Title: Bayesian Analysis of WMAP3 Data

Date: Nov 11, 2006 10:00 AM

URL: http://pirsa.org/06110060

Abstract:

Pirsa: 06110060

Bayesian analysis of WMAP3 data

Benjamin D. Wandelt

Departments of Physics and Astronomy
University of Illinois at Urbana-Champaign

November 11, 2006

Perimeter Institute

The WMAP 3-year data and Cosmological Initial Conditions

- Why re-analyze the WMAP3 data?
- Why and how Bayesian analaysis?
- Results
 - Low I results
 - High/All I results
- Implications for Cosmology

The WMAP 3-year data and Cosmological Initial Conditions

- Why re-analyze the WMAP3 data?
- Why and how Bayesian analaysis?
- Results
 - Low I results
 - High/All I results
- Implications for Cosmology

Why re-analyze the WMAP3 data?

Page 7/83

WMAP1: Bayesian Re-analysis reduces "low power on large scales" from 99.5% to 90% effect

Our analysis demonstrated that the power spectrum likelihoods at low ℓ have strong tails to high C_{ℓ} .

This leads to a probability in excess of 10% that the true C_2 is even larger than the WMAP best fit C_2 .

C₃ is unremarkable.

(Note: this is due to statistics, not Foreground marginalization, which adds ~5% this effect)

(O'Dwyer et al. 2005)

Why Bayesian analysis?

Page 9/83

Bayesian Cosmological Data Analysis

Cosmological data analysis takes

astronomical observations (D)

and turns them into statistical statements about the parameters (θ) that define our Universe

Conceptually straightforward:

 $P(\theta|D) \propto P(D|\theta) P(\theta)$

After COBE –for more than a decade—the field has had to cope with approximations that avoid the computational difficulty of evaluating the terms in this equation.

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta) P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta) P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta) P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta) P(\theta)$

- Black bar: size of data set
- Red area: work required to evaluate $P(\theta|D) \propto P(D|\theta) P(\theta)$

Black bar: size of data set

Red area: work required to

evaluate

 $P(\theta|D) \propto P(D|\theta) P(\theta)$

- Black bar: size of data set
- Red area: work required to

evaluate

 $P(\theta|D) \propto P(D|\theta) P(\theta)$

· Black bar: size of data set

evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

· Black bar: size of data set

evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

Black bar: size of data set

work required to

evaluate $P(\theta|D) \propto P(D|\theta)P(\theta)$

- Black bar: size of data set
 - work required to evaluate $P(\theta|D) \propto P(D|\theta) P(\theta)$

Pirsa: 06110060 Page 35/83

Pirsa: 06110060

THE CMB ANALYSIS PROBLEM

Pirsa: 06110060

THE CMB ANALYSIS PROBLEM

- Black bar: size of data set
- Red area: work required to Gibbs sample

Page 39/83

- Black bar: size of data set
- Red area: work required to Gibbs sample

- · Black bar: size of data set
- Red area: work required to Gibbs sample

- · Black bar: size of data set
- Red area: work required to Gibbs sample

- · Black bar: size of data set
- Red area: work required to Gibbs sample

 The computational effort for each Gibbs sample is O(N^{1.5}) less than for the brute force techniques.

Feasible on existing facilities

 The computational effort for each Gibbs sample is O(N^{1.5}) less than for the brute force techniques.

For WMAP and Planck
 N ~ 10⁷ → N^{1.5} ~ 10^{10.5}

Feasible on existing facilities

 The computational effort for each Gibbs sample is O(N^{1.5}) less than for the brute force techniques.

For WMAP and Planck
 N ~ 10⁷ → N^{1.5} ~ 10^{10.5}

Feasible on existing facilities

 This speed-up is of the same order as the approximate (Pseudo-C_e) techniques.

- Gibbs sampling is a Monte
 Carlo technique for
 generating samples from the
 likelihood/posterior.
- It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 2(Page 48/83

- Gibbs sampling is a Monte
 Carlo technique for
 generating samples from the
 likelihood/posterior.
- It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 2004; Page 49/83

- Gibbs sampling is a Monte Carlo technique for generating samples from the likelihood/posterior.
- It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 2(Page 5

- Gibbs sampling is a Monte Carlo technique for generating samples from the likelihood/posterior.
- It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 2(Page 51/83

- Gibbs sampling is a Monte Carlo technique for generating samples from the likelihood/posterior.
- It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 20

- Gibbs sampling is a Monte Carlo technique for generating samples from the likelihood/posterior.
- It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 2(

 Gibbs sampling is a Monte Carlo technique for generating samples from the likelihood/posterior.

 It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 20

- Gibbs sampling is a Monte
 Carlo technique for
 generating samples from the
 likelihood/posterior.
- It recovers the results of the full Bayesian approach without brute force evaluation of the likelihood.

(Jewell, Levin Anderson 2004, Wandelt, Larson, Lakshm. 2004; Eriksen et al. 2(Page 55/83

The Team (alphabetical by institution)

- IUCAA, IIT Kanpur
 - Tarun Souradeep and students (IUCAA, IIT Kanpur)
- JPL/Caltech
 - Jeff Jewell
 - Ian O'Dwyer
 - Krzysztof Górski
- Max Planck Institut f
 ür Astrophysik
 - Anthony Banday
- University of California at Davis
 - Lloyd Knox
 - J. Dick
- University of Illinois at Urbana-Champaign
 - Ben Wandelt
 - Greg Huey
 - David Larson
- University of Oslo
 - Hans-Kristian Eriksen

Pirsa: 06110060

Frode Hansen

Eriksen et al., ApJ in press, astro-ph/0606088

WMAP re-analysis

- Cross-checking approach adopted throughout
- 5 different research groups (JPL, Illinois, Oslo, "India," Davis)
- 4 different analysis methods
 - Gibbs sampling (2 versions of priors)
 - Maximum likelihood
 - Metropolis Hastings exploration of exact low-l likelihood
 - MASTER (two different foreground treatments)
- This approach allows us to check for not just for systematic differences in the analysis but also various other errors (data handling etc...)

Results of low I analysis

 First result: very good agreement I by I for all methods.

Second look: the small offset compared to WMAP spectrum is correlated across I.

These correlated deviations can int

Masking effects on low I power spectrum estimates

Low I likelihoods and posteriors for C

High resolution (all-scale) analysis

MASTER for Individual Frequency Combinations

Band shows error estimate due to beam asymmetries

MASTER for Individual Frequency Combinations

Band shows error estimate due to beam asymmetries

Cosmological implications

Page 82/83

Conclusions

- Statistically rigorous analysis of the CMB is now feasible using Bayesian sampling techniques (Gibbs sampling).
- Pseudo-C₁ techniques are very convenient, but the error bars are "special," especially at low I. This is dangerous when S/N is ~1.
- The WMAP 3-year power spectrum contains a low-I bias, at I around 30
- The WMAP 3-year data power spectrum also contains a bias at high I (400-600) which is consistent with overcorrection for point sources
- The net result of these biases is reduced evidence for n_s < 1:
 - The exact low-l likelihood reduces significance from 2.7σ to 2.3σ
 - A new high I point source correction (Huffenberger et al) further reduces the significance to 2σ.
- The new version of the WMAP3 likelihood code on LAMBDA gives
 Pirsa: 061 results consistent with these conclusions.