
SR Y ik il
5 . * Volume measure of
s BSOS A number Normal component hypersurfacer==s  5q

of Killing vector



Anomalies in the LS conditions

« One cannot insist that the classical equations of motion and other

conditions hold for nonlinear quantum fluctuations, in general there is a
renormalization ambiguity

*One can redefine products of fields consistent with locality and covariance
In Hollands’ and Wald’s sense:

e
- lIf — l]:f —|— (g'—r Curvature scalar, [length]?2

-~ Recall

¥=(@?
h.l_IIab == (5@57& 75 (5@5 R

- We sh_(};v_that the anomalies present in the LS conditions for de Sitter
are of the form

- . T o< i Normal Killing
-' _&555‘2_; 4 X_L_'" |h|d3:1:_,- ~ 0 component is od
._ s 3 e PN over space
. . " Volume measure of
s B A number Normal component hypersurfacer==s  ,q

of Killing vector



LS conditions and SO(4,1)
symmetry

- It turns out that the LS conditions form a Lie algebra

........
................

EJQP(XQ)J?P(X ] = zgggéﬁP(Xc). holds

...............

Ca
= ' Structure constants

No quantum anomalies in commutator

- But it also turns out that the Killing vectors form the same algebra

e 80 — A*—‘bx

I, 0%

“* The same structure constants

» The LS conditions demand that all physical states are SO(4,1) invariant

-~ &2 P(X)|T) = 0

Page 44/54
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A mini ‘problem of time’?

Allen showed no SO(4,1) invariant states for massless scalar field:

) =g / V13l [§%°06,008,5] d*z

b

Massless scalar field action with zero mode

How are dynamics possible with such symmetric states?

How do we understand the flat (Minkowski) limit?

Page 45/54
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Extension to include subleading
pbackreactions

» |f we include the gravity waves at subleading order, is
the SO(4,1) invariance requirement lost?

« |t turns out that the LS conditions are still the SO(4,1)
generators in this case

- Reason? The gravity waves almost act like polarization
scalar fields h_, h,, which allows the results to go
through with

VvV — U+ \I!hx ~+- ‘I’h+
qjab —= qjab = lIjab(hx) i \Ijab(h—l—) e 58

Pirsa: 06120013
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Anomalies in the LS conditions

« One cannot insist that the classical equations of motion and other

conditions hold for nonlinear quantum fluctuations, in general there is a
renormalization ambiguity

*One can redefine products of fields consistent with locality and covariance
In Hollands’ and Wald’s sense:

—
— Q — III —|—<C—r Curvature scalar. [length]2

~Recall e
¥ = (6¢)°

\L’ —% 'LII’ +C—_” Curvature scalar, [length]*
By =66V Vads O -

- We sh_(};v_that the anomalies present in the LS conditions for de Sitter
are of the form

i ¥ * \/olume measure of

A number Normal component hypersurfacers = g
of Killing vector
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Linearization stability Il

* The integral is independent of hypersurface and variation of metric. Thus ge

—_—

G :
/ X35 2 (6%00m)1|Fldz = 0

*» However we want the fluctuations to obey the Einstein equations

3§

5G2
529{:05

(0%gea) = wT5(66,09)

» Thus we get an integral constraint on the scalar field fluctuations:

— = i Line:atrizatinn
neX 1y (0¢,0¢)4/ |h|d°z = O stability (LS)
condition
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Extension to include subleading
pbackreactions

» |f we include the gravity waves at subleading order, is
the SO(4,1) invariance requirement lost?

« |t turns out that the LS conditions are still the SO(4,1)
generators in this case

« Reason? The gravity waves almost act like polarization
scalar fields h_, h,, which allows the results to go
through with

Vv — U+ \I!hx —+- ‘I’h+
qjab — qjab = 1lIjn::.-,!'a(hx) ) - \Ijab(h—l—) e 058

Pirsa: 06120013
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Conclusions/Future directions

Second order IR fluctuations during slow-roll
inflation may become large, especially as one tends
towards de Sitter spacetime

The QFT of a scalar field in de Sitter coupled to
leading (and subleading) order to gravity has a
mutilated space of states.

UV (subhorizon) effects?

Construction of nontrivial SO(4,1) invariant states?
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Extension to include subleading
pbackreactions

» |f we include the gravity waves at subleading order, Is
the SO(4,1) invariance requirement lost?

« |t turns out that the LS conditions are still the SO(4,1)
generators in this case

« Reason? The gravity waves almost act like polarization
scalar fields h_, h,, which allows the results to go
through with

VvV — U+ \I!hx -+ ‘I’h_l_
qjab —¥ qjab - qjab(hx) ) ‘Ijab(h—l—) e 5158

Pirsa: 06120013
e 7.



Nonuniform limitas G —-— 0, A —07?

« ForG — 0, A — 0, there are no SO(4,1) constraints

» |n fact the constraints are severe enough to suggest that
the G — O limit is not uniform

» Perhaps keep \frac{GH\Lambda} constant in the limit?
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Conclusions/Future directions

Second order IR fluctuations during slow-roll
inflation may become large, especially as one tends
towards de Sitter spacetime

The QFT of a scalar field in de Sitter coupled to
leading (and subleading) order to gravity has a
mutilated space of states.

UV (subhorizon) effects?

Construction of nontrivial SO(4,1) invariant states?
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Nonuniform limitas G — 0, A —07?

« ForG — 0, A — 0, there are no SO(4,1) constraints

» |n fact the constraints are severe enough to suggest that
the G — O limit is not uniform

 Perhaps keep \frac{GH\Lambda} constant in the limit?
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