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The WMAP 3-year data and Cosmological Initial
Conditions

« Why re-analyze the WMAP3 data?

Why and how Bayesian analaysis?

« Results
— Low | results
— High/All | results

« |Implications for Cosmology
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Why re-analyze the WMAP3 data?
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WMAP1: Bayesian Re-analysis reduces
“‘low power on large scales” from 99.5% to
90% effect

Our analysis demonstrated that

the power spectrum likelihoods P(C,> x| data)
at low € have strong tails to T e o —————
high C{. 10% - T U

This leads to a probability in
excess of 10% that the true C,

is even larger than the WMAP E
best fit C.. a 040

abability

0.2H] ; _best fit
- F i

C. is unremarkable. : ;
’ /| auadrupele  opyyeretal 2005

(Note: this is due to 0 1000 Ly fjgc R 3000 4000
statistics, not Foreground e
marginalization, which adds :

~5%.to this effect) (O'Dwyer et al. 2005) T




Why Bayesian analysis?
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Bayesian Cosmological Data Analysis

Cosmological data
analysis takes

astronomical observations (D)

and turns them into
statistical statements about the
parameters (8) that define our
Universe

»  Conceptually straightforward:

-+ After COBE —for more than a decade—
the field has had to cope with
approximations that avoid the
computational difficulty of evaluating the

terms in this equation.
PagelO/ST

—f—— P(O|D)=P(D|0)P(0)
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THE COSMOSTATISTICS PROBLEM

e
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T
« Black bar: size of data set

* /Red area: work required to

/ evaluate 5. p(plo)P(6)
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THE CMB ANALYSIS PROBLEM
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Computational Speed of Gibbs Sampling
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Computational Speed of Gibbs Sampling
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Computational Speed of Gibbs Sampling
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Computational Speed of Gibbs Sampling

* The computational effort for
each Gibbs sample is O(N'?)
less than for the brute force

techniques.
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Computational Speed of Gibbs Sampling
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The computational effort for
each Gibbs sample is O(N'>)
less than for the brute force
techniques.

For WMAP and Planck
N~ 10" —> N'™~ 10795




Computational Speed of Gibbs Sampling

* The computational effort for
each Gibbs sample is O(N'>)
less than for the brute force
techniques.

For WMAP and Planck
N~10" — N'~ 1075

This speed-up is of the same
order as the approximate
(Pseudo-C) techniques.

Page 47
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Gibbs Sampling: How?
- * Gibbs sampling is a Monte
Carlo technique for

generating samples from the
likelihood/posterior.

* |t recovers the results of the
full Bayesian approach

without brute force evaluation
of the likelihood.

25

(Jewell, Levin Anderson
2004,

. e Wandelt, Larson, Lakshm.
weovows 02 04 06 08 L 2004; Eriksen et al. 2( "”I‘
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MASTER Sampling

04

Gibbs Sampling

0.6

08

0.6

08

E 1N
"MASTER: Low-I problems even for Perfect Data

What do the error bars from a
MASTER-like approx.
technique mean?

Here is an example using

perfect, all sky data without any
noise.

We focus on 86 = C4.

In both cases. the solid line
shows the actual likelihood for
C,at{=4.

The samples are obtained
using Gibbs sampling and by

“regular” Monte Carlo, like
MASTER.

MASTER Is neither frequentist
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! Gibbs Sampling

What do the error bars from a
MASTER-like approx.
technique mean?

* Here is an example using
¢ perfect, all sky data without any

08 1 .
noise.
o « Wefocuson8=C,.
L MASTER Sampling ¢+ In both cases, the solid line
- /'"\ shows the actual likelihood for
I C,atf=4.
4
| / A\ « The samples are obtained
o LA using Gibbs sampling and by
| 1 “regular” Monte Carlo, like
;J/ | ﬂh, e | MASTER.
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WMAP re-analysis

» Cross-checking approach adopted throughout
« 3 different research groups (JPL, lllinois, Oslo, “India,” Davis)

» 4 different analysis methods
— Gibbs sampling (2 versions of priors)
— Maximum likelihood
— Metropolis Hastings exploration of exact low-l likelihood
— MASTER (two different foreground treatments)

* This approach allows us to check for not just for systematic
differences in the analysis but also various other errors (data
handling etc...)

irsa: 06110060 Er[ksen et al., ApJ in F)res;s1 astro_phj060 Page74mf




Results of low | analysis

I I I I T

— B VDN moded
[ -} WALAFP spectTmm
o Giibbes V-band (£ - emiform peior)

Cabbs W -hand « mean: Feffrey s prior
T & ML % -band « Kple coms

i

€I+ 127 (10" k)

# « First result: very good
agreement | by | for all
methods.

a—

-

+ Second look: the small
offset compared to

WMAP spectrum is
I correlated across |.

—_
o

(]

(€ '“MH"} i+ Dm0 uKEJ
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Masking issues in the WMAP3 analysis

De-biased ILC map V-band - W-band

<M

100K 20pK

20pKR

20pK

20pK  20pK

— 2 11K
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Masking effects on low | power spectrum
estimates
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Multipole moment. /
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Low | likelihoods and posteriors for C
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High resolution (all-scale) analysis

6 I 1 T
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MASTER for Individual Frequency Combinations

6 |

i

€, I+ 127 (107 pK)
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MASTER for Individual Frequency Combinations

i

(/+1)2r (10 uI{J]

A=

'his effect is
;onsistent with a
lifferent point
source population

iuffenberger et al
2006
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Cosmological implications

—— WMAP
—_— WMAP+HR

| .

20 0.022 0.024 0.026 0.1

Qb h:

|
25 30 32

log (10" A)
I [ I | T

Pirsa: 06110060




L]

L

e ~lIgsults consistent with these conclusions. - 83MT

Conclusions

Statistically rigorous analysis of the CMB is now feasible using
Bayesian sampling techniques (Gibbs sampling).

Pseudo-C, techniques are very convenient, but the error bars are
“special,” especially at low I. This is dangerous when S/N is ~1.

The WMAP 3-year power specirum contains a low-| bias, at | around
30

The WMAP 3-year data power spectrum also contains a bias at high |
(400-600) which is consistent with overcorrection for point sources

The net result of these biases is reduced evidence for n_< 1:

— The exact low-l likelihood reduces significance from 2.7cto 2.30

— A new high | point source correction (Huffenberger et al) further
reduces the significance to 20.

The new version of the WWMAP3 likelihood code on LAMBDA gives




