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Abstract: In thistalk | describe a possible connection between quantum computing and Zeta functions of finite field equations that isinspired by the
\'spectral approach\' to the Riemann conjecture. This time the assumption is that the zeros of such Zeta functions correspond to the eigenvalues of
finite dimensional unitary operators of quantum mechanical systems. To model the desired quantum systems | use the notion of universal, efficient
guantum computation. Using eigenvalue estimation, such quantum systems should be able to approximately count the number of solutions of the
specific finite field equations with an accuracy that does not appear to be feasible classically. For certain equations (Fermat hypersurfaces) one can
indeed model their Zeta functions with efficient quantum agorithms, which gives some evidence in favor of the proposal. In the case of equations
that define elliptic curves, the corresponding unitary transformation is an SU(2) matrix. Hence for random elliptic curves one expects to see the kind
of statistics predicted by random matrix theory. In the last part of the talk | discuss to which degree this expectation does indeed hold. Reference:
arXiv:quant-ph/0405081
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Trying to Prove the RH

The RH is one of the 7 Millennium Problems of the Clay
Mathematics Institute (1,000,000$ for a proof, 0% for a disproof):

.. This has been checked for the first 1,.500,000.000
solutions. A proof that it is true for every interesting
solution would shed light on many of the mysteries
surrounding the distnibution of prime numbers.”

Four recent popular books describe the quest for a proof and
the recent excitement about a‘“ spectral approach’ to the RH.
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Zeta Zeros as Eigenvalues?

Let the n-th {(s)=0 zero be % + y_-i and look
at the normalized spacings between the y,
defined by 8, = (Y,.1—Y,) log(y /21)/2TT.
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Zeta Zeros as Eigenvalues?

Let the n-th {(s)=0 zero be 2 + y_-i and look
at the normalized spacings between the y,
defined by 8, = (Y,.1—Y,) log(y /21)/2TT.
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Zeta Zeros as Eigenvalues?

Let the n-th {(s)=0 zero be % + y_-i and look
at the normalized spacings between the y,
defined by 8, = (Y,.1—Y,) log(y /21)/2TT.
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Zeta Zeros as Eigenvalues?

Let the n-th {(s)=0 zero be 2 + y_-i and look
at the normalized spacings between the y,
defined by 8, = (Y,.1—Y,) log(y /21)/2TT.

The Montgomery-
Dyson law states
that this 8-spacing
has the same kind
of eigenvalue
repulsion that we
see in GUE random
Hermitian matrices
(verified in great
detail by Odlyzko).
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Spectral Approach to RH

The Hilbert-Pélya approach to the Riemann Hypothesis
tries to view the y, values as the spectrum of (hopefully
meaningful) Hermitian operator.

The random matrix statistics of the zeros suggests

that it would have to correspond to a (pseudo)-random
operator. Such operators occur naturally in the theory of
chaotic quantum mechanical systems.

The hope is that we can use our physical intuition
to make an educated/lucky guess of such an operator,
thereby settling the Riemann Hypothesis.
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Curves over Finite Fields

We will be working over f|n|te ffelds ZIpZ = F_

and their extensions like F,, F,, Fg, Fy4,... up to i the
algebraic closure of F, which is denoted by ..
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Curves over Finite Fields

We will be working over finite fields Z/pZ = F
and their extensions like F,, F,, Fg, Fy,... up to the

algebraic closure of F,, which is denoted by [ .

We want to count the

solutions in the projective F A F -
space P"(F ) to a polynomial p\ / P
equation 0 = feF[X,,...,X]. I \F

p- p’
Special interest in curves \ | /
feF [X,Y] in P(F,). K

When smooth et ¢.. such P J p\ F
curves have a genus g. 'p? I'p5



Zeta Function

# of solutions to =0 in degree-s extension of F:

N, = |{xeP"(F.):f(x)=0}|
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Let feF[X,,....X] be the polynomial and define the




Zeta Function

Let feF[X,,....X] be the polynomial and define the
# of solutions to =0 in degree-s extension of F:

N, = [{xeP"(F.)f(x)=0}

S

With N,,N,,... we define the Zeta function of f:

ZAT) = eq Z%TS

which is a formal power seriesin T.
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Zeta Function

Let feF[X,,....X] be the polynomial and define the
# of solutions to =0 in degree-s extension of F:
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With N,,N,,... we define the Zeta function of f:
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which is a formal power seriesin T.
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Zeta Function of Straight Line

For the line L defined by X+Y=0 in P(F)),
we have N_=ps+1 for all s.




Zeta Function of Straight Line

For the line L defined by X+Y=0 in P4(F ),
we have N_=ps+1 for all s. |

The Zeta function is thus:

Z_ i — exp; ZH_SP )TS

\s=1 O s=1 S
: 1
(1-T)(1-pT)

Trivial poles at T=1 and T=1/p and no zeros.




Z(T) of a Quartic Curve

Let X4+Y4+1=0 define a curve C in P? over F-.
The Zeta function of this C turns out to be
(1—2T +5T1°)
(1-T)(1-5T)

ZC(T) =




Z(T) of a Quartic Curve

| et X4+Y4+1=0 define a curve C in P? over F-.
The Zeta function of this C turns out to be

12T +51°)
Z.(T) = (_ J
= (1-TH1—50)
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Number of solutions : N, =5 +1° — 3(1 TR N
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Two Qubic Curves over [,

Y2+ X3+2X+1=0hasN,=7and N,=35,...

N, =5" +1° (-3 +33-19) (-} -37-19)




Two Qubic Curves over [,

Y2+ X3+2X+1=0hasN,=7and N,=35,...
N.-5 i it/ a9y (1 1/ y9)
: h el J
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Y2+ X3+2X+2=0has N,=7and N, =25,...
N, =5°+1° — (1)’
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The difference is explained by the fact that the first
curve is smooth, while the second one Is singular.

For smooth curves, N_ obeys Weil's Riemann hypothesis. ..




Weil’s RH for Curves

Let f define a complete, nonsingular curve over F,
the Zeta function Z(T) of this C equals

7 eecthall
(1-T)A—pT)

with P(T) = (1-a, T)(1-a,T)...(1-a,T)

Weil's Riemann Hynothesic savs: [a|="p.
F urthermore, c:f=aj+_ and g iz the genus of C.
AS a Cirect conseauence:




Weil’s RH for Curves

Let f define a complete, nonsingular curve over F,
the Zeta function Z(T) of this C equals

A e Al
A-T)A—-pT)

with P(T) = (1-a, T)(1-a,T)...(1-a,T)

Weil's Riemann Hypothesis says: |aj|=Vp.

Furthermore, a; =a;,; and g is the genus of C.

As a direct consequence:
#solutions : N.=p°+1—(q, "+ a, +---+a, )

-

=P lo|=/P ;.1:%5



Spectral Interpretation of
Weil’'s Riemann Hypotheses

The roots of Riemann’s zeta function {,
suggests an infinite dimensional Hamiltonian.
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The roots of Riemann’'s zeta function {,
suggests an infinite dimensional Hamiltonian.

The roots of the Zeta function Z: suggest
a finite dimensional unitary matrix.

a B
For each equation f=0 O B
Q3 * g
we have 2g roots .
a; = vp-exp(i §)), .
giving a spectrum * PN g » 2

exp(i 8,),....exp(i 8,). A5
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Just as the (..., ZEros obey the kind of statistics
of random Hermitian matrices, the zeros of these
finite field equation Zeta functions (seem to) obey
the statistics of random unitary matrices.
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eigenvalues 6, are distributed as if they are sampled

from the random unitary matrices in USp(2g).
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The Quantum Goal

Given a F function f where Z; has 2g nontrivial roots
construct a quantum circuit U; with a,/Np,...,a,,/Vp

as its eigenvalues and where the circuit has
complexity polynomial in log p and log g:

X Y)=0 | @

such that the spectrum of U. equals that of Z




The Quantum Goal

Given a F function f where Z; has 2g nontrivial roots
construct a quantum circuit U; with a,/Np,...,a,,/Vp

as its eigenvalues and where the circuit has
complexity polynomial in log p and log g:

X Y)=0 | e

such that the spectrum of U; equals that of Z.

Note that we want the circuit to act on log 2g qubits.
Compare this with the result described by [Kedlaya]
where Z: is calculated exactly using poly(g) qubits.






Partial Quantum Results

0=ng;n +,..—chTT Done.
Y?=X*+D and Y*=X*-Dx e




Partial Quantum Results

OZCDXQ +"'_;Cr1er Done.
Y>=X>+D and Y* =X -Dx Done.

- For these curves and hypersurfaces the Zeta

zeroes are products of multiplicative characters x
and Gaul} sums g(x) = %, ez?7mPy(z).

- We know how to induce the x(c) and g(x) phases
with efficient quantum algorithms (using discrete
logarithms and quantum Fourier transforms).



Quantum Zeta Algorithms

If we can design such circuits U;, what good is it?

- It strengthens the connection between number
theory and quantum mechanics (not just between
number theory and random matrix theory).
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Arguments in Favor of a
Spectral Interpretation

Just as the (..., Zeros obey the kind of statistics
of random Hermitian matrices, the zeros of these
finite field equation Zeta functions (seem to) obey
the statistics of random unitary matrices.

[Sato-Tate] For a fixed elliptic curve the Zeta zeros
over different F, obey random SU(2) statistics.(?)

[Katz & Sarnak] For curves in the limit g,p—«, the
eigenvalues 6, are distributed as if they are sampled

from the random unitary matrices in USp(2g).



Semiclassical Methods

For the Riemann zeta function Odlyzko and Berry
looked at the deviations from the GUE statistics.

Using semi-classical methods for quantum chaotic
systems, Berry managed to maich the deviations in the

‘number variance’ with surprising accuracy:
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