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Recent Interest

Primordial non-Gaussianity has attracted a lot of interest over the past
few years.

* Precision Cosmology: Non-Linearities may be observable

* Qravity is non-linear. Some non-Gaussianity will always be
present
* Potentially useful for further testing inflation

* Consistency check - Identification of new physics beyond

inflation (which may produce stronger NG signals)

* Discriminant among models

One more handle on the physics of Inflation. Primordial NG has been
approached via various angles in an effort to compute it and relate it to
observables.
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Observations

* Various detections of non-Gaussian signals have been reported in

the CMB. However, none has been linked to a primordial source.

: - - (TTT)
* QObservations focusing on the CMB measure fy ~ T T Or

even TNy, ~ % Current limits set —54 < fyr < 114
(95%CL, WMAP). Planck is expected to reach fxr < 5 at best,

while an ideal experiment is limited to fn7 < 3.

* Recently fyr < 0.01 has been claimed accessible via
observations of the 21 cm radio background (astro-ph/0610257).
If viable, it will set the whole discussion on inflationary NG

under a totally different light.
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Calculating non-Gaussianity

Focusing on Inflation, there are four regimes relevant for NG

generation and evolution

* Effects before or during horizon crossing.
Calculating non-linear corrections from the inflationary
mechanism for the generation of perturbations.

* Long wavelength evolution during inflation.
The subject of this talk...

* Long wavelength evolution after inflation.
E.g. Reheating, Preheating & The Curvaton scenario.

* The relation of this primordial NG to the observed CMB sky.
Solving the full system of Boltzman equations at second order.
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Calculational Approaches

* Straightforward second-order perturbation theory:
Follow the route of linear theory by extending the perturbative
analysis of the Einstein equations to second order. This seems
essential for studying scales smaller or close to the horizon —

proliferation of terms in the equations.

* Long wavelength approximations:
First focus on long wavelengths, particularly relevant during
inflation, where the dynamics simplifies. This is the approach of
the N formalism as well as the one taken in this talk.
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Long wavelength approximation

ds? = —N?2(t.x)dt% + el dztdx?
On (Ax > (aH)™ L, V? dropped):
Nal = — oz (€ + 5/3)

5 D 7. ¥ ., aAxr

2 1 1 9 A
== et Ol = —53plladi¢
My i
—_ _a . A __ _d 1A .. a2 4
{H - _\r-{ff X, H pr—— W{J . I‘:L Ej — C 2_1\‘-(_;1__ }E 'EM.} }

‘Separate universe’ evolution = AN formalism.
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Long Wavelength Coordinate Transformations

Consider coordinate transformations which preserves gg; = 0
ds®> = —N?(T,X)dT? + **TX)h, (T, X)dX*d X7
T =T(t,z"), X*=X'tz

Then, up to O(V?) the transformation matrix is:

= : iy N&'T
Using these we learn: =2 =X !fdrm
» ds2 — — "T,XdT2+--" § o
L.’t‘l—_l._tl ol

Nt — NOT +O{V ) 2 D cl‘f +6T

x| dxtdx?

Non-Gaussianity and its Evolution in Mult-field Inflation —p. 7



Long Wavelength Coordinate Transformations

Consider coordinate transformations which preserves gg; = 0:

ds® — —N*(T, X)dT> 4 "X T,X)dX'dX?
T =T(t,z"), X=Xtz
Then, up to @(V?) the transformation matrix is:

* Automatic Updates 'PR

® — | ipdating your computer s amost complete. You must restart your compuier for

the updates to teke effect. e

Do you want to resiart vour computer now?
» | Restart Now | E.ESJ..atE
g

E
Using these we learn x

+ [dT &

N&'T
T9%



Long Wavelength Coordinate Transformations

Consider coordinate transformations which preserves gg; = 0:
ds® = —N?(T,X)dT? + >3 X)h;; (T, X)dX*d X7
T =T(t,z"), X*=Xtz"

Then, up to O(V?) the transformation matrix is:

- "Tu N i N =T
L T — [& i

5T (0:T)2
N =22 =55+ 0[@)]

A% = g% = ~0'55% +0 |(8)°]

Using these we learn:

==+ [dF e
» ds? = —N?(T,x)dT? + e20Tx x dz*dx?
. g a 72 ;
= A0, =+ 0T
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Inhomogeneity

Separate inhomogeneous evolution from the homogeneous
background:

* Given a spacetime scalars A(t,x) = A(t) + AA(¢,x) one can
always set AA = 0 by a suitable choice of time slicing - no
coordinate invariant meaning for AA

* However, given two scalars A(¢,x) and B(%,x) one can construct
a fully non-linear variable which encodes the inhomogeneity and
is a scalar (invariant) under long wavelength transformations:
Ci(t,x) = 8;A — §58;B = Cy(T, x)
For example:
(:3' — 8_5& = %&:p — \'—;fﬂg; = _p_:._ip (&P = %d;p)

This is a fully non-linear statement formally similar to that of linear
theory.
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Long wavelength approximation

ds? = —N?2(t.x)dt? + e2a(i? dz*dx?
On (Ax > (aH)™1, V2 dropped):
ﬁH: —ﬁ{E——S/S)

) = 1 _ 1 9. 4+A
H W(S' GEH — _WH_—IGI'@
p p
{H — ﬁfk H-JL — f_tﬁ_{:)_‘l I;':- — £ 21.\?'['_._ ?;v}}

‘Separate universe’ evolution = AN formalism.
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For Inflation...

Consider a set of scalar fields during inflation
T,u.y — G.&Bdﬁz@{au@B — Guv (5()}1@_40}\@{ = [@))
The following spatial vectors are scalar invariants:

B A
Qf = e (8ig* — Y ha),  (H =32

sA_ _ KB A TAg TA — 8c0” _ K2 R
G = —Edﬂj - TO;&. ey = =5 F
Notethat: Q*=08;0 +... and ('=08;0 +... where

and . well known linear gauge-invariant variables.

Define 1socurvature and adiabatic
- - N B | )
directions €s =T €3

with é%é4 =0, ...
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. For more fields an iterative procedure will produce an orthonormal

basis adapted to the trajectory with N-1 isocurvature directions.

S e n—1 ; ~ A n—1 ~B A
Y A — {:{-D—} HA F_—l — :’?in _ié‘=1 ‘?{rl 2
}lﬂ i H."?—_'_H ~q r‘j:r-il\
where
~T ;.-!.1 -1 —l A
4y ) = €5 4.6y --—-E5 3 Jrj?[ ﬂj

which gives the basis a definite handedness.
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Non-linear Isocurvature and Adiabatic Variables

e c A - 2 y H «
G=c ¢=08Ina— ;2_% 9,0 = 0;Ina — 3C)ip
» 0; = (f = —Jf‘:—g 0; 3

Define Slow Roll parameters:

2 2 . A | gAY/ gt
_ K202 A _ _ 3HTTA4+8%V A_qzs1A __a=A _ €
=ggn M = > & =d€e T 3 —

il

™1

Project isocurvature and adiabatic parts:
| — 21 =A ~1L _-2=A J| — A 1
M = ey, - =édit, &l =élel, ¢

i

The non-linear equations of motion are formally the same as those of

linear perturbation theory with

0 — O

f(t) — f(t, %)
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Non-linear Isocurvature and Adiabatic Variables

= — 4 __ 5 __k O _Hp
» =€, =0;Ina = 0;0” = 0;1lna 5 O;p
¥ — 7 S 9 +A
JE o L\g ‘u@ dEO
Define Slow Rall narameters- .
¥ Automatic Updates '35 8 1B 1’._‘_1
B

|ipdafing your computer is almost complete. You must restart your compui=r for
the updates o taks effect.

Do you want to restart vour computer now?

Project 1soc

il = ¢,

The non-linear equations of motion are formally the same as those of

linear perturbation theory with
0 — O;

f(t) — f(t,x)



Non-linear Isocurvature and Adiabatic Variables

v 2€ P
o — o, S K 3 A
Oi S €46 = — 2400
Define Slow Roll parameters:
L 15T : ‘ A adyrs ~ _ s1By/A
el — |"\_, H .""_-_1_ — _13H—_|:[ +d l C_t—l — S A].a.._.l. e ¥ I---__'l e 'E B
E==pgx W = o & =3e€e 31 2]

Project isocurvature and adiabatic parts:

—

il =clid, Fh=ciit, fl=cléd, E=l

—

The non-linear equations of motion are formally the same as those of
linear perturbation theory with
0 — O

f(t) — f(t,x)
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Long wavelength equations of motion

Choose a gauge with NH = 1 (9;a = 0 - homogeneous expansion)

to simplify expressions

Ci 0 -2~ 0 G
£(8)+ (577 2)(&) =0
Ti 0 K A o

where
R(t,x) = 3 (3% + € +il) + 282 + 4l +4(7H)2 + €,

o

A(t,x) =3+ €+ 27!

All local quantities are given by:

O;InH =€, emal; @A — _MTQE L:r,W
> ef9,I14 = —IYLE (FlG + 7t o)
= " T . — e e | ~
» 50,y = —2LE (6, + 750G+ (7l +€) o)
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“Initial Conditions”

, one
can include in a straightforward manner perturbations from shorter

wavelengths. This amounts to adding “sources” on the rhs:

d (& 0 —27- 0 G o >k g V(L) oikx
#(5)+ (o ‘;.1)(§z)—0ffw ] L el
where

with [ 1), ] = (@7)36(k —¥),e-tc.

57 52 W(k) cuts off short wavelength modes. Simplest
-—~A-2L  choice: W(k) = ©(caH — k). Final results are
= -ﬁ B independent of the form of W(k).
When anea'}*féed; .rhese equations are exact and valid to all scales,

simply being linear perturbation theory.
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Perturbation Theory

We can now perturb the e.o.m. to directly obtain solutions at second

order
0 -2+ 0O
» Perturbing A(t, x) = (o E}' __1) represents non-linearities in
the long wavelength evo?utign ’
* Perturbing = represents “initial” non-linearities of the modes at

VE
horizon crossing

P

LY g

Write (AA) g = Aupe v, , With [v; = (cr)

* Evolution terms:

= (E=27 )it +€+ _ —922 4 (2e—qjl)il 4+ (7L )2 +€]
A19e = 2| —3x—(E+il)il—@Gt)? | , Asze = 2L +£L
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Perturbation Theory

We can now perturb the e.o0.m. to directly obtain solutions at second
order

Perturbing A(#, x) = (B _gti}_ —?1) represents non-linearities in
the long wavelength evo?utign ’

* Perturbing % represents “initial” non-linearities of the modes at
horizon crossing

Write (AA)ap = Agpe ve , With |v; = (r)

o

Evolution terms:

_ (e—2ql)at+&+ _ —28% +(2e—ql )il + ()2 +€]
A9 = 2| —3x—(e+il)ydl—@1)? |, Asze = 2eil +£1
—3—]'j|| -+
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3vE Vi11—Vao

(—6€—10e2—2¢7jl )il —(6+6E—8qll ) (77)2 —&(3x+4€2 43¢l ) 67— &+ —-—,} 32
(—126—6qll +12x—6E2)7- +4(fl ) 251 +4(5L )3 —4éc L —27ll ¢+ '%_.‘,L; El%;fg?ﬁ
67 —2erL +4ijll L —2¢1
A e .Q., ~x H ~
“Initial Condition Terms”: A(—= ) = (26 + 1 ) =G
7 : Via
S (2) , (2) A w1 )
We solve Loy + Vai = Aabe(t') vp;" ve ' + Abg =
@ _ | 1) @)
0P = [ Cuasl(t,t) (Apeav) v + Aby) dt’
—0C
d ‘ / /
?GﬂbLt‘ t) — Gac(i—, -I{_ ) — 0-_
d ! I & -
E(:;ab(t:IL ) S = Gcb(t-t J— O Gﬂb(t"r'.f*) = Ogb
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Perturbation Theory

We can now perturb the e.0.m. to directly obtain solutions at second
order

: . 027~ 0 : e
* Perturbing A(f,x) = (0 0 —}) represents non-linearities in

0 & A
the long wavelength evolution

Perturbing L represents “initial”” non-linearities of the modes at

VE
horizon crossing

Write (AA) g = Aupe v, , With [v; = (r)

Evolution terms:

- (E=2 )it +£+ - 28 +(26-7 )il +(7)? +€!
Ao, = 2| —3x—E+ih)al—@G1)? | , Asze = oeil &L
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Aso

3H2

.—af—mtﬁ—mq 771l —(6-+66—87j 1) (77-)2—&(3x+482 +3¢l ) — 677 -+ g2 TILL2
(—126—6171-+12x— 6227 +4(71 27+ +4 (7 ) —aee - 27l g4 + L2 Varl—Vaz
677 —2e7-L +4qll gL —2&L
“Initial Condition Terms™: A ( T) {'Qé’*-r}]%c
= | 26
— ©) ) e (1)) .
We solve ﬁtm - Voi = Aabe(t)vp," v¢’ +Abg =
@ _ | - (1) @
v = [ Gu(t,t) (%cd o) o -+-.me) dt’
—0OC
! !
dt,,G'{1 (1,1) — Gace(t, 1) — &k
d o AN S
E(:;ﬂzb(t:IL ) & = Gcb(t-t ) = 0, Gab(twf*) = Oqb
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Perturbation Theory

We can now perturb the e.o.m. to directly obtain solutions at second
order

: 0 -2~ 0 : i e
* Perturbing A(f,x) = (0 0 —}) represents non-linearities in

0 & A
the long wavelength evolution
Perturbing - represents “initial”” non-linearities of the modes at
VE
horizon crossing

Write (.’S:'l)gb = -Ilabc B with T (;:"J)

» Evolution terms:

= (E-2q)ir-+€ _ 282 42—l )il + () 2 +€]
A12e = 2| —3x—(E+il)il -2 |, Asze = 27t +£L
_3_ﬁ|| it
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“Initial Conditions”

, ONe

can include in a straightforward manner perturbations from shorter

wavelengths. This amounts to adding “sources” on the rhs:

G 0 -2t 0 \ /¢ 3 | . |
d [ & okt | d>k ' ) otkX
a(iz)*’(ﬁ ; ‘f)(ii) Bl e
where
with | ] = (@7)36(k —K),e.tc

= "= W(k) cuts off short wavelength modes. Simplest
= — =575z choice: W(k) = ©(caH — k). Final results are
_ _k__H independent of the form of W (k).

|

When linearized, these equations are exact and valid to all scales,

simply being linear perturbation theory.
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Aso

(—66—1082—2&7jl) jll —(6+66—87ll)(771)2—&(3x+462+3¢ll) —s:.r}—“*+j‘*‘“ 7111722

2k 3H=

_12é—6ijll 412 a7 27t 4Ly _azel _o7llel . 3yE Va11—Vaza

3H2

-,

bn+——2en—+4nlin——2&—

“Initial Condition Terms™: A( i) = (2€ + -F]ig

We solve ﬁ S + L:j} = Al ?;;3 :r' '1-*:'_:-1'] + Aba =
(j f Cub t. ) (incd 1’::2 ﬂi—-—.—.lb;u) dt’

2 Gap(t, t') — Gac(t, 1) =0,

LG u(t,t) + Ca(t, ) =0,  Gap(ts,ts) = dub
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“Initial Conditions”

, 0Ne

can include in a straightforward manner perturbations from shorter
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#(8)+ (377 2)() -o s g
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with [ 1), ] = (@n)36(k —¥),e-tc.
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[1—6*5—1*3“:*9—2?:-*‘?'-r‘i”—rf5+6€—3ﬁ (7L )2—&(3x+422 43¢l ) 677 L £+ 2LE 11122
(— 126671l +12x—622)7 - +4(7jl)27L +4 (7L )3 —ace L — 27l L 4 SE V11 —Vaz
67— — 2+ +4nll -~ — ."_

“Initial Condition Terms™™: A( i—'] = (26 + 1)

VE’

e (2) . ‘2}
We solve ﬁtm - 7 o

1 0 T ) S
— Asiedl’) ;. e ) + Abeu =

(2 f Gap(t, t) (%m l‘( ) {h —-_lbm) dt’

%Gabft- t') — Gac(t,t') =0,
LCap(t,t') + 1. ()Gt ) =0,  Gapl(tu,ts) = dab
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(—6E—1082 2871 )7l — (6-+62—87jl) (71) 2 —&(3x +482+3¢ll) — 67 L £ 1 + SE T2
(—126—67 1 +12x—622)i +4(7 ) 27 +4(7 L )3 —gze L —2qll gL 4 2 T2l 292
67— —2enq-+4ql G- —26+
“Initial Condition Terms”: A(LL) = (26 + -Fy}%cj
72 =\ 7z6
i (2) , (2) A SRS 11 T U ) S |
We solve ﬁa:m — Vai = Aabe(t)vp;" ve’ + Abg =
@) _ | @
= I /
—OC
! i !
dsta (t,t") — Gac(t,t') —1
d 5 AN Tl
EGa.b(t:t ) = = Gcb(t-t J— O Gab(tw-.fw) = Oqb
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The Bispectrum

Focus on the adiabatic perturbation v1 = ¢ and define

vim(k,t) = § G5 [ oo d'Cro(t, ) Xom ()W (K, 1),

X 0 1
Ibn_({]{t)

We have been working in a uniform expansion slicing:

,a'l - ]_ i
Si —MJ—ElFHdD :@()j,ﬂ-

To get the curvature perturbation we transform to a uniform energy
density slicing: § = 8;Ina = 8;a. Using (T, x) = ¢ (t, x) we find:

A ~( pd | (1)
0;a\t) = ;f =l
9@ = & = () 4 oyl (o0

(Note: No non-local terms)
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Azo

%Gﬂ.b( t? -’-H) Z =

Gcb(t.tf) —

—62—1082—2z7ll )il —(6+62—87jll ) (77-)2 —&(3x+482+3¢ /) —677 L ¢ L 4 3£E T 22
(—126—6ijll +-12x—682)L +4(iil ) 271 +4(7L )3 -4 L —27 E___|_"j:.j:,_:.ﬂl_13:;§‘3'-£
61— —2en—+4n r}——ﬂé;'—
“Initial Condition Terms™: A (= ) (2€ + Fy]%cj
= v
G el d, (2) (2) A w  £1). ) .
We solve =t F Vi = Aabe(l’) vy, ve’ + Abgi =
(2) £ @)
& ! !
Lia? — f Gab(t.i_ ) (4.’-}‘2{:{ () d T .}.‘ja) di_
— 00
d : / /
FGﬂb{\t‘ t ) — Gac[.t. f_ ) — 0._

Gab(tw t-:_) = 5(15
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The Bispectrum

Focus on the adiabatic perturbation v1 = ¢ and define
vim (K, t) = § 34 [L o dE'Gro(t,t') Xom ()W (K, 1),

k3/2 .
! 1 0
Xom = (3 480)
We have been working in a uniform expansion slicing:
(= ——%= (e14 8;07 1:3—-1}1._;53-10.

‘~.,.-_E

To get the curvature perturbation we transform to a uniform energy
density slicing: § = 8;Ina = 8;a. Using (T, x) = ¢ (t, x) we find:

a ~(1 (1) (1)
8,6t = Si =64

0,62 = ;{3 (2} + 2nt¢Mg {11

(

(Note: No non-local terms)
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The Bispectrum

Focus on the adiabatic perturbation v; = ¢ and define
Ulm | k, f) = 3 M r_T:x-_ dffGlb[ L, EJ}-Yhm I_ It-f'} VL(!L f’.} -

2 k3/2
) 1 0
‘{K b'ﬂ’l = U ]_! .. ¢
0 x(t")
T . “ Automatic Updates - - i
We have be - o licing:
Lipdafing your computer is almost complete. You must restart yvour compui=r for
the updates o taks effect
] K
CE —_— o Do you want to restart your computer now?

| Restart Now | Restaryd ater

To get the curvature perturbation we transtorm to a uniform energy

density slicing: c; = 0;Ina = 0;a. Using c;-(T. x) = (;(t,x) we find:

agétl) — -“:.{1} = [‘:fll

-

Q
%i
[

(2 (2) e
"..31-( f Lf - QI]L()(UO'E-

(Note: No non-local terms)




The Bispectrum

Focus on the adiabatic perturbation v1 = ¢ and define

Uim (K, t) = %iﬁay f_ L AU'G1p(t, 1) Xom (') 1”»(% ),

e 5 1
= { R
e (0 x(t’ j)

We have been working in a uniform expansion slicing:

- 1 i 4 y
L = —=——=—ng 90
i V2 1A U5

&y - - . G
] — 12 auo
W

To get the curvature perturbation we transform to a uniform energy
density slicing: f:g = 0;Ilna = 9;&. Using ci,.;{ T, x) = (;(t,x) we find:

i m~ o 1 : 1
V- \- -\ 2 -(2) : |
2 = i = (4 200

(Note: No non-local terms)
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1)
T

2-pt fn: (@) (k, ) = v,

(k,1) 1”(,1 t)

3-pt fn: (aca) [Al ko. k. t) = .303‘2 k.l { (k1,ka) +

(k. E') = LinnlE, E, trrl ) (k, f) {;A"’.f) +k— K

Lmr()i ki L) = ?*3-’;31{"3 } '(lj(l“f ] i
L[t dt Gra(t,t) AL (¥ )up) (k, ¢ &) (K, )

A
- —

Parameterize non-Gaussianity by:

aad)(t)

f_-"\"_L — 'ir'-i'b{f-}
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1)
T

2-ptfn: (aa)"’ (k,t) = ?g

(k,1) IN(L t)

3-pt fn: (@aa)'? (ky, ko, ks, t) = (27)383 (3, kbf[ (k1,k2) + .

f(k, k') = Lnn(k, K, t)v} A f) {;A"'.fj+1:i—-r 4

Lhﬂ.i"-'(# 'll‘f ] — ?}*I}m L f} (Af ] il
L[t d¥ Gra(t, )AL () lj(k YW (K )

2 abe bm

Parameterize non-Gaussianity by:
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Some analytic results

One can further process the second order solution analytically:

INL(?) = [1__6{?11;}:-" ((€ + 7 (G22)? + G22G32)

—6(G12)% pt s [ . - P
[1—{"6113'}J9'52 [ dt’'| —2(7H)?(Gx2)? — (€+ 71)Ga2Gaa — (G32)? +

G1397-G22G3a + Gi: (12?? x — 6nlat + 6(7)2 7" +6(7-)° —

where G = G(t,t'). For the models we have studied the first two terms
are an excellent approximation to fp,. Is the second term always

small? (Work in progress)

(Note: The terms which would give rise to a curl have explicitly

canceled.)
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Some analytic results

One can further process the second order solution analytically:

InL(t) = _1: 7,"2'-!: ((€ + 7 (G22)? + G22G32
114+(G12)7]

—6(G12)? pt TRY. \9 BT e
[1—{r:;1lz}J'2‘if Jo At | —2(77)°(Gaa)” — (€4 11)Ga2G32 — (G32)° +

G1397-G99G3g + @13(125}'*{ —6qlat + 6(7l)25L + 6(7+)3 —

0zLZl _oz=llEL 3% Vaua+Vaza Y (v !
2Lel — opllel — Sx .E_l;lJr-.u)(GQQ)z

where G = G(t,t'). For the models we have studied the first two terms
are an excellent approximation to fp,. Is the second term always

small? (Work in progress)

(Note: The terms which would give rise to a curl have explicitly

canceled.)
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Some analytic results

One can further process the second order solution analytically:

oy . —6(G12)? /-
f_\:th) =" [1_,_((‘;11,2ﬁ‘2]2 (i_

Ol
+
!
—_
o)
e
‘ot
o
]
_{_
)
d
N
)
Gig
b
—r

—6(G12)? t AL A il f P
[1—-{.59112-};'2'!2 f—:\: dt’ | — QE”*JE(GQ?}E — (E+ N1)GaaGaa — (G3o 1t

G1397-Go9G3s + 613(12??'*K —6nlnt +6(ql)2nt +6(7t)° —

-

- | — o " D= V4 .- o Wan | :
2 €l — 27IE — 3YE Vi ) (Gy)?

where G = G(t,t'). For the models we have studied the first two terms
are an excellent approximation to fpr,. Is the second term always

small? (Work in progress)

(Note: The terms which would give rise to a curl have explicitly

canceled.)
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Large non-Gaussianity?

Simple inflationary models give fxr ~ O(0.01) = O(€, n) for both
single and multi field inflation.

* Less symmetric potentials?

* Non-separable potentials?

* Hybrid inflation

* Reheating, preheating

* Later dominance of another field (Curvaton)

Large NG: both G922 # 0 and G12 # O at the end of inflation.

Of course this primordial input must be connected to the observable
CMB sky and this connection adds one more NG component which

may be dominant.
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Conclusions

* Non-Gaussianity has been the focus of many studies over the past

few years.
[t provides another observable that links the present to the early
universe.

* Simple inflationary models, both single and multi field, predict it
to be very small, fxr ~ O(€E, 7).

* However, later processes and/or more complicated models may

yield larger primordial non-Gaussianity.

* An interesting observable for the future, especially if faz ~ 0.01
is accessible to future observations.
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Some analytic results

One can further process the second order solution analytically:

o —6(CG1o o Ll \9 , s
NL(t) = [1_["@112'}?3-53 ((€+7")(G22)* + G22G22)

[1_—6{{((11:53 f—r-x, dt' | — 2(71)2%(Ga2)? — (€ + )G 22G39 — (G32)? +

G1397-Go9G3s + ;13(125?'*’( —6nlat +6(ql)2nt +6(7t)° —

where G = G(t,t'). For the models we have studied the first two terms
are an excellent approximation to fy,. Is the second term always

small? (Work in progress)

(Note: The terms which would give rise to a curl have explicitly

canceled.)
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(1)
1

: « (1)
1m (K, 1)V (K, 1)

2-pt fn: (aa)"”’ (k,t) =v

3-pt fn: (@aa)® (k1, ko, ks, t) = (27)363 (3, kﬁ,[ (K1, ka) + .

F(k,K) = Linn(k, K, )00 (k, O)vi) (K, 8) + k > K

Lnn(k, k', ) = 7losd (k, t)uiD (K, t) —

L[t dt Gia(t, )AL (#) mﬁ’ (k, )& (K, )

Parameterize non-Gaussianity by:

fvr = aaedr) (t)
NL = "[Ga)(t)
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Some analytic results

One can further process the second order solution analytically:

INL(t) = mrEnye

—6(G12)% pt o NS \¢ SR e
[1—{{6*11{‘;JEP fix dt’ | — 2(71)2%(Ga2)? — (€ + )G 22G3s — (G32)? +

6139'??*6;22@:39 — ;13(123}'*){ —67n''n— + 6(7 |)2ﬁ+ o 6(-;}*}3 B

where G = G(t,t'). For the models we have studied the first two terms
are an excellent approximation to fp . Is the second term always

small? (Work in progress)

(Note: The terms which would give rise to a curl have explicitly

canceled.)
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Some analytic results

One can further process the second order solution analytically:

. W o ,
NL(t) = [1_6{{‘5112'}}21: ((€+7")(G22)* + G22G22)

[1_—6((211:})2-2 [l dt [ —2(71)?%(Ga2)? — (€+ 11)G22G3s — (G39)? +

* Automatic Updates X

@ l 3 gﬁ T G‘]' Updating your Computer i almost complete. You must restart your computer for A | ) 2 ﬁ—'— = - 6 (-ﬁp — ) ‘3 —

the updates 1o take effect.

Do you want to restart vour computer now?

oL el — 9; (Resrtow

I S | — — - _i
where G = G(t,t'). For the models we have studied the first two terms
are an excellent approximation to fp,. Is the second term always

small? (Work in progress)

(Note: The terms which would give rise to a curl have explicitly
canceled.)



Some analytic results

One can further process the second order solution analytically:

fNL(t) = oy (6 +711) (G22)? + G2aGisn)

—6(G12)? gt s RS \¢ T (N,
— fl.__-qz':z f—x dt’| — 25-'37*)2(@2'9_}2 — (€+1)G2aG32 — (G32 )2 +

)27t +6(74)° -

G1397-G22G3a + ;13(12?%%‘ — 6nln— + 6(n

where G = G(t,t'). For the models we have studied the first two terms
are an excellent approximation to fy,. Is the second term always

small? (Work in progress)

(Note: The terms which would give rise to a curl have explicitly

canceled.)
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The Bispectrum

Focus on the adiabatic perturbation v1 = ¢ and define
. ' - H(ty L ' Wan ' YA &
vim (K, t) = S4B 1 dt' Gy (t, ') Xom (E)W (K, ')

X 0 1
<rpm — (O‘K(t‘r')'

We have been working in a uniform expansion slicing:

(= ——=(e14 0,0%) = ﬁz O; p.

v 2€

>4

To get the curvature perturbation we transform to a uniform energy
density slicing: (:3 = 0;Ina = 9;&. Using cfi(T. x) = (;(t,x) we find:
e {1 41

aall— V¢

~(2)

8,6 =¢? =¥ 1 optcWgM)

E

(Note: No non-local terms)
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“Initial Conditions”

, ONe

can include in a straightforward manner perturbations from shorter

wavelengths. This amounts to adding “sources” on the rhs:

=
T

—= — —

A

$(5)+ (378 2)(8) =0t (o - e

= (27)36(k — K'), e.t.c.

W(E) cuts off short wavelength modes. Simplest
choice: W(k) = ©(caH — k). Final results are
independent of the form of W(k).

When linearized, these equations are exact and valid to all scales,

simply being linear perturbation theory.
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Perturbation Theory

We can now perturb the e.o.m. to directly obtain solutions at second
order

: . 027~ 0 : e
Perturbing A(#, x) = (u) 0 —}) represents non-linearities in

0 K A
the long wavelength evolution

Perturbing L represents “initial” non-linearities of the modes at

VE
horizon crossing

Write (AA)p = Agpe ve , With |v; = (a)

* Evolution terms:

- (E-2q )it +&+ § 922 4 (26—l )il +- ()2 +€!
A9 = 2 | —3x—(&+il)yal—@H)? |, Asze = 2eil +£1
_3_ﬁ|| T

Non-Ganssianity and its Evolmtion in Multi-field Infation — p. 1



Long wavelength equations of motion

Choose a gauge with NH = 1 (9;a = 0 - homogeneous expansion)

to simplify expressions

G 0 —277*
%(%)"‘(U 0
g 0 &

0 Ci
_1)(@) 0
A o

where
R(t,x) = 3 (3% +

M

=

A(t,x) =3+ &+ 24l

All local quantities are given by:

+7ll) + 2€2 + geqll + 4(71H)2 + €,

» A e HV2E (=] ~ e I
> epGilly=—=3= (R¢ + 7o)
" H/92E (- = o -
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Long wavelength equations of motion

Choose a gauge with N H = 1 (9;a = 0 - homogeneous expansion)
to simplify expressions

where
R(t,x) = 3 (3% + é+iil) + 282 + 4l +4(71)% + €,

At,x) =3+ &+ 27l

All local quantities are given by:

; 0’ InH =¢€ (v" Em_—‘L@i ‘i}‘% — \,EE {;zm

' A ¢ = H 2 g o=l

i C)FH{ _ _x—E (W”QJ N O'g_)

i 2 OF (- e = i
oLy = ~HYE (5, + 7+ (i +9) )
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Non-linear Isocurvature and Adiabatic Variables

» G=c' (' =08lna— \,F’L_e 9;0* = 0;Ina — %C)i p
* o0; = Ljf — —;,{_E ;2

&
¢
=
~
(o
2
)
=
~
=3
J—
o
g
4"
=
4",
H
)

S 2 y € A oA yr e
T eit] | — 3HII+a7) A __ =1 A ag~A
= 5 —Q'H : T; = 1l : .E == 36 & —— 3)?7 —

Project isocurvature and adiabatic parts:

— —

N Iy = i, =", =2

The non-linear equations of motion are formally the same as those of
linear perturbation theory with
0 — O

f(t) — f(t,x)
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